

Week 6: Differential geometry and Killing vectors

Javier Subils, javier.subils@su.se. February 3, 2026

Exercise 1. *Embedded surfaces.* Consider a torus parametrised by the angles (θ, ϕ) and embedded in flat three-dimensional Euclidean space. A possible parametrisation is

$$x = (R + r \sin \theta) \cos \phi, \quad y = (R + r \sin \theta) \sin \phi, \quad z = r \cos(\theta). \quad (0.1)$$

1. Compute the metric on the torus, using θ and ϕ as coordinates on its surface.
2. Compute the Christoffel symbols of the Levi-Civita connection, the unique independent component of $R_{\mu\nu\sigma\rho}$, the Ricci tensor $R_{\mu\nu}$ and the Ricci scalar R .
3. Check that $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 0$.
4. Check that $\partial/\partial\phi$ is a Killing vector but that $\partial/\partial\theta$ is not. Interpret the result.

Exercise 2. *Killing vectors on the sphere.* Consider the metric of the two sphere with unit radius, $ds^2 = d\theta^2 + \sin^2 \theta d\varphi^2$. Check that the vectors

$$\xi_{(1)} = \frac{\partial}{\partial\varphi}, \quad \xi_{(2)} = \cos \varphi \frac{\partial}{\partial\theta} - \cot \theta \sin \varphi \frac{\partial}{\partial\varphi}, \quad \xi_{(3)} = \sin \varphi \frac{\partial}{\partial\theta} + \cot \theta \cos \varphi \frac{\partial}{\partial\varphi}$$

are Killing vectors. Check that $\xi_{(k)} = \epsilon^{ijk}[\xi_{(i)}, \xi_{(j)}]$, with ϵ^{ijk} the *anti-symmetric symbol*. Argue that these vectors are related to rotations about the axes of \mathbb{R}^3 .

Exercise 3. *Conical singularities.* Consider the surface of a cone whose angular aperture is $2\theta_0$ embedded in flat three-dimensional Euclidean space.

1. Write down the metric for this surface in terms of spherical coordinates.

Hint: Note that, on the cone, $\theta = \theta_0$.

2. Consider the vector $U = \partial/\partial r$ at the point $(r, \phi) = (r_0, 0)$. What vector do we obtain if we parallel transport it from $\phi = 0$ to $\phi = 2\pi$ along the curve γ_0 defined by $r = r_0$?
3. Consider the integral curves of field $V = (\alpha, 1)$, where $\alpha > 0$ is a constant. In particular, consider the path γ_1 from $p_1 = (r_0, 0)$ to $p_2 = (r_0 + 2\pi\alpha, 2\pi)$ whose tangent vector is V . Compute the parallel transport of U from p_1 to p_2 along γ .
4. ($\star\star$) Consider one more curve γ_2 , whose tangent vector is proportional to $\partial/\partial\phi$ and goes from p_2 to $p_3 = (r_0 + 2\pi\alpha, 0)$. Finally, consider γ_3 going from p_3 to p_0 through the curve $\phi = 0$. Note that $\gamma_3 \circ \gamma_2 \circ \gamma_1$ is a closed path starting at p_0 . Compute the parallel transport of U along this path and compare it with what you obtained in the second item of this exercise. What does this result tell us about the curvature?

Exercise 4. ($\star\star$) *More on geodesics.* The length of a curve is given by

$$S = \int_{\tau_1}^{\tau_2} \|\gamma'(\tau)\| d\tau = \int_{\tau_1}^{\tau_2} \sqrt{g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu} d\tau,$$

where $\dot{f} = df/d\tau$. Prove that geodesic curves extremise S . To do so, i) write down the Euler–Lagrange equations for the “Lagrangian” $L(x^\mu, \dot{x}^\mu) = \sqrt{g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu}$, noting that $g_{\mu\nu}$ depends on x^α (but not on \dot{x}^α), and ii) impose that τ is the affine parameter ($L(x^\mu, \dot{x}^\mu) = 1$).