

Week 9: Gravitational waves

Javier Subils, javier.subils@su.se. February 3, 2026

Exercise 1. *Gravitational waves emitted by a binary system.* Consider a binary system of two stars with the same mass M in orbit around each other. They are separated a distance r from their common center of mass. We treat the motion of the stars in the Newtonian approximation.

Figure 1: Binary system of equal mass stars.

- Find the velocity v of the stars, the period T and the frequency $\Omega = 2\pi/T$ in terms of G , M and r .
- Choosing the coordinates so that the (x, y) -plane coincides with the equatorial plane of the motion, write down the explicit trajectory

$$\gamma_{(i)}(t) = (x_{(i)}(t), y_{(i)}(t), z_{(i)}(t)) \quad (0.1)$$

for each of the stars (here, the subindex (i) labels each star, $i = 1, 2$).

- Argue that the energy density of the system is given by

$$T^{00}(t, \vec{x}) = M \sum_{i=1}^2 \delta(x - x_{(i)}(t)) \delta(y - y_{(i)}(t)) \delta(z - z_{(i)}(t)), \quad (0.2)$$

and find its concrete form using what you found after Eq. (0.1).

- Find the quadropole moment of mass distribution I_{ij} corresponding to T^{00} in Eq. (0.2) and, from it, obtain the components of the metric perturbation in the transverse traceless (TT) gauge.
- Using the gravitational Larmor formula, conclude that the power radiated by the binary is

$$P = \frac{2}{5} \frac{G^4 M^5}{r^5}. \quad (0.3)$$