
Lecture notes on General Relativity, general relativity lecture notes pdf

General Relativity

Javier G. Subils
Nordita, Stockholm University and KTH Royal Institute of Technology,

Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden.

These set of lectures notes have been prepared for the EÐL610M General Rel-
ativity course (Spring 2023), delivered mostly online at the University of Ice-
land; within the Theoretical Physics Specialisation Program, in partnership with
Nordita. They focus on the second part of the course. For this reason, all the
relevant concepts of differential geometry are assumed and focus is placed on
the physics.

Updates of these notes may be found in this webpage.

Version December 13, 2025

https://subils.me/my-lecture-notes/


Contents

1 Introduction 3

2 Differential geometry and conventions 4
2.1 Lie derivative and Lie bracket 4
2.2 Connections and covariant derivatives 5
2.3 Killing vectors and geodesics 6
2.4 Curvature 7
2.5 Extrinsic curvature 8

3 Spherically symmetric spaces 10
3.1 Spherical symmetry considerations 10
3.2 Birkhoff’s theorem and the Schwarschild solution 11
3.3 Relativistic Stars 13
3.4 Trajectories in Schwarschild spacetime 15
3.5 Mercury’s perihelion 18
3.6 Black holes 24
3.7 Beyond spherical symmetry: the Kerr solution 30

4 Gravitational waves 36
4.1 Linear approximation and symmetry considerations 36
4.2 Einstein’s equations for linear perturbations 38
4.3 Gravitational waves: plane wave solution 39
4.4 Effect of gravitational waves on test particles 40
4.5 Gravitational waves generated by a periodic source 41
4.6 Gravitational waves generated by a non-periodic source 43
4.7 Final remarks 45

5 Advanced topics 46
5.1 An action for gravity 46
5.2 Black hole thermodynamics 50

A Partition function for a quantum system 58

B Technicalities about QFT at finite temperature 60
B.1 Density matrices and thermal states 60
B.2 The KMS condition 60

2



1 Introduction

In this part of the course, we will focus on finding solutions to Einstein’s equations

Rµν − 1
2gµνR = 8πG

c4 Tµν , (1.1)

where Rµν is the Ricci tensor of the spacetime metric gµν , R stands for its trace, and Tµν
corresponds to the energy-momentum tensor. We will be working in geometrised units,
G = c = 1.

It is understandable to feel somehow uneasy the first time one encounters Eqs. (1.1)
and wonders about their meaning. Indeed, if read literally, this innocent expression is
telling nothing less than

space = matter. (1.2)

Anyway, we do not have time to further contemplate the depth of what these equations are
saying. Rather, as physicists, we will attempt to find solutions to them and model systems
and phenomena that we encounter in our Universe. But let us not forget that, behind
the formulae we will be dealing with, we will be trying to describe not only the properties
of those little white dots that bright upon our heads in clear and freezing winter Nordic
nights, but also many other that we do not see with the naked eye and yet they are there.
After all, we attempt to do something that comes with human nature, which is to dare to
ask: “What is there around us?” And even, “Where do we come from?”

I hope these lectures give you the tools to approach these deep questions from the
physicist point of view. Whether they foster deeper exploration, that is up to you. But,

Do not go gentle into that good night,
Old age should burn and rave at close of day;
Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they
Do not go gentle into that good night.

Rage, rage against the dying of the light. 1

1From The Poems of Dylan Thomas, published by New Directions. This is the poem that is recited in
the movie Interstellar while they start heading towards Saturn.
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Figure 1: Pictorial representation of the Lie derivative of a vector Y with respect to a vector X,
namely £XY , before taking the limit t → 0.

2 Differential geometry and conventions

Before starting these set of lectures, it is convenient to fix the notation we will be using.
We are of course following [1], as in the first part of the course. This will also serve as a
summary of what you should have learned so far.

2.1 Lie derivative and Lie bracket

Let M be a differential manifold and X (M) the set of its vector fields. When we are
interested in defining “derivatives” of vector fields, we encounter the issue that we have to
compare vector fields evaluated in two different points of the manifold, though eventually
we want to take the limit in which both points approach each other. The problem is that
when evaluated at different points, we obtain objects that belong to two different tangent
spaces, and there is not a unique way to relate them.

For example, one option is to use the integral curves of vector fields themselves. For
every vector field X ∈ X (M), we can define a function

Φ : R×M −→ M

(t, p) 7→ Φ(t, p) (2.1)

such that, for each p, γ(t) := Φ(t, p) is an integral curve of X. This is to say that the
derivative of the curve coincides with the vector field at every point on the curve, γ′(t) =
Xγ(t); and on γ(0) = p. In other words, for every point in M , the function Φ gives a path
starting at p and whose tangent vector is X.

Moreover, for each value of t Eq. (2.2) defines a function from (an open subset U of)
M to M ,

ϕt : U −→ M

p 7→ ϕt(p)
. (2.2)

This function ϕt is differentiable by construction, and consequently defines a map between
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tangent spaces at two points on M

dϕt : Tϕ−t(p)M −→ TpM

Yϕ−t(p) 7→ dϕt(Yϕ−t(p))
(2.3)

such that dϕt(Yϕ−t(p))(f) := Yϕ−t(p)(f ◦ ϕt). Then, the Lie derivative at every point p is
defined as (see Fig. 1)

(£XY )p = lim
t→0

1
t

(
Yp − dϕt(Yϕ−t(p))

)
∈ TpM , (2.4)

and this defines a vector field £XY ∈ X (M). It can be proven that, in coordinates,

(£XY )i =
(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
= −(£YX)i . (2.5)

Quite often, it is also called as Lie bracket, and denoted by £XY = [X,Y ]. Finally, let us
mention that the definition of the Lie derivative of a vector in Eq. (2.4) can be generalised
to any tensor. The coordinates of the Lie derivative of a tensor T with respect to a
vector field X are given by

(£XT )i1···ip
j1···jq = Xs

∂T
i1···ip
j1···jq
∂xs

+ T
i1···ip
k j2···jq

∂V k

∂xj1
+ · · · + T

i1···ip
j1···jq−1k

∂V k

∂xjq

− T
k i2···ip
j1···jq

∂V i1

∂xk
− · · · − T

i1···ip−1 k
j1···jq

∂V ip

∂xk
.

(2.6)

The Lie derivative is a quite interesting tool, as it measures how vectors change along
the integral curves of other vectors. Yet, we shall define another type of derivative, the
connection, which we examine in the next section.

2.2 Connections and covariant derivatives

In a curved manifold M , we would like to mimic the notion of “derivative with respect to a
direction” or directional derivative, found in flat space. In a curved space this will become
the covariant derivative. If D was a such thing, for two vector fields X,Y ∈ X (M) and
any differential map f ∈ F(M) we would like it to satisfy

DfXY = fDXY (2.7)

The intuition behind this requirement is that we are promoting the R-linearity with respect
to the first coordinate encountered in directional derivatives to F(M)-linearity in all the
manifold for covariant derivatives. Put differently, the adjective covariant signifies that
local rescalings of a vector field X just rescale locally by the same amount the derivative
with respect to X. Note that the Lie derivative fails to accomplish this property generically,
as

£fXY = f£XY − Y (f)X ̸= f£XY , (2.8)
which is only true when f is a constant function on M . A connection is precisely a map

∇ : X (M) × X (M) −→ X (M)
(X,Y ) 7→ ∇XY

. (2.9)

that satisfies the property in Eq. (2.7),
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i) ∇fXY = f∇XY .

together with the expected properties of any derivative,

ii) ∇X1+X2Y = ∇X1Y + ∇X1Y ,

iii) ∇X(Y1 + Y2) = ∇XY1 + ∇XY2 and

iv) ∇X(fY ) = X(f)Y + f∇XY .

This does not uniquely define the connection. However, it implies that a connection
will be characterised by how it acts on the coordinate vectors,

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
. (2.10)

The coefficients Γkij are known as the Christoffel symbols. Importantly, they do not gener-
ically transform as a tensor. The covariant derivative of a vector field U with respect
to the vector field V then becomes

∇UV =
[
U i∂iV

k + ΓkijU iU j
] ∂

∂xk
. (2.11)

Given a Lorentzian differential manifold (M, g) (where M is a differential manifold
and g = gµνdxµdxν is a Lorentzian metric defined on it), there is a unique connection ∇
that i) is compatible with the metric, ∇Xg = 0 for any vector X and ii) is symmetric (i.e.
torsionless), Γkij = Γkji. This connection is known as the Levi-Cività connection and its
Christoffel symbols are given by

Γαµν = 1
2g

αβ (∂νgβµ + ∂µgβν − ∂βgµν) . (2.12)

What is the difference between the Lie derivative £XY and the covariant derivative
∇XY ? The most evident one, is that the Lie derivative of the coordinate vectors is iden-
tically zero, £∂i

∂j = 0; whereas ∇∂i
∂j = Γkij∂k. In particular, when ∇ is the Levi-Cività

connection, it cares about the metric whereas £ does not (actually, the Lie derivative can
be defined in manifold without a metric). Note, however, that

∇XY − ∇YX =
[
Xi∂iY

k + ΓkijXiY j
] ∂

∂xk
−
[
Y i∂iX

k + ΓkijY iXj
] ∂

∂xk
= [X,Y ] , (2.13)

which turns out to be true for any symmetric connection.

2.3 Killing vectors and geodesics

We say that a vector field ξ ∈ X (M) is a Killing vector field if the Lie derivative of the
metric with respect to it is zero, £ξg = 0. Since the metric is a tensor, from Eq. (2.6) we
can get the equation that any Killing vectors must obey,

ξk∂kgij + gkj∂iξ
k + gik∂jξ

k = 0 . (2.14)
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Additionally, the fact that the connection is compatible with the metric implies (for exam-
ple, from Eq. (2.12)) the relation ∂kgij = Γlikglj + Γlljgil; which substituted into the Killing
Eq. (2.14) permits to rewrite it as

∇(iξj) = 0 . (2.15)

Finally, recall that we say that a curve γ : I → M (with I ⊂ R) is geodesic if its
tangent vector γ′ = d/dτ is transported parallelly along the curve, ∇γ′γ′ = 0; in coordinates

V i∇iV
j = 0 . (2.16)

In particular, ||γ′||2 := g(γ′, γ′) is constant along the curve and γ(t) = (x1(t), . . . , xn(t))
fulfills the geodesic equations,

d2xk

dτ2 + Γkij
dxi
dτ

dxj
dτ = 0 . (2.17)

Note that, if Γkij = 0, the metric is flat and the geodesic equations lead to uniform lin-
ear motion. Additionally, for every Killing vector ξ the quantity ξiV

i = gijV
iξj will be

conserved along the curve, since

V i∇i(V kξk) = V iV k∇(iξk) + ξjV
i∇iV

j = 0 , (2.18)

the two terms being zero due to the Killing equation Eq. (2.15) and geodesic motion
Eq. (2.16), respectively.

2.4 Curvature

Given a connection ∇, the Riemann tensor is defined as

R : X (M) × X (M) × X (M) −→ X (M)

(X,Y, Z) 7→ ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z .
(2.19)

If ∇ is the Levi-Cività connection, the components of the Riemann tensor read2

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓµαρΓανσ − ΓµασΓανρ . (2.20)

It is also useful to consider the tensor obtained when lowering the first index, Rµνρσ =
gµαR

α
νρσ. This has the following interesting properties:

i) It is anti-symmetric under the exchange (ρ ↔ σ), so Rµν(ρσ) = 0.
ii) It is also true that Rµνρσ = Rρσµν .
iii) It is symmetric with respect to the four indexes, R[µνρσ] = 0.

To prove i) and ii) it is useful to evaluate Rµνρσ in a coordinate system where Γkij |p = 0
and Γkij,l = 1

2g
km(∂l∂igmj + ∂l∂jgmi − ∂l∂mgij). Taking into account these properties, we

conclude that the number of distinct components of the Riemann tensor is n2(n2 − 1)/12,
which in four dimensions is 20.

2Watch out, in Wald’s textbook [2] a different convention is used, namely Rµ
νρσ|here = Rσρν

µ|there.
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An interesting physical interpretation of the curvature tensor is that of geodesic de-
viation. Let U and ξ be two vector fields, such that U is geodesic and £Uξ = 0. In this
situation, the “acceleration” of ξ along the integral curves of U is given by

∇U∇Uξ = R(U, ξ)(U) , (2.21)

or, equivalently,
UµUν∇µ∇νξ

σ = RσνµρU
µξρUν . (2.22)

This observation is helpful to discuss tidal forces in black holes or understand the effect of
gravitational waves on test particles.

From the Riemann tensor, the Ricci tensor is defined as Rµν = Rαµαν ; and the Ricci
scalar as its trace, R = gαβRαβ.

2.5 Extrinsic curvature

If you were ask about your intuition of curvature, you would probably think of objects bent
in particular ways. This is somehow related to the concept of intrinsic curvature, which
is nothing but the curvature inherited by a submanifold N that is embedded in a higher
dimensional manifold M . Let us make this precise.

Consider a n − 1 dimensional hypersurface Σ embedded in a n dimensional space
M . We assume that the points on Σ are characterised by f(x1, . . . , xn) = C = constant.
Consequently,

df = ∂f

∂xi
dxi (2.23)

is a one-form normal to the hypersurface. We can get convinced of this by considering any
curve xi(λ) contained in Σ, for which f(xi(λ)) = C and therefore df(d/dλ) = df/dλ =
(∂f/∂xi)(dxi/dλ) = 0.

Next, it is useful to define |df |2 := gµν∂µf∂νf . This is, in a sense, the norm of the
one-form in Eq. (2.23). We say that3 Σ is spacelike when |df |2 < 0, as Σ and df are
perpendiculars in the sense explained before. Similarly, we say that Σ is timelike when
|df |2 > 0 and null or light-like if |df |2 = 0. Whenever |df |2 does not vanish, we can define
the unit-normal to Σ

n = df√
|gµν∂µf∂νf |

. (2.24)

Then nµnµ = 1 if Σ is timelike and nµnµ = −1 if it is spacelike. We use it do define the
induced metric on Σ

hµν = gµν ± nµnν , (2.25)

where we would pick the + (−) sign for spacelike (timelike) hypersurfaces. The induced
metric fulfils that hµνnµ = 0 and that Vµnν = 0 and Vµhµν = V ν for any vector V tangent
to Σ. When written as a matric, h is also referred to as the first fundamental form of Σ.

From the induced metric, the extrinsic curvature tensor Kµν is defined as

Kµν = hρµ∇ρnν . (2.26)
3We consider only cases in which |df |2 never changes sign.
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It is also referred to as the second fundamental form. It is symmetric, and also fulfils that
Kµνn

ν = 0. Eventually, it will also be useful to consider its trace K = hµνKµν .

9



3 Spherically symmetric spaces

3.1 Spherical symmetry considerations

Definition 1. A spacetime is said to be spherically symmetric if the subgroup of isome-
tries contains SO(3) and the orbits generated by the isometries are two-spheres.

This means that, if we pick any point of the spacetime and compute its orbit by the
action of the group, we obtain a two sphere. Put even in a different way, each point in the
manifold will be sitting in a two-dimensional surface, whose metric will be proportional to
that of a unit two-sphere

ds2
S2 = f(ρ, τ)2(dθ2 + sin2 θdφ2) = f(ρ, τ)2dΩ2. (3.1)

Note that the function f(ρ, τ) is related to the area of the sphere determined by setting
the other two coordinates to a constant, τ = constant and ρ = constant. Specifically, the
area is A(ρ, t) = 4πf(ρ, τ)2.

It is often useful to perform a change of coordinates (ρ, τ) → (r, τ) defined by r =
f(ρ, τ). Because in terms of r the area reads A(ρ, t) = A(r) = 4π2r2, this coordinate
is sometimes referred to as area coordinate or curvature coordinate. Note that since we
are working in a curved spacetime, generically it will not coincide to the distance to the
“center” of the sphere. Actually, in some cases we will not be able even to talk about such
center, as we will see. Nevertheless, we will still sometimes call it radial coordinate.

Because we want the full four dimensional metric to be spherically symmetric, it has
to preserve the isometries in Eq. (3.1). In particular, it will be written as

ds2 = gττ (r, τ)dτ2 + 2gτr(r, τ)dτdr + grr(r, τ)dr2 + r2dΩ2. (3.2)

The reason why the terms dtdαi and drdαi (with αi = φ, θ) do not appear is that they
would break rotational symmetry (for instance, the metric would not be invariant under
αi → −αi, while dΩ2 is). Furthermore, we can always make a coordinate transformation
(r, τ) → (r, t) in such a way that the metric takes the form

ds2 = −e2ϕ(t,r)dt2 + e2Λ(t,r)dr2 + r2dΩ2. (3.3)

Before continuing, it is worth talking about two concepts that are often discussed (and
confused) in the literature: stacionarity and staticity.

Definition 2. We say that a spacetime is stationary if it possesses a one-parameter group
of isometries, ϕt, whose orbits are timelike.

Physically, this mean that we are dealing with a “time translational symmetric” space-
time. That is to say, it possesses a Killing vector ξµ whose orbits are timelike curves.
In particular, note that the metric in Eq. (3.3) will be stationary if ϕ(t, r) = ϕ(r) and
Λ(t, r) = Λ(r), since in that case ∂/∂t becomes a Killing vector. Moreover,

Definition 3. We say that an stationary spacetime is also static if there is a spacelike
hypersurface which is orthogonal to all the orbits of the isometry at every point.
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As we mentioned, it is possible to eliminate the gτr component in Eq. (3.2) by perform-
ing a change of coordinates. thus, we conclude that any stationary, spherically symmetric
spacetime is also static.

3.2 Birkhoff’s theorem and the Schwarschild solution

Let’s now compute the Levi-Cività connection of the metric Eq. (3.3):

Γttt = ϕ̇ , Γttr = ϕ′ , Γtrr = Λ̇e2Λ−2ϕ ,

Γrtt = ϕ′e2ϕ−2Λ , Γrtr = Λ̇ , Γrrr = Λ′ , Γrθθ = −re−2Λ , Γrφφ = −re−2Λ sin2 θ ,

Γθrθ = 1/r , Γθφφ = − sin θ cos θ , Γφrφ = 1/r , Γφθφ = cot θ ;
(3.4)

while the rest of components that are not obtained by symmetrisation of the lower indexes
of the previous, are zero. Once the Levi-Cività connection is known, we can compute the
Riemann tensor and extract from it the Ricci tensor, which appears in Einstein’s equations:

Rtt = e2ϕ−2Λ
(
ϕ′′ + (ϕ′)2 − ϕ′Λ′ + 2ϕ′

r

)
− Λ̈ − Λ̇2 + Λ̇ϕ̇ ,

Rrr = −ϕ′′ − (ϕ′)2 + ϕ′Λ′ + 2Λ′

r
+ e2Λ−2ϕ

(
Λ̈ + Λ̇2 − Λ̇ϕ̇

)
,

Rθθ = 1 − e−2Λ (1 + r(ϕ′ − Λ′)
)
,

Rφφ = sin2 θRθθ , Rrt = 2Λ̇
r
.

(3.5)

All the non-diagonal components but Rrt, Rtr are zero. We can now prove the following
very important theorem:

Theorem 1. (Birkhoff’s theorem) Any solution of Einstein’s empty space equations which
is spherically symmetric, is locally equivalent to the Schwarzschild solution, namely,

ds2 = −
(

1 − 2M
r

)
dt2 + dr2(

1 − 2M
r

) + r2
(
dθ2 + sin2 θdφ2

)
. (3.6)

In particular, the metric components do not depend on t, so ∂/∂t is a Killing vector.

Proof. In order to proof this theorem, we just have to solve Einstein’s equations Eq. (1.1)
in the absence of matter, Tµν = 0. Taking the trace of these equations, we immediately
see that in vacuum the Ricci scalar has to vanish, R = 0. Therefore, Einstein’s equations
in the absence of matter reduce to

Rµν = 0. (3.7)

The most general spherically symmetric metric was already written down in Eq. (3.3), and
the components of the Ricci tensor are given in Eq. (3.5). If we first impose Rtr = 0, we
find that Λ̇ = 0, which implies that

Λ(r, t) = Λ(r) + C1 . (3.8)
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Figure 2: Illustration of the Schwarschild metric, Eq. (3.6).

On the other hand, substituting Eq. (3.8) into the equation Rθθ = 0, we find that ϕ′

is just a function of r. In particular,

ϕ(r, t) = ϕ̃(r) + C2(t) , (3.9)

Because it is always possible to find a change of coordinates such that dt′ = eC2(t)dt,
in which case e2ϕ(r,t)dt2 = e2ϕ̃(r)dt′2, we conclude that in vacuum all dependence in t

disappears from the metric components. Therefore, after renaming the coordinates and
the functions, we can write the metric as

ds2 = −e2ϕ(r)dt2 + e2Λ(r)dr2 + r2dΩ2. (3.10)

To finalise the prove and find Eq. (3.6), we still have to solve Rtt = 0 and Rrr = 0.
The combination e2ϕ−2ΛRrr +Rtt = 0 leads to the relation

(Λ′ + ϕ′)1
r

= 0 , (3.11)

from which we deduce that ϕ′ = −Λ′. In particular, ϕ(r) = −Λ(r) + A, and we can set
A = 0 since it can always be reabsorbed by a convenient rescaling of the time coordinate.
Finally, taking this into consideration in equation Rθθ = 0, we find that

1 − 2rΛ′ = e2Λ , (3.12)

whose solution is e2Λ = (1 +B/r)−1. So far, we see that Eq. (3.10) now reads

ds2 = −
(

1 + B

r

)
dt2 + dr2(

1 + B

r

) + r2
(
dθ2 + sin2 θdφ2

)
, (3.13)

which is nothing but Eq. (3.6) by setting B = −2M .
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The reason why we normally choose this value for this last integration constant is
the following. Note that for large values of r this metric approaches that of Minkowski
spacetime. Spacetimes with this property are said to be assymptotically flat. In this
limit, we should recover Newtonian gravity, as we expect (3.13) to describe the effect of
gravity in the non-relativistic limit. Looking at the tt components,

g00 = −
(

1 + B2
r

)
= ηtt + htt + O(h2) = −1 − 2ΦN

c2 + O(h2) , (3.14)

where we have used that htt = −2ΦN/c
2 with ΦN = GM/r the Newtonian potential,

as already discussed when finding Einstein’s equations. From this requirement we get
B2 = −2GM/c2, and thus 2M in geometrised units.

Let us make one last comment regarding the radial coordinate r in Schwarschild ge-
ometry. We said previously that this should not be thought of as the distance to the
center on any sphere. Still, the area of the sphere at which an event (t, r, θ, φ) is sitting is
A(r) = 4πr2 by construction. However, say that we want to move from the sphere with
r = r1 to the sphere with r = r2. The distance that we will have to travel is

L =
∫ r2

r1

dr√
1 − 2M

r

= r

√
1 − 2M

r
+ 2Marctanh

√
1 − 2M

r

∣∣∣∣∣
r2

r1

> r2 − r1 . (3.15)

This distance is longer that the one that should be travelled if the space was flat, as
illustrated in Fig. 2. The picture represents the ratio between the value of the distance
traveled starting at r = 2M in this curved geometry over the corresponding quantity in
flat space.

Finally, note that the metric Eq. (3.6) is ill-behaved at r = 2M , where the gtt compo-
nent of the metric vanishes and the grr component blows up. This particular value of the
radial coordinate is often referred to as the Schwarschild radius, and denoted by rs = 2M .
The area of the corresponding sphere sitting at rs grows linearly with the mass M of the
object sourcing the geometry. However, it is important to notice that, for most of the
astrophysical objects, rs is normally way smaller that the characteristic size of the object.
For example, for the Sun rs ≃ 1.47 km, while its radius is R⊙ = 6.96 × 107 km ≫ rs.
On the other hand, the mass of typical neutron stars is around 1.5 solar masses, so their
Schwarschild radius rs ≃ 2.2 km starts to be comparable to their radius ∼ 11 km. Note,
however, that because inside these objects Tµν ̸= 0, the metric in Eq. (3.6) only describes
their exterior part, so we need not worry about what happens at r = 2M to describe them.

Eventually, is we manage to gather enough matter together in the same region of space,
nothing will prevent its gravitational collapse, and the surface r = rs will be realised. In the
next Section, we will argue that this is the case by solving Einstein’s equation in presence
of matter.

3.3 Relativistic Stars

In this Section we imagine that the spacetime in Eq. (3.6) is sourced by some spherical
distribution of mass siting at “the center” of the spacetime. We can think of this as a
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convenient modelling of a star. Of course, this will be a simplified model, among other
reasons because we expect stars to have a certain rotation, which we do not include since
it would break spherical symmetry. A second simplification that we take is that the fluid
the star is made of is a perfect fluid, whose energy-momentum tensor takes the form

Tµν = (ρ+ p)UµUν + pgµν , (3.16)

where Uµ is the quadri-velocity of the points inside the star. Because these points are stand-
ing still in the equilibrium state, they are such that r, θ, φ = constant. Thus, the unique
non–trivial component U r = eϕ is determined by requiring UµUµ = −1. Consequently, the
components of the energy-momentum tensor read

Ttt = ρe2ϕ, Trr = pe2Λ, Tθθ = pr2, Tφφ = sin2 θ Tθθ . (3.17)

In contrast to the vacuum case, stationarity and staticity of the solution is not obtained
for free, but needs to be imposed as an assumption. In particular, we set all the time
derivatives in Ricci tensor (Eq. 3.5) and the Christoffel symbols (Eq. (3.4)) to zero. In
this situation, the Ricci scalar becomes

R = −2e−2Λ
(
ϕ′′ + (ϕ′)2 − ϕ′Λ′ + 2

r
(ϕ′ − Λ′) + 1

r2

)
+ 2
r2 . (3.18)

We can now solve Einsteins equations´, which in this case it turn out useful to be written
in the form Rµν − 1

2Rg
µ
ν = 8πTµν . From the Rt t − 1

2Rg
t
t = 8πT tt we get

−8πρ = e−2Λ
(2Λ′

r
− 1
r2

)
− 1
r2 . (3.19)

This equation tells us that

e−2Λ = 1 − 2m(r)
r

, with m(r) := m(0) +
∫ r

0
4πρr2dr . (3.20)

Note that we have left explicit the boundary condition m(0), which is determined by
demanding regularity at the center of the star. Indeed, if we want space to be locally flat
at r = 0, we have to demand that m(0) = 0, so that e2Λ → 1 as r → 0.

Let us now analise the equation Rrr − 1
2Rg

r
r = 8πT rr, we find

8πp = e−2Λ
(2ϕ′

r
+ 1
r2

)
− 1
r2 . (3.21)

We can substitute the solution for Λ that we found in Eq. (3.20) into this equation and
find the solution for ϕ, which reads

dϕ
dr = m(r) + 4πpr3

r(r − 2m(r)) . (3.22)

We have now determined the functions of the metric, but are still lacking an equation
to know how matter is distributed inside the star. This comes from the conservation of the
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energy momentum tensor Tµν . Indeed, the Bianchi identity for the Einstein tensor implies
that ∇µT

µν = 0. In the present scenari it reduces to

dp
dr = −(p+ ρ)dϕ

dr . (3.23)

In this case, the boundary condition is such that the pressre has some particular value at
the center of the star, p(0) = p0.

We have arrived to the Tolman–Oppenheimer–Volkoff (TOV) equations,

dp
dr = −(ρ+ p)(m+ 4πr3p)

r(r − 2m) ,
dm
dr = 4πρr2 ; (3.24)

where the equation of state determines ρ(p). The boundary conditions at the center of
the star are m(0) = 0 and p(0) = p0. Note that the first equation in Eqs. (3.24) tells us
that the pressure decreases as r increases. Eventually, it will vanish at some r = R, which
we declare is the radius of the star. There, the metric components should be matched to
the Schwarschild metric Eq. (3.6), as this is the unique spacetime metric that describes a
spherically symmetric vacuum solution. In particular, m(R) = M .

The TOV equations can be solved for the (unrealistic) case of a constant density star.
In this case one obtaines that the ratio between the radius and the mass of the star is
bounded from above,

R

M
≤ 9

4 . (3.25)

In the limit case R = 9M/4 the pressure at the center of the star becomes infinite, which
means that the star cannot sustain more mass. Actually, Hans Adolf Buchdahl proved
that the bound in Eq. (3.25) is true for any equation of state (Buchdahl theorem). This
result suggest that, whatever kind of matter we consider, if we manage to gather enough
of it within a region of space, its equation of state will be unable to prevent gravitational
collapse.

3.4 Trajectories in Schwarschild spacetime

The spacetime metric that we found in Eq. (3.6) is supposed to describe how spacetime is
deformed around spherical objects of mass M . In this spacetime, we expect lighter objects
to move following geodesics, without deforming the metric very much (probe approxima-
tion).

To examine the predictions that this model leads to, we can follow a similar procedure
as the one followed when studying gravitational systems in classical mechanics. In that
case, many observational consequences such as Kepler’s law could be derived from Newton’s
law of gravity. Let us then study what kind of trajectories do bodies follow when moving
in the Schwarschild metric. So far, we know that they must follow geodesics.

The two kind of objects that we want to study are particles (planets, stars,...) whose
mass m is small compared to M ; and photons (light rays), which are massless. We will
denote the momentum of particles by P , PαPα = −m2; and the momentum of photons by
K, KαK

α = 0. Both P and K are geodesic and, for that reason, their modulus is constant
along the trajectories.
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First of all we can ask whether there is any conserved quantity in our system. Recall
that for every Killing vector, there will be a conserved quantity along the trajectory of
the object, as we saw in Sec. 2.3. In particular, we have two Killing vectors, ξ(1) = ∂/∂t

and ξ(2) = ∂/∂φ, which lead to two conserved quantities (energy and angular momentum
respectively). The conserved quantities for particles will then be

gαβξ
α
(1)P

β = Pt =: −Êm , gαβξ
α
(2)P

β = Pφ =: −L̂m ; (3.26)

whereas for photons,

gαβξ
α
(1)K

β = Kt =: −E , gαβξ
α
(2)K

β = Kφ =: L . (3.27)

If an object is originally on the equatorial plane, θ = π/2, it will not leave it due to the
uniqueness of solutions of ordinary differential equations, since our system is invariant under
θ → π−θ. If the object was not originally at θ = π/2, we can always rotate the coordinates
(θ, φ) → (θ̃, φ̃) so that the new equatorial plane θ̃ coincides with the plane spanned by the
momentum and ∇ir. Consequently, we can assume without loss of generality that all the
trajectory is contained in the equatorial plane, and thus we set θ = π/2.

For particles we have

PµP
µ = −m2 = gtt(Pt)2 + grr(Pr)2 + gφφ(Pφ)2 = m2

[
gttÊ2 + gφφL̂2 + grr

(dr
dτ

)2
]
,

(3.28)
and then the trajectory is given by(dr

dτ

)2
= Ê2 −

(
1 − 2M

r

)(
1 + L̂2

r2

)
= Ê2 − V̂ 2(r) . (3.29)

Analogously, for photons we get a very similar expression,(dr
dλ

)2
= E2 −

(
1 − 2M

r

)
L2

r2 = E2 − V 2(r) . (3.30)

Interestingly, both Eqs. (3.29) and (3.30) took the same form, (dr/dµ)2 = Ẽ2 − Ṽ 2(r),
where µ = τ , λ stands for the corresponding affine parameter. This is interesting because,
deriving on both sides by the affine parameter and using the chain rule we obtain

d2r

dµ2 = −1
2

dṼ 2

dr . (3.31)

We can phrase this last expression as “the acceleration is the derivative of the potential”4.
Let us see what we can learn from this equation regarding the motion of objects, separately
for particles and photons.

■ Particles. For particles, the effective potential reads
4This is only a convenient way to phrase it, even though is not very precise, as these objects are free

falling and therefore their acceleration is zero. By “acceleration”, we meant the second derivative of the
radial coordinate with respect to the affine parameter, which is not the actual acceleration since the objects
are moving also in the angular direction).
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Figure 3: Different effective potentials for particles obtained depending on the value of L̂. Note
that for all cases the potential approaches 1 at infinity. The position of the possible unstable and
stable circular orbits are represented by the filled and empty circles respectively.

V̂ 2(r) =
(

1 − 2M
r

)(
1 + L̂2

r2

)
. (3.32)

Note that V̂ 2(2M) = 0. At the same time, dV̂ /dr vanishes at two different points,

r± = L̂2

2M

1 ±

√
1 − 12M2

L̂2

 , (3.33)

provided L̂2 > 12M2. There, if V̂ 2(r±) = Ê2, circular orbits are possible. However,
note that the orbit at r− is unstable, since it corresponds to a maximum of ˆ̂

V 2(r).
In contrast, at r+ there is an stable circular orbit.
Additionally, note that, when V̂ 2(r+) < Ê2 < 1, orbits around r+ are possible
(even though they will not be closed, as we will see later). Particles whose energy
is 1 < Ê2 < V̂ 2(r−) will approach our massive object and scape again to infinity.
Finally, a particle with Ê > V̂ 2(r−) will keep falling unavoidably.
On the other hand, when L̂2 < 12M2 the argument of the square root in Eq. (3.33)
is negative and therefore dV̂ /dr does not vanish for any real value of r. In this case,
no matter what the value of Ê is, particles keep falling.
Finally, for the fine-tunned case L̂2 = 12M2, the root of dV 2(r)/dr becomes double
since r+ = r− = 6M = 3rs and V 2(r) develops an inflexion point. For this reason,
any circular stable orbit will have radius larger than 3rs.

■ Photons. In this case, the effective potential reads

V̂ 2(r) =
(

1 − 2M
r

)
L̂2

r2 . (3.34)

The analysis for photons is simpler, since the qualitative behaviour does not depend
on the ratio between L and M . Indeed, dV̂ 2/dr always vanishes at r = 3rs/2, where
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Figure 4: Different effective potentials for photons, for different choices of L. Unstable circular
orbits are represented by filled circles, and are such that r = 6M .

V 2(r) develops a maximum. Note this means that at this position there can be a
circular orbit of photons if E2 = V̂ 2(3rs/2), though it is unstable. If E2 is smaller
than that value, photons will escape back to infinity; whereas they will keep falling
if their energy is bigger.

3.5 Mercury’s perihelion

Kepler’s first law states that planets describe ellipses around the Sun. Solving the two body
problem in Newtonian gravity, this is proven to be indeed the case, as we will review in this
section. However, when effects such as the presence of other bodies (for example, the other
planets) or non-sphericity of the Sun are taken into consideration, the orbits are not perfect
ellipes anymore. Rather, the position of their perihelion changes. When these effects are
taken into account, Newtonian gravity predicts that Mercury’s perihelion should advance
5557′′ per century. However, while Einstein was developing his theory, the observed value
for the advance of Mercury’s perihelion was 5600′′ per century, which meant that there was
a 43′′ per century discrepancy that Newtonian gravity was not able to explain (see Fig. 5).
Can General Relativity account for this discrepancy?

To answer this question, we wish to study orbits of particles moving in the spacetime
Eq. (3.6), and for that we need to determine how r depends on the angle φ; that is to say
r(φ). Taking into consideration that dφ/dτ = m−1Pφ = L̂/r2, we can rewrite Eq. (3.29)
as ( dr

dφ

)2
= r4

L̂2

[
Ê2 −

(
1 − 2M

r

)(
1 + L̂2

r2

)]
. (3.35)

It is now useful to change the radial coordinate to u = 1/r. Then, du/dφ = −r−2dr/dφ =
−u2dr/dφ and (3.35) becomes(du

dφ

)2
= Ê2 − 1

L̂2
+ 2M

L̂2
u− u2 + 2Mu3 . (3.36)

To find the solution to our problem, it will turn useful to refresh how elliptical orbits
are found in the Newtonian case.
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Figure 5: Different contribution to the motion of the perihelia of Mercury and the Earth. As
can be seen, the General Relativity accounts for the discrepancy between the observation and the
theoretical value using Newtonian gravity. Table taken from [3], see [4] for an update from 2017.

■ Newtonian case. As we shall argue, in the non-relativistic limit we have an expression
similar to Eq. (3.36). The difference is just that the last term is missing. Indeed,
recall that in the Newtonian case we also had two conserved quantities:

EN = 1
2m

(
ṙ2 + r2φ̇2

)
− mM

r
,

L = mr2φ̇ .
(3.37)

The second equality can be written as φ̇ = L̂/r2, which we can in turn substitute in
the first one. After performing the change of variables r = 1/u, it becomes(du

dφ

)2
= 2ÊN

L̂2
+ 2M

L̂
u− u2 , (3.38)

which is nothing but Eq. (3.36) after neglecting the last term. We can relate the
Newtonian energy EN to the relativistic one E at infinity (r → ∞), where the metric
is asymptotically flat. There, as in Special Relativity

P t = E = mγ(v∞) = m+m
v2

∞
2 + O(v4

∞) = m+ EN + O(v4
∞) (3.39)

Consequently Ê2 = 1 + 2EN + O(v4). Therefore, after completing the square, we can
rewrite Eq. (3.38) as[ d

dφ

(
u− M

L̂2

)]2
+
(
u− M

L̂2

)2
= 1
L̂2

(
Ê2 − 1 + M2

L̂2

)
. (3.40)
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This is of the form f ′(x)2 + f(x)2 = f2
0 , whose solution is f(x) = f0 cos(x− x0). We

thus conclude that in Newtonian gravity, as we knew, orbits are ellipses described by

1
r

= M

L̂2
+ 1
L̂

(
Ê2 − 1 + M2

L̂2

) 1
2

cos(φ− φ0) . (3.41)

Note that, when the quantity inside the parenthesis vanishes, we obtain circular
orbits. We can interpret the quantity

y = u− M

L̂2
= 1
r

− M

L̂2
(3.42)

as the deviation from circularity.

■ Relativistic correction. In order to compute the relativistic correction to the New-
tonian orbit, it is useful to express our original Eq. (3.36) in terms of the deviation
from circularity, defined in Eq. (3.42). In that case we get( dy

dφ

)2
= 1
L̂2

(
Ê2 − 1 + M2

L̂2

)
+ 2M4

L̂6
+ 6M3

L̂4
y +

(
6M2

L̂2
− 1

)
y2 + 2My3 . (3.43)

In this expression we have still not taken any approximation. If the departure from
circularity is mild, the last term can be neglected5. Without that term, we can
complete the square and rewrite the expression as( d

dφ (y − y0)
)2

+ k(y − y0)2 = 1
L̂2

(
Ê2 − 1 + M2

L̂2

)
+ 2M4

L̂6
+ k2y2

0 (3.44)

where

k =
(

1 − 6M2

L̂2

) 1
2

, y0 = 3M3

L̂4k2
. (3.45)

The solution then takes again the form

y(φ) = y0 +A cos(kφ− φ0) , A = k−1
(
Ê2 − 1 +M2/L̂2

L̂2
+ 2M4

L̂6
+ k2y2

0

) 1
2

.

(3.46)
Interestingly, the appearance of k in the argument of the cosine changes the period of
the function to ∆φ = 2π/k. The perihelion, appearing every time the cosine reaches

5Mercury’s eccentricity may is e ≈ 0.2 and may not seem negligible. Let us examine in this footnote the
applicability of this approximation. For the particular case of Mercury and the Sun, the order of magnitude
of the angular momentum can be approximated from Mercury’s semi-major axis and eccentricity (see
Eq. (3.48) in the main text below) to be such that L̂2 ≈ 8.2 × 107 km2. In particular, L̂ ≈ 6 × 103M .

On the other hand, Mercury’s separation from the Sun oscillates between rmax ≈ 70 × 106 km and
rmin ≈ 46 × 106 km, which implies that ymax ≈ 4.5 × 10−9 km−1 ≈ 6.7 × 10−9M−1. At the end of the
day, this means that the term with y2 in Eq. (3.44) is of order 4.5 × 10−17M−2, while the y3 is about
6.1 × 10−25M−2, that is, 106 times smaller. Actually, the term 6M3y/L̂4 ∼ 2.7 × 10−23M−2 is similarly
small and could also be neglected.
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Figure 6: Representation of the shift in Mercury’s perihelion. Actually, dots represent the aphe-
lion, which is the point of maximum distance from the Sun, whose shift is of course the same as
that of the perihelion.

its minimum, is not found at the same value of the angular variable, but it is shifted
by

∆φ− 2π = 2π
(1 − k

k

)
≃ 6πM2

L̂2
. (3.47)

The last approximation is considering M/L̂ to be small. For a circular orbit, the
reduced angular momentum L̂2 = r2v2 = 4π2r4/T 2 = Mr, where in the last equality
we used Kepler’s third law. For an elliptical orbit this gets modified to

L̂2 = M(1 − e2)a , (3.48)

where e is its eccentricity and a the value of the semi-major axis. Substituting it
into Eq. (3.47), together with the mass of the Sun M = 1.48 km and Mercury’s
semi-major axis a = 5.79 × 10−7 km and excentricity e = 0.206, we obtain that
∆φ − 2π = 5.03 × 10−7 rad per orbit. knowing that Mercury’s orbital period is
T = 0.241 years, we obtain ∆φ− 2π = 43.1′′ per century.

3.5.1 Deflection of light

In the previous section we considered a relativistic effect suffered by the orbit of a planet.
Now, we study another effect that it is also measurable in the Solar system: the deflection
of light by the Sun.

Photons are not affected by the gravitational field in Newtonian gravity6. However,
we have already seen that their geodesics will move according to Eq. (3.30) in a curved
background. We want to see the effect that this may have when the mass M sourcing the
gravitational field is small (compared to the distance at which the light rays are passing

6Actually, it is also true that light do deflect in Newtonian gravity if photons had a small mass, and
no-matter how small that mass would be they would always deflect by the same angle (independent of the
mass), as they follow the hyperbolas determined by Eq. (3.41), as showed by Johann Georg von Soldner in
1804 [5]. The value obtained is half the result that we will get from Einstein’s equations.
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by). Recalling that L = Kφ = r2dr/dφ, Eq. (3.30) becomes( dr
dφ

)2
=
(
E2 −

(
1 − 2M

r

)
L2

r2

)
r4

L2 , (3.49)

which in the coordinate u = 1/r reads(du
dφ

)2
= −u2 (1 − 2Mu) + 1

b2 . (3.50)

Note that we find useful in this case to define the impact parameter b = L/E. The
interpretation of this parameter is simple. In the limit M → 0, Eq. (3.51) becomes(du

dφ

)2
+ u2 = 1

b2 , (3.51)

whose solution is 1/r = u0 = b−1 sin(φ − φi), which is a straight line. The sub-index “0”
stands for the fact that we have set M to zero. Moreover, we can set φi = 0, so that r → 0
for φ = 0 and π. This solution is also a good approximation of the solution to the full
Eq. (3.51) sufficiently far from the source, 2Mu = 2M/r ≪ 1.

We can now solve the equation perturbatively around M = 0. For that, in order to
know how the solution u0 is modified in the presence of a small mass M , we search for a
solution of the form

u(φ) = u0(φ) +Mδu(φ) + O(M2) . (3.52)

Before trying to solve it, it turns useful to differentiate Eq. (3.51) with respect to d/dφ.
By doing so we obtain

d2u

dφ2 + u = 3Mu2 . (3.53)

Now, substituting Eq. (3.52) into Eq. (3.53) we get

0 =
(
u′′

0 + u0
)

+
(
−3u2

0 + δu+ δu′′
)
M + O(M2) . (3.54)

The first term is of course solved by the unperturbed solution, u0. Then the solution for
δu turns out to be

δu = C1 cosφ+ C2 sinφ+ 1
2b2 (3 + cos(2φ)) = 1

b2 (1 + cosφ)2 . (3.55)

In the last equality, we have been forced to set C2 = 0 in such a way that our solution also
solves Eq. (3.51), and C1 = −2/b2 so that at φ = π (that is, initially) the perturbation
vanishes, δu(π) = 0. In the end, the solution takes the form

u(φ) = 1
b

sinφ∞ + M

b2 (1 + cosφ)2 . (3.56)

The light ray is assymptotically far when r → ∞, which means u(φ) = 0. This
happens at φ = π by construction, since we chose our “initial” boundary condition in this
way. However there is another “final” angle for which u(φ∞) = 0 is realised. Assuming

22



Figure 7: Deflection of light.

this angle will be small, we approximate sinφ∞ ≃ φ∞ and cosφ∞ ≃ 1 in Eq. (3.56) and
obtain that the deflected angle is

φ∞ = −4M
b
, (3.57)

which is indeed small whenever M/b ≪ 1.
Let’s pause for a moment and analyse this result. The following discussion is better

understood by looking at Fig. 7. If there is no object deforming spacetime at all, that is,
M = 0, this angle is exactly φ∞ = 0. This is of course the case in which the light rays
follow straight lines. However, in the presence of M , these rays are deflected by a total
amount φ∞. Note that the maximum possible deflection is set by the radius of the object.
Indeed, u(φ) has a maximum at φmax = π/2 − 2M/b+ O(M2), from which we can extract
the value of r at which the rays get closer to the star. It turns out to be r = b−M+O(M2).
This implies, in particular, that any ray approaching an object with radius r0 and whose
impact parameter is b <∼ r0 +M will not be able to escape to infinity, but will fall into it.
Thus, the maximum deflection is

φ∞,max = − 4M
r0 +M

. (3.58)

For the Sun, r0 = 6.96 × 105 km, while M = 1.47 km, in which case φ∞,max = 1.74′′. This
effect was claimed to be observed during the lunar eclipse of the 29th of May, in 1919
by the team of Sir Arthur Stanley Eddington and considered the first tested prediction
of Einstein’s theory of gravity. Observations were made from the West African island of
Príncipe and from from Sobral, Brazil. There has been some suspicion over how trustful
of the results of this first measurement, and turns out to be a very interesting event in the
history of physics, see for example [6].

Finally, let us mention that bending of light rays near more massive objects is some-
times referred to as gravitational lensing. In this case, the metric is deformed so much
that the same object can be seen several times, as its light rays are bend from both sides
of the massive object. See this NASA webpage to know more and see a picture of this
phenomenon taken with the Hubble telescope.

23

https://hubblesite.org/contents/articles/gravitational-lensing


3.6 Black holes

3.6.1 Coordinate and physical singularities

We have so far studied the first corrections that the new theory of gravity explains and
predicts related to corrections to Newtonian gravity. Let us now examine the Schwarschild
metric and try to make sense of it accross r = 2M . It is clear, as we already pointed out,
that the line element Eq. (3.6),

ds2 =
(

1 − 2M
r

)
dt2 + dr2(

1 − 2M
r

) + r2
(
dθ2 + sin2 θdφ2

)
.

has a problem for this particular value of the radial coordinate, since some of the com-
ponents of the metric vanish or blow up. This problem could either be physical or not.
Actually, we shall argue that it is not, but just related to our choice of coordinates. This sit-
uation is analogous, for example, to the case in which we parameterise Euclidean, flat,three-
dimensional space in spherical coordinates. Indeed, the line element becomes

ds2
R3 = dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (3.59)

which has problems at the origin, r = 0; and at the poles, θ = 0 , π. Of course, this is
a consequence of the choice of coordinates, since in Cartesian coordinates the metric is
just the identity, regular at all points. Then, whenever a singularity can be removed by an
approppriate change of coordinates (i.e., a diffeomorphism), we will refer to it as coordinate
singularity, as they have no physical meaning.

In contrast, physical singularities may occur. In this case, we would find some diffeo-
morphism invariant quantity such as R ,RρσRρσ or even RµνρσRµνρσ that behaves badly
at the singularity.

Let us then discuss whether the singularity at r = 2M is physical or not. First
of all, we shall ask if any observer can reach it in finite time. Unfortunately for them,
radially infalling (θ = π/2, ϕ =constant) observers will actually do so. Indeed, consider
the variation of the radial position with respect to proper time given by Eq. (3.29). Say
they are initially (τ = 0) at r = R and starts following its geodesic. From the equation we
get that

dτ = − dr(
Ê2 − 1 + 2M

r

) 1
2

(3.60)

For simplicity, we consider the case of an observer whose energy corresponds to being at
rest at infinity (Ê = 1). Then, Eq. (3.60) can be integrated easily and we learn that in the
reference frame of the infalling observer it takes

∆τ = −
∫ 2M

R

dr√
2M/r

= 4M
3

(
r

2M

) 3
2
∣∣∣∣∣
R

2M

< ∞ (3.61)

to reach the surface r = 2M .
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How much coordinate time does it take for them to cross it? Using the fact that energy
is conserved, we can write dt/dτ = gttPt/m = (1 − 2M/r)−1 Ê; so

dt = Êdτ
1 − 2M

r

= − Êdr(
1 − 2M

r

)√
Ê − 1 + 2M

r

. (3.62)

We consider again the case Ê = 1. Writing this last expression in terms of the distance to
r = 2M , which we call ϵ = r − 2M , we get

dt = −(ϵ+ 2M) 3
2

ϵ
√

2M
dϵ ≃

(
−2M

ϵ
+ O(ϵ0)

)
dϵ . (3.63)

In particular, t grows as log ϵ as ϵ → 0. This is interesting, since t can be understood
as the time measured by a distant observer. Actually, consider an observer at rest at
(t, r, θ, φ) =

(
t(t̃), r0, π/2, φ0

)
, with r0 and φ0 constants and t̃ is its proper time7. The

velocity of this observer is d/dt̃ = Uα∂/∂xα = U t∂/∂t and since UµUµ = −1,

−1 = gµνU
µUν = gtt(U t)2 , ⇒ U t = 1√

1 − 2M
r0

. (3.64)

In particular, d/dt → d/dt̃ as r0 → ∞. Then t can be understood as the proper time for
a distant observer. For instance, imagine our infalling observer carries a laser with them
and sends a pulse every ∆τ . According to Eq. (3.62), the time delay between the emission
of two pulses measured at infinity is

∆t = Ê

1 − 2M
r

∆τ . (3.65)

So, from the point of view of the observer at infinity, the pulses are emitted every ∆t,
which diverges as r → 2M .8

These results mean that, even though our infalling observer crosses r = 2M in a finite
proper time, from infinity it seems it takes them for ever to do so. Anyway, for the purposes
of our current discussion, this just reinforced our believe that the coordinates in terms of
which or metric is written are not appropriate to describe the region near r = 2M .

Is there a physical singularity at that point? We know that R = 0 and Rρσ = 0. We
could also compute RµνρσRµνρσ = 48M2/r6. So nothing problematic seems to be found at
r = 2M . But if the sungularity is not physical, we should be able to find coordinates that
behave smoothly on r = 2M . This is precisely what we are going to do next.

7Note that this observer is not following a geodesic, so there must exist some force keeping it at this
point; for example, it is in a spacecraft with its engine turned on.

8Note that ∆t is however not the time elapsed between the detection of the two pulses, as the second
pulse will have to travel more distance since it will be emitted from a position closer to r = 2M .
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3.6.2 The Kruskal–Szekeres coordinates

For r > 2M , let’s consider the change of coordinates

X =
(

r

2M − 1
) 1

2
e

r
4M cosh

(
t

4M

)
,

T =
(

r

2M − 1
) 1

2
e

r
4M sinh

(
t

4M

)
.

(3.66)

Interestingly, the metric Eq. (3.6) in terms of them becomes

ds2 = −32M3

r
e− r

2M

(
−dT 2 + dX2

)
+ r2dΩ2 , (3.67)

where r = r(X,T ) is the expression of the previous radial coordinate in terms of the new
ones, obtained by inverting Eq. (3.66). Note that the new line element is perfectly regular
at r = 2M . From the change of coordinates in Eq. (3.66), we can also write

X2 − T 2 =
(

r

2M − 1
)
e

r
2M ,

T

X
= tanh

(
t

4M

)
(3.68)

Thus, constant t slices correspond to straight lines with slope tanh(t/4M) in the (X,T )-
plane. Conversely, constant r slices correspond to hyperbolas. Furthermore, a photon
moving in the radial direction (i.e. constant θ and φ) has

dT
dX = ±1 , (3.69)

which means that light cones are represented by 45° lines.
Since in Eq. (3.67) we have got rid off the coordinate singularity at r = 2M , even

though we started in the region r > 2M , using Eq. (3.68) we can extend the new coordinates
X and T to the region where r < 2M . There we will have

X =
(

1 − r

2M

) 1
2
e

r
4M sinh

(
t

4M

)
,

T =
(

1 − r

2M

) 1
2
e

r
4M cosh

(
t

4M

)
.

(3.70)

Now we can try to make sense of the full (X,T )-plane, see Fig. 8. The diagonals, corre-
sponding to r = 2M and t = ±∞, divide the (X,T )-plane in four distinct sectors, whose
physics we shall discuss next.

■ Sector I. This is the region where r > 2M which was covered completely by our initial
parametrization and whose metric was found in Eq. (3.6). Here, slides of constant r
are spacelike and represented by hyperbolas. Something interesting occurs when these
hyperbolas approach the diagonal. Indeed, imagine that an observer who is at rest
at some r1 > 2M sends a message to their colleague, who is at rest at r2 > r1 > 2M .
We discussed already how their velocities look like in this situation (see Eq. (3.64)),

U t(1) = 1√
1 − 2M

r1

, U t(2) = 1√
1 − 2M

r2

. (3.71)
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Figure 8: Schwarschild spacetime in Kruskal–Szekeres coordinates. The physical singularities are
represented by the red brushed curves, corresponding to r = 0 in the original coordinates. Note
these singularities are spacelike.

To send the message, light with a certain frequency ω1 is used. The photon send
will have a momentum Kα, and the frequency measured by the first observer (which
corresponds to the frequency of the device, as they are holding it in their own system
of reference) is given by KαU

α
(1) = ℏω1, as this is how they would measure it in flat

space. When the photon is received, on the other hand, they will measure KαU
α
(2) =

ℏω2. Taking advantage of ∂/∂t being a Killing vector, we can find the relation between
the two frequencies to be

ω2
ω1

=
(

1 − 2M
r2

1 − 2M
r1

) 1
2

. (3.72)

We can say then that light shifts to smaller frequencies as it climbs the gravitation
field. This phenomenon is know as gravitational redshift. For a very distant observer
(r2 → ∞), it becomes

ω∞ =
(

1 − 2M
r1

) 1
2
. (3.73)

One final observation is that ω∞ vanishes as the first observer is closer to r = 2M .
In a sense, the geometry is describing something black: objects look fainter the closer
they are to r = 2M . Additionally, we know that they will cross this slice if they are
allowed to fall freely. What will happen next?
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Figure 9: The spaces t = constant correspond to wormhole geometries. They connect two causally
disconnected universes.

■ Sector II . Let us now examine the mysterious region with r < 2M . First of all, we
note that any signal sent from there cannot be accessed by an observer moving in
Sector I, since for that such signal would need to go faster than light at some point.
In that sense, the surface r = 2M is a horizon. In particular, neither photons not
particles can escape from this region once they have entered, and in this precise sense
this geometry is a hole. Now you understand why we call this geometry a “black
hole”.

Moreover, note that unlike in the previous case, where r > 2M , in this part of
the diagram the hyperbolas corresponding to constant-r slices are spacelike, whereas
constant-t lines are timelike. This means that any object will be bound to advance
in the r coordinate, while they could in principle move along a constant t slice. Put
yet in a more poetical way, inside the horizon, time becomes space and space become
time.

Remarkably, the singularity found at r = 0 is also spacelike. For this reason, it is not
a point in space but a moment in time. In particular, black holes do not have a center.
Actually, the singularity in this region of the diagram is by no means observable as
geodesics finish at r = 0 (where the curvature singularity is found): there is nothing
to future past of the singularity.

■ Sector III. Here, spacetime has properties similar to those of Sector I. However, it is
causally disconnected from it: to send information from one of these regions to the
other, one should do it across the horizon and needs a velocity faster than the speed
of light. This region then is actually describing a disconnected region of spacetime,
connected to Sector I through a wormhole, which correspond to taking a whole t =
constant slice. This is represented in Fig. 9.

In our geometry this wormhole cannot be crossed as nothing travels faster than the
speed of light. There has been however raising interest in trying to build traversable
wormholes by incormporating matter fields and wuantum effects in the game, see
Refs. [7–9].
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Figure 10: Right: Illustration of the spacetime diagram of a collapsing star. In this scenario,
only some parts of the first two regions described in the main text are physical. Left: Pictorial
representation of a collapsing star. Some light cones have been depicted in grey.

■ Sector IV. This region is analogous to the second region we analysed. In this case,
however, the singularity is in the past of all observers, so we could refer to it as a
white hole. Information from this region could be detected in Sector I after it leaves
this part of the diagram through the “past horizon” corresponding to r = 2M and
t = −∞.

One could be tempted to identify the white hole with the Big Bang. This is not quite
the case, although it can serve as an analogy. Indeed, Big Bang singularity appears
when we consider the cosmological evolution of the Universe; where matter fields
play a crucial role. In contrast, here we are discussing vacuum solutions to Einstein’s
equations.

We could wonder how physical Sectors II and IV are, since we see that they lead
to strange phenomenology (wormholes and white holes have not been observed so far).
Actually, we know that these two regions are not realised when the black hole is formed
from the collapse of very massive stars. Indeed, during the collapse of a star we only find
parts of Sector I and II, as inside the star the metric is not described by the Schwarschild
metric anymore. This is more easily understood by looking at Fig. 10. Before the horizon
appears, the metric is perfectly fine in the original coordinates and Schwarschild metric
only models spacetime outside the star.

If you are curious about it, please visit this webpage from Andrew Hamilton to examine
how it is to fall into a black hole.
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3.7 Beyond spherical symmetry: the Kerr solution

3.7.1 The Kerr black hole

We finish this chapter by presenting the Kerr solution. This is a geometry that solves
Einstein’s vacuum equations and describes a rotationg black holes. It reads

ds2 = −
(

1 − 2Mr

Σ

)
dt2 + (r2 + a2)2 − ∆a2 sin2 θ

Σ sin2 θdφ2 + Σ
(

dr2

∆ + dθ2
)

− 2a sin2 θ
2Mr

Σ dtdφ ,

(3.74)

where
Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 +Q2 . (3.75)

Let us try to describe the most salient features of this spacetime. First of all, it
is distinct from Schwarschild metric, as it is not spherically symmetric. Still, spherical
symmetry is restored by setting a = 0, in which case Schwarschild spacetime is recovered.
Actually, the parameter a is related to the fact that in the Kerr solution spacetime itself
is rotating, as we shall argue later. The corresponding spin is

J = Ma . (3.76)

Thus, this spacetime possesses axial symmetry about the rotation axes. As a manifestation,
∂/∂φ is a Killing vector. As in the Schwarschild-metric, ∂/∂t is also a Killing vector and,
in particular, this spacetime is stationary in the region outside the horizon we will find
later. However, it is not static as it is not possible to get rid of the gtφ component as long
as a > 0.

On the other hand, this metric is also asymptotically flat. Actually, analysing the
asymptotic region r → ∞, we see that

gtt = −1 + 2M
r

+ O(r2) . (3.77)

and comparing Eq. (3.77) to the Schwarschild solution we conclude that M is the mass of
this spacetime9. Note that there is not an equivalent to Birkhoff theorem (Theorem 1) for
rotating spacetimes. That is to say, the exterior solution of the spacetime corresponding
a rotating star is not unique, as suggested by Fig. 11. However, there is a theorem by
Hawking, Carter and Robinson that states

9One may feel uneasy before the fact that this seems a coordinate dependent statement. Actually, the
mass M and spin J of a given spacetime can be properly defined using the so called Hamiltonian formulation
of gravity. They would read (see [10], page 147)

M = − 1
8π

lim
A→∞

∮
SA

(K − K0)√γd2θ , J = − 1
8π

lim
A→∞

∮
SA

(Kij − Khij)φirj√
γd2θ . (3.78)

Here, the integral is performed over two-spheres SA of area A, which eventually is taken to infinity. Addition-
ally, Kij corresponds to the extrinsic curvature of those spheres, K is its trace and K0 is the corresponding
value in Minkowski. Finally, φi is the Killing vector associated to rotational symmetry and rj is the unit
normal vector to the spheres.
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Figure 11: Visualization of the meaning of Birkhoff theorem and Hawking–Carter–Robinson
theorem regarding the uniqueness of vacuum solution to Einstein’s equations.

Theorem 2. (Uniqueness of the Kerr black hole). Kerr spacetime Eq. (3.74) is the unique
stationary, assymptotically free, vacuum solution to Einstein’s equations which is regular
on an outside a (non-degenerate) event horizon. There is a two-dimensional parameter
family of such solutions, characterised by their mass M and angular momentum J .

Put differently, any other stationary, asymptotically-free, vacuum solution which is
not related to the Kerr solution via a diffeomorphism, will contain some pathology. Conse-
quently, it would be valid as an exterior solution for a rotating star if the surface of the star
is found before the pathology appears. But it will not be a valid solution of pure empty
space. Thus, this theorem is telling us that any rotating black hole is descrived by the Kerr
solution in Eq. (3.74) and characterised by the two parameters M and J .

3.7.2 Dragging of intertial frames and the ergosphere

What is it that is rotating in the Kerr geometry? Clearly, as this is a vacuum solution,
we should argue that it is spacetime itself. Indeed, consider the two conserved quantities
along the trajectory of a particle with mass m, corresponding to the Killing vector fields
∂/∂t and ∂/∂φ. As in Eq. (3.26),

gαβξ
α
(1)P

β = Pt =: −Êm , gαβξ
α
(2)P

β = Pφ =: −L̂m . (3.79)

We will again refer to them as the energy and angular momentum for obvious reasons.
Note the appearance of the off-diagonal term of the inverse of the metric when we raise
indexes,

U t = m−1P t = −gttÊ + gtφL̂ ,

Uφ = m−1Pφ = gtφL̂− gφφÊ .
(3.80)

Interestingly, the variation of the angle φ respect to coordinate time is generically different
from zero. Actually, even in the case in which the particle has zero angular momentum
L̂ = 0, the derivative of φ becomes

dφ
dt = dφ/dτ

dt/dτ = U t

Uφ
= gtϕ

gtt
=: ω(r, θ) = 2Mra

(r2 + a2)2 − a2∆ sin2 θ
. (3.81)
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Therefore, such a particle will be rotating with respect to an observer at infinity, even
though its angular momentum is zero. The interpretation is precisely that it is spacetime
itself, in which the particle is travelling, which is rotating. The particles following geodesics
are bound to rotate together with it. This effect is suggestively referred to dragging of
inertial frames. It also originates a gyroscopic precession called the Lense–Thirring effect.

This phenomenon becomes more and more violent as we approach to the center of the
geometry. To inspect this, imagine that we keep a particle at constant r and θ coordinates,
while allowing it to rotate in the ∂/∂φ direction. Generically, this will not be a geodesic.
If its angular velocity as seen from infinity

Ω := dφ
dt = Uφ

U t
. (3.82)

is uniform, we can thing of this observer as being stationary. It is the analogous to the
static observers, or observers at rest, that we considered in the Schwarschild geometry. The
stationary particle’s quadri-velocity can be written as

U = U t
(
∂

∂t
+ Ω ∂

∂φ

)
(3.83)

Clearly, the angular velocity in Eq. (3.82) cannot be arbitrary, as particles cannot
travel faster than light. In particular, UµUµ = −1 implies that

gtt + 2Ωgtφ + Ω2gφφ < 0 . (3.84)

Therefore, the angular velocities of stationary observers are constrained by

Ωmin < Ω < Ωmax , (3.85)

where
Ωmin = ω −

√
ω2 − gtt/gφφ , Ωmax = ω +

√
ω2 − gtt/gφφ ; (3.86)

and ω = −gtφ/gtt actually coincides with Eq. (3.81) found earlier while discussing the
dragging of inertial frames. Note ω = (Ωmin + Ωmax)/2.

There are several interesting things to note here. First, consider the surface where gtt
vanishes, given by

gtt = 0 , r = re(θ) := M +
√
M2 − a2 cos2 θ . (3.87)

We refer to this surface as the ergosphere. On the ergosphere, Ωmin vanishes and for smaller
values of r it becomes positive. This means that inside this surface all stationary observers
must rotate with positive angular velocity. In particular, static observers only exist outside
the ergosphere. Additionally, the allowed range of angular velocities Ω depends on r in
such a way that and Ωmin coalesces with Ωmax when ∆ = 0 (grr → ∞) at

r = r+ = M +
√
M2 − a2 . (3.88)
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Figure 12: a) Sections of the ergosphere and event horizon of a Kerr black hole; as seen from
the equatorial plane (left) and from the top (right). b) Different shapes of the ergosphere as we
increase the parameter |a|. The rightmost picture corresponds to an extremal Kerr solution, with
M = |a|. These pictures are normalised so that they have the same r+. Thus, the mass of these
black holes increase to the right.

For smaller values of r, there cannot be stationary observers. Gravitational pull has become
too strong and there is no escape from it anymore: the value of r in Eq. (3.88) corresponds
to an event horizon. The critical value of Ω when Ωmin = Ωmax at the horizon

ΩH = a

r2
+ + a2 (3.89)

can be interpreted as the angular momentum of the horizon itself. In Fig. 12 we show the
different parts of the Kerr black hole and examine how they depend on a.

3.7.3 Singularities in the Kerr black hole

Kerr metric in Eq. (3.74) seems to be problematic in two different loci. When Σ = 0, the
determinant of the metric det gµν = −Σ2 sin2 θ vanishes; while when ∆ = 0, we have seen
that there is a horizon. While the latter is just a coordinate singularity that can be cured
by an appropriate change of variables, at Σ = 0 the Kretschmann scalar diverges. This is
then a physical curvature singularity, found when r = 0 and θ = π/2. Here, we could be
fooled by our spherical symmetry intuition and think that r = 0 corresponds to a point in
spacetime. If this was the case, the extra requirement θ = π/2 would seem odd. Actually,
in this case the singularity is not a point but a ring (thus, it is not zero-dimensional but
one-dimensional). This can be easily understood by studying the limiting case were M = 0.
In this case the metric becomes

ds2 = −dt2 + Σ
(

dr2

r2 + a2 + dθ2
)

+ (r2 + a2) sin2 θdφ2 . (3.90)
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Figure 13: Ring singularity inside a Kerr black hole represented in terms of the coordinates z
and ρ. The singularity is found at the ring were θ = π/2 and r = 0, represented by the red dots.
The disc r = 0 separates two physically distinct regions were r < 0 and r > 0 as explained in the
main text.

The change of coordinates z = r cos θ, ρ =
√
r2 + a2 sin θ, reveals that Eq. (3.90) is nothing

but an involved way of writing Minkoswi space, as it becomes

ds2 = −dt2 + dz2 + dρ2 + ρ2dφ2 . (3.91)

However, now it is transparent that r = 0 is a disk, while r = 0 and θ = π/2 corresponds
to its boundary, which is a ring (see Fig. 13).

Even though we have discussed this with M = 0 for simplicity, the singularity has also
ring topology for finite mass. Moreover, something interesting happens for non-vanishing
mass. Note that the metric ceases to be symmetric under the change r → −r. For this
reason, passing through the ring singularity (i.e. crossing the disk r = 0) would bring us
to a distinct region where r < 0. At the same time, near the singularity gφφ ≃ 2Ma2/r,
and so it changes sign across the disk. Consequently, ∂/∂φ becomes timelike in the region
where r < 0, and so it leads to the presence of timelike closed curves there. Thus, the Kerr
metric contains time machines: we should understand whether this is problematic.

Consider the case when a2 < M2. Note that there are actually two horizons, since
∆ = 0 occurs at

r = r± = M ±
√
M2 − a2 . (3.92)

The outer horizon r+ was introduced already in Eq. (3.88), while now we see there is also
an inner horizon at r = r− < r+. In this case, both the singularity and the time machines
are covered by the horizon and thus we do not have to worry about them since they are
not observable from infinity.

On the other hand, if a2 < M2, the values of r± in Eq. (3.92) become complex. This
means that there are not horizons at all and thus the ring where Σ = 0 becomes a naked
singularity, in the sense that it can be observed from infinity.
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Naked singularities are bad. Imagine we are simulating the gravitational collapse of a
star and in the process we produce a region with diverging curvatures appear. The simu-
lation would have to stop there, for new physics would be needed to resolve the singularity
and the computation would go beyond the applicability of general relativity. Put differ-
ently, if a naked singularity occurs outside an event horizon, we need more than our current
understanding of gravity to describe it. We would probably have to consider higher order
curvature terms and/or quantum gravity effects. In contrast, if singularities are covered by
an event horizon, the problem is avoid, as the region of spacetime observable from infinity
would be perfectly described by Einstein’s equations. Thus, if we want our spacetime to be
strongly asymptotically predictable, all singularities should rather be enclosed by horizons.

On the other hand, it is commonly believed that naked singularities cannot be produced
in Nature. This expectation is stated in the form of the cosmic censorship conjectures. Be-
cause it seems that Nature hides any break down of general relativity inside event horizons,
we believe that any evolution of Einstein’s equations will lead to black holes rather than
naked singularities10. For us, this means that we discard the Kerr solution with |a| < M

as unphysical as it would contain a region not properly described within general relativity
and also closed time curves reachable from infinity. We refer to the case |a| = M as the
extremal Kerr solution, which cannot be over-spun.

10Note, however, we can have an initial singularity, such as the Big Bang.
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4 Gravitational waves

Since the first direct detection of gravitational waves coming from the mergers of two black
holes on 14 September 2015 [11], the area of gravitational wave astronomy has become very
active. In these few years, there have already been several remarkable observations. For
example, gravitational waves coming from the merger of two neutron stars [12], combined
with the γ-ray bursts detected almost at the same time, allowed the location on the sky
of the event that produced them. The study of the electromagnetic counterpart of the
merger was tracked during several days by many different telescopes around the globe [13].
By now, there have been almost 100 events detected by the LIGO-Virgo-KAGRA Collab-
oration, with detectors placed in the United States, Italy, and Japan. Thus, even though
gravitational waves were already discussed by Einstein himself [14] soon after he proposed
the equations for General Relativity, it has been only a century later that they have become
experimentally accessible. In this section, we plan to describe them mathematically and
understand their physics.

4.1 Linear approximation and symmetry considerations

We think of gravitational waves as small perturbations about Minkowski metric. This is
to say that our space-time metric will be given, in certain coordinates xα by

gµν = ηµν + hµν + O(h2) , (4.1)

where η = diag(−1, 1, 1, 1). In Eq. (4.1) we are just stating that we neglect any term which
is not linear in h, meaning that contains two or more components of hµν . The goal is to
examine how Einstein’s equations look like in terms of hµν , and, eventually, solve them.
But we should first make a couple of remarks, related to coordinate transformations of the
metric in Eq. (4.1).

■ Lorentz transformations. Imagine we apply a Lorentz transformation to the original
coordinate system xα,

yβ = Λβαxα . (4.2)

In particular, ∂yβ/∂xα = Λβα. Therefore, in the new coordinate system yβ, the
metric becomes

g̃µν = ΛρµΛσν ηρσ + ΛρµΛσν hρσ + O(h2) = ηµν + h̃µν + O(h2) , (4.3)

where we have used that η̃µν = ΛρµΛσν ηρσ = ηµν , since the Minkowski metric is
invariant under Lorentz transformations. Consequently,

h̃µν = ΛρµΛσν hρσ (4.4)

transforms as a tensor under Minkowski transformations. This observation is useful,
because it allows us to interpret the “radiation field” hµν as a tensor defined on flat
space. Put differently, we can imagine that we are dealing with a tensor field defined
on flat Minkowski space and forget about the curvature of spacetime itself.
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■ Diffeomorphism invariance. Apart from the previous observation regarding Lorentz
transformations, it is convenient to examine the impact that a coordinate transfor-
mation would have in Eq. (4.1). Actually, the results we are going to find in this
discussion will turn out to be quite useful later.

If we want the metric to look like a small perturbation about the Minkowski met-
ric, we need the coordinate transformation to be “small”. We can thing of such a
transformation as originated by a vector field ξα,

x̃α = xα + ξα(x) + · · · . (4.5)

More precisely, given a vector field Xα(x), we could find its integral curves by solving
the the differential equation dxα/dλ = Xα(x). Then, Eq. (4.5) is just telling that we
are moving the coordinates along the integral curves as

x̃α = xα + λ
dxα
dλ + O(λ2) = xα + λXα(x) + O(λ2) , (4.6)

with ξα = λXα. Thus the statement that ξα is small.

Next, we wish to understand what the metric looks like after performing such a
change of coordinates. Note that

∂x̃α

∂xβ
= δαβ + ∂βξ

α ,
∂xα

∂x̃β
= δαβ − ∂βξ

α . (4.7)

Therefore, the metric becomes

g̃µν = (δρµ − ∂µξ
ρ)(δσν − ∂νξ

σ)(ηρσ + hρσ) = ηµν + hµν − ∂µξν − ∂νξµ , (4.8)

where, since we are interested in the linear perturbations, we are only keeping terms
linear in ξ and h. In particular, we have

h̃µν = hµν − ∂µξν − ∂νξµ = hµν − (£ξη)µν . (4.9)

In conclusion, under an infinitesimal coordinate transformation generated by the
vector field ξ, the metric perturbations transform as in Eq. (4.9). However, this
coordinate transformation should not have any physical consequence, if we want our
theory to be invariant under diffeomorphisms. Thus, we can refer to Eq. (4.9) as
a gauge transformation, and we can use it to fix some components of the field hµν
conveniently. We will take enormous advantage of such gauge transformations.

Let us finish this section making one remark. Sometimes, it could be that we are
interested in computing linear perturbations about some reference metric g

(0)
µν different

from the Minkowski metric11. In this case the transformation on hµν would read similar
to Eq. (4.9):

h̃µν = hµν − (£ξg
(0))µν . (4.10)

11For example, to compute the quasinornal modes of black hole solutions.
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4.2 Einstein’s equations for linear perturbations

Now that we understand the different symmetry properties of the linear perturbations hµν ,
let us write down Einstein’s equations in terms of them. Keeping only the linear terms in
hµν , the Christoffel symbols become

Γαµν = 1
2η

αβ (∂µhβν + ∂νhβµ − ∂βhµν) . (4.11)

From them, we find that the Riemann tensor reads

Rαβµν = ηαλ∂µΓλβν − ηαλ∂νΓλβµ = 1
2 (∂µ∂βhαν + ∂α∂νhµβ − ∂α∂µhβν − ∂ν∂βhαµ) . (4.12)

Interestingly, this expression is invariant under the gauge transformations from Eq. (4.9),
R̃αβµν = Rαβµν . After computing the Ricci tensor and the Ricci scalar, we find that
Einstein’s tensor becomes

Rµν − 1
2gµνR =

− 1
2
(
∂α∂αhµν + ∂µ∂νh

α
α − ∂µ∂αh

α
ν − ∂ν∂αh

α
µ − ηµν∂

α∂αh
β
β − ηµν∂

α∂βh
β
α

)
.

(4.13)

At this point, it is useful to define a tensor called “trace reverse” of hµν , defined as

hµν = hµν − 1
2ηµνh

α
α . (4.14)

Note that the trace of this new tensor is hαα = −hαα, which justifies its name. In terms of
it, Eq. (4.13) becomes

Rµν − 1
2gµνR = −1

2
(
∂α∂

αhµν + ηµν∂α∂βh
αβ − ∂µ∂αh

α
ν − ∂ν∂αh

α
µ

)
. (4.15)

Note that this would simplify enormously if ∂αh
αβ = 0. We wish to argue next that using

the invariance under infinitessimal in Eq. 4.9 it is possible to work in a gauge where this
is the case. Indeed, note that under a gauge transformation

h̃µν = h̃µν − 1
2 h̃

α
α = hµν − ∂µξν − ∂νξµ + ηµν∂αξ

α . (4.16)

This implies that
∂µh̃µν = ∂µhµν − ∂µ∂µξν . (4.17)

In particular, we can always change to a gauge where ∂µh̃µν = 0, by choosing ξ such us it
is a solution to

∂µhµν = ∂µ∂µξν . (4.18)
We refer to this choice of gauge as the Lorentz gauge, by its analogy to the electromagnetic
case. On the other hand, note that it does not completely specify the gauge, as we could
still add to ξα any vector χα such that ∂µ∂µχα = 0, for if we do so Eq. (4.18) would still
be satisfied. We will use this remaining freedom in the next section. So far, going back to
Eq. (4.15) we can conclude that the linearised Einstein’s equations read

∂α∂
αhµν = −16πTµν (4.19)

in the Lorentz gauge, for which ∂µhµν = 0 and ∂µ∂µξν = 0.
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4.3 Gravitational waves: plane wave solution

In the same way that electromagnetic waves are solutions to Maxwell’s equations in the
absence of charge or currents, gravitational waves are solutions to Einstein’s equations
in the absence of matter. Therefore, we now want to solve the linearised equations in
Eq. (4.19) with Tµν = 0,

∂α∂
αhµν = 0 , (4.20)

where we have to remember that these are written in the Lorentz gauge, ∂µhµν = 0 and
∂µ∂µξν = 0. Note that Eqs. (4.20) are just wave equations for the components of hµν ,
which means that they are solved by

hµν = Re[Aµν exp(ikβxβ)] , (4.21)

with kβ some one-form and Aµν some symmetric (0, 2) tensor. Moreover, Eq.(4.20) imposes
that kβkβ = 0, which implies that kβ is a light-like vector and, consequently, gravitational
waves travel at the speed of light.

At first sight, it would seem that the symmetric tensor Aµν has n(n + 1)/2 = 10
degrees of freedom, but this is not true because gauge fixing conditions fix many of them.
For instance, ∂βhαβ = 0 implies that

kβAαβ = 0 . (4.22)

In words, the tensor Aαβ is orthogonal to kβ.
Performing a rotation of the axes, we can assume without loss of generality that the

gravitational wave propagates along the x3 = z direction. Then kα = (k, 0, 0, k) and
Eq. (4.22) implies Atµ = Azµ. The last gauge fixing condition, ∂µ∂µξν = 0, is satisfied by
the forms ξν = Bν exp(kβxβ). These can be used to further demand that Atx = Aty = 0
and that the trace vanishes, Aαα = 0. Now there is no gauge freedom left, and defining
Axx = A+ and Axy = A× the tensor Aµν becomes

ATT
µν =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 . (4.23)

We refer to this complete gauge fixing as the transverse-traceless gauge (TT). Notice that
tracelessness implies that hTT

µν = h
TT
µν in this gauge.

In the end, we see that there are only two remaining propagating degrees of freedom,
corresponding to A+ and A×. The full solution can be written in terms of two polarization
vectors e+ = dx⊗ dx− dy ⊗ dy and e× = dx⊗ dy + dy ⊗ dx and reads

hTT = Re [(A+e+ +A×e×) exp (−ik(t− z))] . (4.24)

Now that we have characterised gravitational waves, we should investigate how they
act on text particles. Eventually, that is what we need if we want to build a gravitational
wave detector.
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Figure 14: Effect of the two polarization modes of gravitational waves in test particles distributed
in the (x, y)-plane. The direction to which the particles will move is represented in the first column
(arrows stand for the velocity of the particles, not to their acceleration computed in Eq. (4.27)).

4.4 Effect of gravitational waves on test particles

Consider a test particle at rest in the spacetime Eq. (4.1), where hµν = hTT
µν is the solution

to vacuum Einstein’s equations, given by Eq. (4.24) in the appropriate gauge discussed in
the previous section. Note that d/dτ = (1, 0, 0, 0) = ∂/∂t is a solution to the geodesic
equation

d2xα

dτ2 + Γαµν
dxµ
dτ

xν

dτ = 0 . (4.25)

since Γαtt = 0. Thus, a single particle does not sense the effect of the gravitational wave
passing by. This is somehow a consequence of the equivalence principle: what matters
in general relativity is not the absolute state of movement but the relative acceleration
between objects.

Thus, let us take two such test particles following the geodesics generated by U = ∂/∂t.
Let ξ = ξi∂/∂xi be the deviation vector between two particles. In particular £Uξ = 0, and
we can use the deviation equation derived in Section 2.4, from which, using Eq. (4.12),

D2ξk

dτ2 = Rkttmξ
m = −δkjRjtmtξm = 1

2∂t∂th
TT
jk . (4.26)

Finally, since at leading order in hµν the proper time is D/dτ = ∂/∂t, we get

∂2

∂t2

(
ξx

ξy

)
= k2

2

(
ξx

−ξy

)
Re[A+e

−ik(t−z)] , ∂2

∂t2

(
ξx

ξy

)
= k2

2

(
ξy

ξx

)
Re[A×e

−ik(t−z)] ,

(4.27)
for the e+ and e× modes, respectively. Note that ξz remains unaffected. The result in
Eq. (4.27) is represented in Figure 14, where the vector ξ can be thought of as the separation
from the center of the ellipses and circumferences.

Now that we know that general relativity predicts the existence of gravitational waves
and we understand how to detect them, let us discuss their generation.

40



4.5 Gravitational waves generated by a periodic source

In the presence of sources, we saw that the equation that governs gravitational waves
becomes

∂α∂
αhµν = −16πTµν (4.19, recalled)

in the Lorentz gauge, ∂µhµν = 0 and ∂µ∂µξν = 0. We start considering the simplified case
in which Tµν is a periodic function with frequency Ω,

Tµν = Re[Sµν(xk)e−iΩt] . (4.28)

A more generic time-dependent energy-momentum tensor can always be thought of as a
collection of Fourier modes of the form in Eq. (4.28). It is worth noting that Eq. (4.28) is
anyway expected to model accurately many astrophysical sources such as binary systems,
which appear to be roughly periodic.

Additionally, we assume that the region where Sµν ̸= 0 is enclosed within a sphere of
radius ϵ, small compared to the period of the movement and its corresponding wavelength,
ϵ ≪ 2π/Ω. This is the so-called slow-motion assumption, as translates to the fact that
velocities have to be small compared to the speed of light. Most powerful gravitational
wave sources will fail to meet this assumption, but it is applicable in many other scenarios.

Let us search for a solution of the form hµν = Bµνe
−iΩt. From Eq. (4.19) we get

(∂k∂k + Ω2)Bµν = −16πSµν . (4.29)

In the region outside the source (that is, where Sµν vanishes), this equation would be
generically solved in terms of the spherical harmonics Ylm(θ, φ), and we would decompose
the solution as a sum Bµν = Almµνfl(r)r− 1

2Ylm(θ, φ) and solve for fl(r). It turns out that
the main contribution comes from the l = 0 term, in which case

Bµν = Aµν
r
eiΩr + Zµν

r
e−iΩr . (4.30)

with certain constants Aµν and Zµν . We set Zµν = 0 as the second term in Eq. (4.30)
corresponds to ingoing waves, and we want to focus on waves emitted from the source.
Our problem now just consists on identifying Aµν in terms of the source. For that let us
integrate over the region Vϵ which is sorrounded by the sphere of radius ϵ both sides of
Eq. (4.29). The second term on the left-hand side is bounded by∫

Vϵ

Ω2Bµνd3x ≤ max
r<ϵ

|Bµν |
4πϵ3

3 Ω2 . (4.31)

In our slow-motion approximation, where ϵΩ ≪ 2π, this term is negligible when compared
to ∫

Vϵ

∂k∂
kBµνd3x =

∮
SR

nk∂kBµνd2s , (4.32)

by Gauss’ theorem, with nk a unit vector normal to the sphere SR with radius R > ϵ.
Then, ∮

SR

nk∂kBµνds = 4πR2 dBµν
dr

∣∣∣
r=R

≃ −4πAµν (4.33)
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where again we are making use of the approximation ϵ ≪ 2π/Ω. Note that, then

hµν = 4
r
eiΩ(r−t)

∫
Sµνd3x = 4

r
eiΩr

∫
Tµνd3x . (4.34)

These correspond to the gravitationa waves generated by the source, neglecting terms of
order 1/r2 and any term of order 1/r that is higher order in ϵΩ.

Physical constraints allow us to simplify Eq. (4.34) considerably. Indeed, if we focus
its the (µ, t) components, we can write12

h
µt = 4

r
eiΩr

∫
Tµtd3x = 4

r

eiΩr

iΩ

∫
∂tT

µtd3x . (4.35)

Now we can use conservation law of Tµν , which tells us that ∂tTµt = −∂kTµk, so that

h
µt = −4

r

eiΩr

iΩ

∫
∂kT

µkd3x = −4
r

eiΩr

iΩ

∮
SR

∂kT
µknkd2s = 0 , (4.36)

where in the last equality we used Gauss’ theorem and the fact the the source is localised.
In conclusion, hµt = 0.

Thus, we focus in the space components of h. These can be further simplified using
the expression

∂2

∂t2

∫
T ttxlxmd3x = 2

∫
Tmld3x , (4.37)

which is obtained using conservation of the energy momentum tensor and Gauss’ theorem
two times. In Eq. (4.37) we recognise the quadrupole moment of our mass distribution,

I lm :=
∫
T ttxlxmd3x . (4.38)

Note that, in the simplified case that we are considering, we could write I lm = Dlm(x)e−iΩt.
With this we can express the non-vanishing components of Eq. (4.34) as

hjk = −2Ω2

r
Ijke

iΩr . (4.39)

Finally, let us mention that it is possible to work in an equivalent to the TT gauge in
this case. If we choose the axes so that at the point that we measure the wave is travelling
in the z direction, Eq. (4.39) can be written as

h
TT
zi = 0 ,

h
TT
xx = −hTT

yy = −Ω2

r
(Ixx − Iyy)eiΩr

h
TT
xy = −2Ω2

r
IxyeiΩr .

(4.40)

where Ilm = Ilm − δlmI
k
k is the reduced quadrupole moment tensor.

12Neddless to be said, we are considering the case Ω ̸= 0.
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on the past light-cone

Light-cone (where the
Green’s function is not zero).

We integrate over       
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source, were

retarded time

We are interested in the gravitational 
waves arriving at this point

constant slice

Figure 15: Sketch of the region of integration corresponding to the retarded Green’s function.
Even though we are only drawing one source for the sake of simplicity, the final signal received at
xσ would contain contributions from any other source on the light cone.

4.6 Gravitational waves generated by a non-periodic source

In the previous section we examined the gravitational waves that periodic sources such as
binary systems of stars produce. Now, we wish to generalise the result we obtained a little
bit and consider non-periodic sources. Of course, the equations that we want to solve are
the same, linearised Einstein’s equations in Eq. (4.19),

∂α∂
αhµν = −16πTµν (4.19, recalled)

in the Lorentz gauge, where ∂µh
µν = 0 and ∂α∂

αξµ = 0. Now, the energy momentum
tensor can have a generic dependence on time, though we will still assume that it is non-
vanishing in a small region of space. In this situation, it is useful to consider the Green’s
functions. Indeed, let G be the function which is a solution to

∂α∂
αG(xσ − yσ) = δ(4)(xσ − yσ) , (4.41)

where it is understood that the derivatives of ∂α and ∂α are taken with respect to xσ.
Then G is a Green function of our system of Eqs. (4.19). If we could find such function,
the solution for hµν would easily be written in terms of it,

hµν(xσ) = −16π
∫

d4yG(xσ − yσ)Tµν(yσ) . (4.42)

This last statement can be checked by substituting Eq. (4.42) into Eq. (4.29).
Fortunately, mathematicians and physicists have worked a lot with this kind of prob-

lem, and we can directly borrow a solution to Eq. (4.41) from them. It is the retarded
Green’s function

GR(xσ − yσ) = − 1
4π|x⃗− y⃗|

δ(|x⃗− y⃗| − (x0 − y0)) Θ(x0 − y0) . (4.43)

In this last expression, Θ(t) is the Heaviside step function (Θ(t) = 1 if t > 0 and Θ(t) = 0 if
t < 0) and ⃗ denotes the spacial components of the corresponding vector. Note that GR is
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zero everywhere except on the past-light cone of the event xσ, where it is a delta function.
Thus, when substituted into Eq. (4.42),

hµν(t, x⃗) = 4
∫ 1

|x⃗− y⃗|
Tµν(t− |x⃗− y⃗|, y⃗)d3y , (4.44)

it is just given the resulting gravitational wave signal arriving at x⃗ at the instant x0 =: t,
as a sum over all the sources on the past light-cone. Considering Eq. (4.44), and Figure 15,
it makes sense to define the retarded time as tR = t− |x⃗− y⃗|. This is the time that it takes
to the signal to get to xσ since it is emitted at yσ.

Given that the source now has a general dependence on time, it will be composed by
several frequencies. For this reason, it is convenient to Fourier transform the time variable
from the last expression. Then,

F [hµν ](ω, x⃗) = 4√
2π

∫
eiωt

1
|x⃗− y⃗|

Tµν(t− |x⃗− y⃗|, y⃗) dtd3y⃗

= 4√
2π

∫
eiω(t−|x⃗−y⃗|) e

iω|x⃗−y⃗|

|x⃗− y⃗|
Tµν(t− |x⃗− y⃗|, y⃗) dtd3y⃗

= 4
∫
eiω|x⃗−y⃗|

|x⃗− y⃗|
F [Tµν ](ω, y⃗) d3y⃗ ,

(4.45)

where to go from the first to the second line we have just multiplied by unity in the form
1 = eiω(−|x⃗−y⃗|)eiω(|x⃗−y⃗|); and to go from the second to the third we identified the Fourier
transform of Tµν . When the source is far away (that is to say, its characteristic size ϵ

is way smaller that the distance |x⃗ − y⃗| to the place from where we are measuring), we
can consider |x⃗ − y⃗| = r = constant in the region where Tµν does not vanish. When this
approximation applies, we can extract the factor taht depends on |x⃗− y⃗| from the integral
in Eq.(4.45) and get

F [hµν ](ω, x⃗) = 4e
iωr

r

∫
F [Tµν ](ω, y⃗) d3y⃗ . (4.46)

It can be illuminating to compare this last expression with (4.34). As in the previous
section, this expression can be simplified further. On the one hand, the first gauge fixing
condition tells us that F [htν ] = i∂kF [hkν ]/ω, and so we only have to care about the spacial
components of hµν . The equivalent of Eq. (4.34) in Fourier space allows us to write

F [hij ](ω, x⃗) = 4
r
eiωr

(
−ω2

2

∫
yiyjF [T 00](ω)d3y⃗

)
= −2eiωr

r
ω2F [Iij ](ω) . (4.47)

Finally, transforming back to the time coordinate we obtain that

hij = 2
r
Ïij(tR) . (4.48)

The fact that there is no factor eiωr in this last expression is not a “typo”: it is used in the
inverse Fourier transform to express the result as a function of retarded time tR = t − r.
In terms of the reduced quadrupole moment tensor Eq. (4.48) becomes, in the TT gauge

h
TT
xx = 1

r

(
Ïxx(tR) − Ïyy(tR)

)
, h

TT
xy = 2

r
Ïxy(tR) , h

TT
zk = 0 . (4.49)
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4.7 Final remarks

One final question that we will not have time to discuss is the amount of energy carried
away by gravitational waves. The result is the gravitational Larmor formula: the power
radiated away is given by

P = G

5c5 ⟨
...
I ij

...
I ij⟩ , (4.50)

where dots stand for derivative with respect to time and ⟨ ⟩ stands for averaging over
one period13. This expression was checked experimentally in the pulsar PSR1913+16, a
binary system of two ∼ 1.4 solar mass stars, separated 105km. The period of the orbit is
∼ 8 hours. Due to energy loss, this period is reduced in 3 × 10−12 s every second. This
reduction has been observed and constituted the first (indirect) evidence for the existence
of gravitational waves. Hulse and Taylor, who found the pulsar in 1974, were awarded the
Novel prize in physics in 1993 for their discovery.

13Note that we are assuming again periodic motion, even though several frequencies could be involved.
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5 Advanced topics

5.1 An action for gravity

In classical physics, we like to model our systems starting with an action from which the
dynamics are derived. Normally, we assume that we have a Lagrangian density L that
depends on a set of fields ϕi and their derivatives, ∂µϕi. Then the action is nothing but

S =
∫

L({ϕi, ∂µϕi}) d4x . (5.1)

In this case, the equations of motions are the Euler–Lagrange equations,

∂L
∂ϕi

− ∂µ

(
∂L

∂(∂µϕi)

)
= 0 . (5.2)

obtained by demanding that the variation of the action S with respect to the fields ϕi is
zero, δS/δϕi = 0. Similarly, we would like to find an action from which Einstein’s equations
can be obtained.

In this section, we work in natural units ℏ = c = 1, rather than geometrised (we keep
G explicit).

5.1.1 The Einstein–Hilbert action

The dynamics in general relativity are governed by Einstein’s equations, which are the
equations of motion for the components of the metric. In this section, we will see that
these equations are obtained by varying the Einstein–Hilbert action

SEH = 1
16πG

∫
M

√
−gR d4x (5.3)

with respect to the metric components. In Eq. (5.3), we denoted by g the determinant of
the metric gµν , and R is its Ricci scalar. The integral is performed over the whole manifold
M . One particular property of Eq. (5.3) is that it contains second derivatives of the fields
with respect to which we want to vary (i.e. gµν). We will see that this have some important
consequences.

The computation is slightly easier if we vary with respect to the inverse metric δgµν ,
rather than δgµν . These are of course equivalent, as the number of degrees of freedom is
the same. Note that, because gµνgνσ = δ σ

µ , the variation of the metric and its inverse are
related through

δgµν = −gµρgνσδgρσ . (5.4)

The variation of SEH will contain two pieces,

δSEH = 1
16πG

∫
M

[
δ(

√
−g)R + δ(R)

√
−g

]
d4x . (5.5)

Taking into account that the derivative of a matrix A with respect to the components of
its inverse Amn is ∂(detA)/∂Amn = −(detA)Anm = −(detA)(A(mn) −A[mn]), in the first
term we will find

δ(
√

−g) = −
√

−g 1
2gµν δg

µν . (5.6)

46



The variation of the Ricci scalar is actually a little bit more involved. Since R =
gµνRµν , we will have

δ(R) = Rµνδg
µν + δ(Rµν)gµν . (5.7)

And now the variation of the Ricci tensor gets technical. First, we have to use the Palatini
identity, which tells us that14 δRµνρσ = 2∇[ρδΓµσ]ν . In particular, δ(Rµν) = −2∇[νδΓλλ]µ.
Next, we should make use of the fact that15

δΓρµν = 1
2g

ρλ (∇µgλν + ∇νgλµ − ∇λgµν) . (5.8)

Taking this into account, we can finally write

δ(Rµν)gµν = ∇µ(gρσ∇µδgσρ − ∇νδg
µν) =: ∇µA

µ , (5.9)

where the last equality defines A. Substituting Eqs. (5.6), (5.7) and (5.9) into Eq. (5.5) we
obtain

δSEH = 1
16πG

∫
M

√
−g
[ (
Rµν − 1

2gµνR
)
δgµν + ∇µA

µ
]

d4x . (5.10)

In this last expression, we recognise the Einstein tensor and, using Gauss’ theorem, a
boundary term ∫

M

√
−g∇µA

µd4x =
∫
∂M

√
−hnµAµd3x (5.11)

At this point, one is tempted to claim victory, as one could argue that the boundary term
should be ignored. Even though this is not the correct thing to do, let us assume that it
is and fix the “mistake” later. Forgetting about the boundary term, the variation of the
action δSEH/δg

µν leads to
Rµν − 1

2gµνR = 0 , (5.12)

which are Einstein’s equations in vacuum.
How do we get Einstein’s equations in the presence of matter? If the theory that we

want to study also contains matter fields, the action that we will be interested in will have
and extrapiece Sm containing the dynamics of matter,

S = SEH + Sm . (5.13)

For this to be consistent, we need Sm to be invariant under diffeomorphisms. Now, when S
is varied with respect to δgµν , the second piece gives raise to the energy momentum tensor
of the corresponding matter fields

Tµν = − 2√
−g

δSm

δgµν
, (5.14)

14One may find it strange that we are writing the covariant derivative of δΓ. This is, however, fine:
while Christoffel symbols are generically not tensors, differences of them are; and δΓρ

λµ = Γρ
λµ − Γ̃ρ

λµ can be
understood as the difference between the connections of gµν and g̃µν = gµν + δgµν .

15This can be proved either by brute force (doing the derivative with respect to the metric in the formula
for Γρ

µν), or working in flat coordinates and realising at the end of the computation that the result does not
depend on the choice of coordinates.
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and Einstein’s equations as in Eqs. (1.1) are recovered;

δSEH

δgµν
=

√
−g

16πG

(
Rµν − 1

2gµνR− 8πGTµν
)

= 0 . (5.15)

Moreover, note that the energy-momentum tensor here is symmetric and satisfies
∇µT

µν = 0 by construction. There is an interesting discussion on the relation between
this energy-momentum tensor in Eq. (5.14) and the one we would obtain from Noether’s
theorem in this webpage.

Finally, having obtained the equations of motion from SEH also helps us to understand
what goes wrong with general relativity near singularities. Indeed, if we asked for the most
general action that respects the symmetries of the theory (i.e. it must be invariant under
diffeomorphisms), we would write

S̃ = 1
16πG

∫ √
−g

(
−2Λ +R+ c1R

2 + c2R
µνRµν + c3R

µνσρRµνσρ + · · ·
)

d4x . (5.16)

The first term would just lead to the presence of the cosmological constant Λ in Einstein’s
equations, while the second is precisely that in the Einstein–Hilbert action. The crucial
observation now is that curvature quantities are second derivatives of the metric, R ∼
∂2g, and thus have dimensions of (length)−2. This means that the coefficients ci will be
suppressed by some powers of the Newton’s constant16 G, as it is the unique dimensionful
quantity in the theory. This justifies ignoring all those terms whenever curvatures are
small, but one would certainly want to include them in highly curved regions. At the
same time, when curvatures are large the theory of general relativity should be modified to
include those terms. How to do so consistently is not completely understood and beyond
the scope of these lectures.

Before changing topic, we still have to understand the boundary term Eq. (5.11) that
we neglected in our derivation. In the next section we will discuss how to treat it properly.

5.1.2 The Gibbons–Hawking–York boundary term

In the previous section, we got Einstein’s equations from the Einstein–Hilbert action in
Eq. (5.3). In our derivation, we ignored the boundary term written in Eq. (5.11). We
should not blame ourselves too much for that; the subtlety was not taken into consideration
until Gibbons and Hawking pointed it out in [15]. That was more than sixty years after
Hilbert proposed Eq. (5.3), so people could get along with it.

To understand what we did incorrectly, let us consider a simpler case. We want to
argue that the problem arises from R containing second derivatives of the metric. A similar
problem would appear if we were to take the Lagrangian

I1 = −1
2

∫ t1

t0
dtqq̈ (5.17)

to describe a free one-dimensional classical particle, instead of the standard one Lagrangian
I2 =

∫ t1
t0

dt1
2 q̇

2, build just from the kinetic energy. We expect the equations of motion of
16Newton’s constant G has dimensions of (length)2.
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this system to be q̈ = 0. If we vary I1 with respect to δq, we get

δI1 = −
∫ t1

t0
dt q̈δq + 1

2

∫ t1

t0
dt d

dt (−qδq̇ + q̇δq) = −
∫ t1

t0
q̈δq dt+ 1

2
[

− qδq̇ + q̇δq
]t1
t0
. (5.18)

Crucially, we demand that δq vanishes at the boundary (i.e. the end points t0 and t1).
However, further demanding δq̇ = 0 at the boundary would corresponnd to additional
conditions that we are not allowed to require. Thus, if we want something like the integral
in Eq. (5.19) to give rise to the equations of motion that we want (i.e. q̈ = 0), we need to
modify it by subtracting the boundary term,

Ĩ1 = I1 + 1
2qq̇

∣∣∣t1
t0

= 1
2

∫
q̇2 dt = I2 . (5.19)

Note that with the extra boundary term we get rid of the second derivatives. Actually, we
recovered I2.

With this simpler example in mind, it is easier to understand the most complicated
case of the Einstein–Hilbert action. Recall that the integrand of the boundary term we
were left with was

nµAµ = nµgνρ (∇ρδgµν − ∇µδgνρ) = (nµhνρ ∓ nµnνnρ) (∇ρδgµν − ∇µδgνρ) , (5.20)

where in the last equality we used the definition of the induced metric hµν = gµν ± nµnν
of the boundary ∂M , Eq. (2.25). The choice of upper or lower indices depends on whether
∂M is spacelike or timelike, respectively.

If we now inspect Eq. (5.20), we realise that the second term vanishes, for nµnνnρ is
symmetric under the exchange of ρ and µ while the parenthesis is antisymmetric. Moreover,
the term nµhνρ∇ρδgµν = 0 is also zero, as it is the tangential derivative of the variation of
the metric, and δgµν |∂M = 0 (the metric is not allowed to vary on the boundary). Then,

nµAµ = −nµhνρ∇µδgνρ . (5.21)

Interestingly, we can relate this with the variation of the extrinsic curvature on the
boundary. Indeed, recall from Eq. (2.26) thatK = hµνKµν = hρµ∇ρn

µ = hρµ(∂ρnµ+Γµραnα).
Then, taking into account that δhρµ = 0 if δgµν |∂M = 0,

δK = nαhρµδΓµρα = 1
2n

αhµν∇αδgµν . (5.22)

In the last equality we used Eq. (5.8). Now, comparing our last two expressions we conclude
that our boundary term is nµAµ = −2δK. Consequently, an extra piece to cancel this
boundary term needs to be added to SEH if we want an action from which Einstein’s
equations are obtained. This piece, that we denote by SGHY, is called the Gibbons–Hawking–
York term and the final action for gravity becomes

SG = SEH + SGHY = 1
16πG

∫
M

√
−gR+ 1

8πG

∫
∂M

√
−hK . (5.23)

This new term is important to be taken into consideration whenever the boundary plays
an important role, such as in holography. The term was introduced in [15] because they
were studying partition functions in quantum gravity, and for that they wanted to have an
action which depended only on the first derivatives of the metric.
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5.2 Black hole thermodynamics

5.2.1 The Penrose process

When we think of black holes, the first thing that comes to our mind is the statement
“nothing can escape”. Indeed, that is true, in the sense that nothing that crosses the
horizon will ever be able to cross it back. For this reason, it was a surprise when Penrose
showed in 1971 that it is possible to extract energy from a rotating black hole [16]. The
key observation is that in the ergosphere of a Kerr black hole, whose metric was given
in Eq. (3.74), the Killing vector corresponding to time translations at infinity, ξ = ∂/∂t,
becomes spacelike. Consequently, particles in the ergosphere can have negative energy, as
we shall see.

Imagine that we throw from far away a particle with momentum P into the black hole.
The energy of the particle is E0 = −ξµPµ = −Pt > 0 as in Eq. (3.79). This is positive
because static observers at infinity have ξ as their proper time, and need to see the particle
inside their lightcone.

Now, the particle will split into two different particles with momenta Q and T when it
is inside the ergosphere. Conservation of total momentum requires P = Q+ T when they
split. We will now take advantage of the absence of static observers inside the ergosphere
to claim that one of the particles can have negative energy. Indeed, in the ergoregion we
find stationary observers, rather than static ones. As we discussed around Eq. (3.85), they
are rotating with a certain constant angular velocity Ω ∈ (Ωmin,Ωmax) with respect to static
observers at infinity. The quadri-velocity of stationary observers was

U = U t
(
∂

∂t
+ Ω ∂

∂φ

)
, (3.83, recalled)

This becomes U = U tχ = U t(∂/∂t + ΩH∂/∂φ) as we approach the horizon, with ΩH =
a/(r2

+ + a2) the angular velocity of the horizon given in Eq. (3.82). Non-superluminal
propagation in this case implies

0 < −χµQµ = −Qt − ΩHQφ = E1 − ΩHL1 . (5.24)

In particular, the energy of one of the particles can be negative, as long as E1 > ΩHL1.
If so, note that L1 < 0 is also negative, and so the particle with negative energy must
rotate in the opposite direction that the black hole. The second particle, will have energy
E2 = E0 + |E1|. Remarkably, there are particular choices of E1 and L1 (like precisely the
one Penrose discusses in [16]) for which this second particle escapes to infinity while the
first one falls into the black hole, effectively carrying energy out of the black hole. After
the process, we will be left with a rotating black hole with mass M̃ = M +δM and angular
spin J̃ = J + δJ , where δM = E1 and δJ = L1, both of which are negative in the present
case. The interpretation is that we are extracting rotational energy out of the Kerr black
hole.

How much energy can we extract if we repeat the process many times? Clearly, it will
not be all of it: in the process, the black hole is spinning down, and will eventually become
a Schwarschild black hole, from which no more energy can be extracted. To make this
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quantitative, let us investigate how the area of the black hole changes in the process. The
area of the surface t = constant, r = r+ = G(M +M

√
1 − J2/M2) is

AH = 4π(r2
+ + a2) = 8πG2(M2 +

√
M4 − J2) . (5.25)

Remember that a = JG/M . From this, we get that

δAH = 8πG
κ

(δM − ΩHδJ) , (5.26)

where κ = G
√
M2 − a2/(r2

+ + a2) whose physical meaning we will discuss in the next
section. Remarkably, the condition in Eq. (5.24) tells us that the area can only grow,
δAH ≥ 0. This also allows us to provide a bound on the amount of energy that we can
extract. Indeed, if we define

M2
I = 1

2
(
M2 +

√
M4 − J2

)
, (5.27)

where the prefactor is fixed so that MI corresponds to the mass of the balck hole when it
does not rotate. Moreover, Eq. (5.26) also tells us that δMI ≥ 0. Therefore, the maximum
mass that we can extract is

∆M = M −MI = M

(
1 − 1√

2

(
1 +

√
1 − J2/M4

))
. (5.28)

In particular, from a extremal black hole (i.e. J = M2) on could in principle extract
∆M/M = 1 − 1/

√
2 ≃ 30% of its energy by virtue of the Penrose process.

5.2.2 Area theorem

In the previous section, we saw that Penrose process cannot reduce the area of a rotating
black hole. This is a particular case of a more general results that Stephen Hawking proved
in 1971: total area of black holes cannot decrease in [17]. We will not prove it here, but
comment on it.

The theorem assumes a rather generic situation. Namely, that the null energy condition
holds: for any timelike vector field K, it is true that TµνKµKν ≥ 0 or, equivalently,
RµνK

µKν ≥ 0. It also assumes that the spacetime is strongly asymptotically predictable,
which is to say that there are no naked singularities. From these assumptions, it follows
that the total area of future event horizon cannot decrease,

∆A ≥ 0 . (5.29)

In particular, black holes cannot split.
This theorem sets a bound on the amount of energy that can be radiated away in the

form of gravitational waves. Imagine that we start with two Schwarschild black holes with
area

A1 = 4π(2GM1)2 , A2 = 4π(2GM2)2 . (5.30)

Generically, these black holes will approach each other and collide. If the initial black holes
were both initially at rest (with respect to an observer at infinity), the merger will take
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place via a head-on collision. Thus, spherical symmetry will be recovered when the system
settles down through the emission of gravitational waves. Consequently, we will end up
with a final spherical black hole with area Af = 4π(2GMf )2. The area theorem states that

A1 +A2 ≤ Af , (5.31)

which means that
M2

1 +M2
2 ≤ M2

f = (M1 +M2 − EGW)2 , (5.32)

with EGW the amount of energy radiated away in the form of gravitational waves. In
particular,

EGW ≤ M1 +M2 −
√
M2

1 +M2
2 . (5.33)

This results states, for example, that for two equally massive spherical black holes grav-
itational waves could carry, at most, 1 − 1/

√
2 ≃ 30% of the total mass of the system.

Simulations of black hole collisions show that it is actually way less efficient than that,
with only between 1% and 2% being radiated away. In the first detected collision of grav-
itational waves [11], the initial black hole masses were 36 and 29 solar masses and 3 solar
masses (∼ 5%) were radiated away.

5.2.3 Surface gravity and the four laws of black hole mechanics

Let us imagine for a second that we are a static observer near the horizon of a Schwarschild
black hole. Expanding the metric about r = 2GM , using r = 2GM + ϵ2 + · · · , we get
dr2 = 4ϵ2dϵ2 + · · · and the metric becomes, approximately

ds2 ≃ − ϵ2

2GM dt2 + 8GMdϵ2 + dY 2 + dZ2 . (5.34)

We have used that r2dΩ2 ≃ dY 2 + dZ2 looks nearly flat close to the horizon (ϵ ≪
√
GM).

Now, performing a change of variables x̄ = ϵ
√

8GM we arrive to

ds2 ≃ − 1
16GM x̄2dt2 + dx̄2 + dY 2 + dZ2 , (5.35)

which is the metric of the Rindler space. This is nothing but Minkowski space as sensed
by observers with constant acceleration κ given by

κ = 1
4GM , (5.36)

Note that this is the acceleration that the engine of our spacecraft should achieve to keep
us at rest hovering over the black hole. This is the reason why we will refer to κ as surface
gravity. The fact that such observers appear to be accelerating in Minkowski space is a
consequence of the equivalence principle.

Surface gravity can be defined for any black hole solution. However, we have already
argued that in some cases, such as for the Kerr black hole, static observers do not exist
near the horizon. For this reason, we need to be a little bit more precise about what we
mean by surface gravity.
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Horizons are boundaries of regions from which nothing, not even light, can escape.
Mathematically, this is encoded by the fact that there exists a vector field χµ that becomes
null on the horizon χµχµ = 0; and that is hypersurface normal, χ[µ∇νχρ] = 0. This vector
field defines κ through

∇µ(χνχν) = −2κχµ (5.37)

evaluated at the horizon. For the Kerr black hole, χ = ∂/∂t+ΩH∂/∂φ would be the vector
field with the desired properties, and surface gravity becomes κ = G

√
M2 − a2/(r2

± + a2).
Notice that this is precisely the constant that appeared in Eq. (5.26). Let us emphasise
that κ is a constant on the horizon. Actually, it is possible to prove that κ, defined by
Eq. (5.37) evaluated on a horizon of any stationary black hole solution is always constant.

The results obtained so far fostered Bardeen, Carter and Hawking [18] to point out an
interesting analogy between black hole mechanics and thermodynamic systems, summarised
in the following table:

Thermodynamics Black hole mechanics

0th law T is uniform on equilibrium κ is uniform on a Killing horizon

1st law dE = TdS − pdV δM = κ

8πGδA+ ΩHδJ

2nd law ∆S ≥ 0 ∆A ≥ 0

3rd law T = 0 cannot be achieved in a finite
number of steps

κ = 0 cannot be achieved in a finite
number of steps

The zeroth law of black hole mechanics corresponds to what we have just discussed.
On the other hand, the first law is obtained from Eq. (5.26), isolating δM . Even though
it appeared in the context of the Penrose process, in [18] it was proven to hold with more
generality. Moreover, the second law is just the area theorem explained in the previous
section. Finally, for the third law just a plausibility argument was given, noticing that the
κ = 0 in the Kerr solution is achieved in the extremal case J = M2, which would require
infinite divisibility of matter and infinite time to be achieved.

In [18] this was taken just as an analogy. Actually, it was argued that the temperature
of a black hole is always strictly zero, for when put in a thermal contact (say, with a
radiating body), they would just absorb any sort of radiation. Therefore, it seemed they
would never reach thermal equilibrium. Similarly, they argued that there appear to be
mechanisms by which the entropy of a black hole is increased while its area is kept constant.

By the same time, Jacob Bekenstein examined those arguments regarding the relation
between area and entropy, and claimed that one could indeed make sense of interpreting
the area of the black hole as some sort of entropy [19, 20]. He rephrased the second law of
thermodynamics as “when common entropy goes down a black hole, the common entropy
in the black hole exterior plus the black hole entropy never decreases”,

∆Sext + ∆SBH ≥ 0 , (5.38)
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with SBH ∝ A and Sext is the entropy contained in the universe outside black holes.
Famously, Hawking changed his opinion when he proved that black holes do indeed

radiate. With that, he managed to provide the correct proportionality factor between the
entropy and the area; and between temperature and surface gravity:

SBH = A

4G , TH = κ

2π . (5.39)

Next, we would like to argue that Eqs. (5.39) indeed give the entropy and temperature
of stationary black holes. Hawking proved it in [21] by means of studying quantum field
theory in curved spacetime. Understanding Hawking’s approach is beyond the scope of
these lectures. Instead, we will first learn how quantum field theory is done at finite
temperature and show how Eqs. (5.39) are deduced from it.

5.2.4 Quantum field theory at finite temperature

In this section we discuss quantum field theory at finite temperature. First, we need to
recall some concepts from Statistical Physics.

■ Boltzmann factor and the partition function. In a thermal equilibrium configu-
ration, the probability pi of a given state with energy Ei is proportional to the
Boltzmann factor,

pi = 1
Z
e−βEi . (5.40)

Here, Z is the partition function, which is just the normalization factor that ensures
that all the probabilities sum up to unity,

Z =
∑
i

e−βEi . (5.41)

Moreover, β = (kBT )−1 and we will be setting the Boltmann constant to unity,
kB = 1. Note that Eq. (5.41) assumes a discrete spectrum of energies, but this can
be easily generalised to the continuum case using integrals. Actually, if the system is
quantum, we can write the partition function as

Z =
∑
i

⟨i|e−βĤ |i⟩ =
∫

dx⟨x|e−βĤ |x⟩ , (5.42)

where Ĥ = p̂2/2m+ V (x̂) is the Hamiltonian of the system. In the last step we have
just changed basis to position space. After some manipulations (see Appendix A),
this can be written as

Z =
∫

Dx exp
∫ β

0
dτLE , (5.43)

with LE = m
2 (∂x/∂τ)2 + V (x(τ)) and x(0) = x(β). With

∫
Dx, the integral over all

possible periodic configurations x(τ) is meant. By periodic, we mean that x(0) =
x(β). Remarkably, this is can be obtained from the path integral of the theory

Z =
∫

Dx exp
∫ ∞

−∞
dtL , L = m

2

(
∂x

∂t

)2
− V (x) ; (5.44)
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after analytic continuation to imaginary time, t → −iτ and declaring τ to be compact
and x(τ) periodic.

■ Generalisation to quantum field theories. We have just seen that we can obtain
the partition function from the path integral of a theory. Actually, the same is true
in quantum field theories: given a theory whose Lagrangian density is L, its path
integral reads

Z =
∫

Dϕ exp
[
i

∫
d4xL

]
. (5.45)

Then, the finite-temperature partition function can be obtained just by Wick rotating
the time direction t → −iτ ,

Z =
∫

Dϕ exp
[
−
∫ β

0
dτ
∫

d3x⃗LE

]
, (5.46)

and demanding periodicity17 of the fields, ϕ(0, x⃗) = ϕ(β, x⃗). There is a discussion on
how periodicity appears in this context in Appendix B.

In conclusion, we can think of quantum field theories at finite temperature as being
defined in Minkowski space with compactified imaginary time, t = −iτ . Thus, the metric
becomes

ds2 = dτ2 + dx2 + dy2 + dz2 , (5.47)

with τ ∈ (0, β) being a periodic coordinate.
In quantum field theory, the path integral is integrated over the fields, Dϕ. If we

wanted to take a similar approach to quantum gravity, we would also need to allow for
different configurations of spacetime, and integrate over all possible metrics, Dg. If we
want to do this at finite temperature, we would have to consider the following partition
function,

ZQG =
∫

Dg exp[−SE ] , (5.48)

with SE being the Euclidean version of Eq. (5.23), with compactified time direction. This
is of course complicated, and it is even difficult to understand what we mean by Eq. (5.48).
However, we can take a saddle point approximation: we treat quantum corrections as
perturbations over a classical solution,

gµν = g(cl)
µν + δgµν + · · · (5.49)

We can think of δgµν as being suppressed by ℏ, which we have set to ℏ = 1. Then,
expanding ZQG around the classical solution leads to

ZQG ≃ exp[−SE [g(cl)]]
∫

Dδg exp[−δSE ] + · · · (5.50)

Clearly, the classical solution gives the dominant contribution to the path integral.
17Actually, it turns out that fermionic fields have to be antiperiodic.
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Figure 16: Behaviour of the Euclidean time circle near the horizon of a black hole. Regularity
imposes that β = 2π/κ, as otherwise a conical singularity would be present, as in the right picture.

Let us apply this to the Schwarschild geometry. First, we write down the Euclidean
solution, obtained by analytically continuing Eq. (3.6) to imaginary time,

ds2 =
(

1 − 2GM
r

)−1
dτ2 +

(
1 − 2GM

r

)
dr2 + r2dΩ2 . (5.51)

Expanding this metric about r = 2GM , we get the Euclidean version of Eq. (5.35),

ds2 ≃ κ2x̄2dτ2 + dx̄2 + dY 2 + dZ2 , (5.52)

where now τ ∼ τ + β is a periodic coordinate and κ = 1/(4GM) is surface gravity.
Remarkably, if we want the metric to be regular near the horizon, the period β needs to
have a particular value. Indeed, changing coordinates in Eq. (5.52) to τ = κ−1α, the metric
becomes

ds2 ≃ x̄2dα2 + dx̄2 + dY 2 + dZ2 . (5.53)

In particular, the x̄ and α directions give raise to R2 written in polar coordinates. But
for this to be regular we need that α ∈ (0, 2π), for otherwise we would have a conical
singularity, as depicted in Fig. 16. This requirement imposes that τ ∈ (0, 2π/κ) and thus

TH = β−1 = κ

2π , (5.54)

which is Hawking temperature. The rest of the thermodynamical variables are obtained via
the standard thermodynamic relations. Indeed, varyinf in mind that the partition function
is related to the free energy F as Z = e−βF , the energy and entropy become

E = −∂β log Z , S = −
(
β
∂

∂β
− 1

)
log Z . (5.55)

In particular, F = E − TS with T = β−1.

5.2.5 Aspects of Hawking radiation

Let’s finish with some comments regarding Hawking radiation. Not only did Hawking find
that black holes have a temperature, but he showed that they radiate and the corresponding
spectrum is that of a black body. In particular, the power of emission is that of a black
body

dE
dt = σAT 4 , (5.56)
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with σ the Stefan-Boltzmann “constant”, which depends on the field being radiated. In
particular, for Schwarschild,

dM
dt = − σ

256π3
1
M2 , (5.57)

from which we conclude that the time of evaporation is tev ∝ M3. Including all the factors,
Hawking temperature for a Schwarschild black hole becomes

TH = ℏc3

8πkBgM
≃ 6 · 10−6M⊙

M
K . (5.58)

In particular, the temperature of one solar mass black hole is negligible, compared to the
CMB temperature (2.7 K). Concerning the entropy,

SBH = c3

Gℏ
A

4 ≃ 1076
(
M

M⊙

)2
. (5.59)

This may not say much. But baring in mind that the entropy in the CMB is SCMB ∼ 1087,
we conclude that most of the entropy of the Universe is in the form of black holes, as
a single supermassive black hole with M = 109M⊙ already has S ∼ 1094 according to
Eq. (5.59).

Finally, note that the specific heat is

c = dE
dT = dM

dT = −8πM2 < 0 (5.60)

is negative, which means that a black hole is thermodynamically unstable.

c = dE
dt . (5.61)
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A Partition function for a quantum system

We want to compute
Z =

∫
dx⟨x|e−βĤ |x⟩ . (A.1)

We will be switching between position basis and momentum basis,

x̂|x⟩ = x̂|x⟩ ; p̂|x⟩ = −i∂x|x⟩ ; (A.2)

and, of course, [x̂, p̂] = i. In our convention for the normalisation of the basis,

1 =
∫ dp

2π |p⟩⟨p| , 1 =
∫

dx|x⟩⟨x| . (A.3)

The first thing to note is that Ĥ = p̂2/2m+V (x̂) contains several of operators. Recall
that the exponentiation of two operators is such that

eAeB = exp(A+B + 1
2[A,B] + · · · ) . (A.4)

For this reason, it is useful to split the Hamiltonian in N smaller pieces,

Z =
∫

dx⟨x|e−βĤ |x⟩ =
∫

dx⟨x|e−ϵĤ · · · e−ϵĤ |x⟩ , (A.5)

with ϵ = β/N . What we have done is fine since [Ĥ, Ĥ] = 0. Next, we want to make use of

⟨pn|e−ϵĤ |xn⟩ = exp
[
−ϵ p

2
n

2m − ϵV (xn) + O(ϵ2)
]

⟨pn|xn⟩

= exp
[
−ϵ p

2
n

2m − ipnxn − ϵV (xn) + O(ϵ2)
]
,

(A.6)

where n is just a label. To do so, we insert 1 = (2π)−1 ∫ dpn|pn⟩⟨pn| to the left of every
e−ϵĤ factor, and 1 =

∫
dxN |xN ⟩⟨xN | to its right. In this way, relabeling x = xN+1, the

partition function becomes

Z =
∫

dxN+1⟨xN+1|
[ ∫ dpN

2π |pN ⟩⟨pN |
]
e−ϵĤ

[ ∫
dxN |xN ⟩⟨xN |

]
· · ·

· · ·
[ ∫ dpN−1

2π |p1⟩⟨p1|
]
e−ϵĤ

[ ∫
dx1|x1⟩⟨x1|

]
|xN+1⟩ .

(A.7)

Note that, from the last term, we get ⟨x1|xN+1⟩ = δ(x1 − xN+1). Therefore, rearranging
the Eq (A.7) we arrive to

Z =
∫ N∏

i=1

dxidpi
2π ⟨xi+1|pi⟩⟨pi|e−ϵĤ |xi⟩

=
∫ ( N∏

i=1

dxidpi
2π

)
exp

−ϵ
N∑
j=1

(
p2
j

2m − ipj
xj+1 − xj

ϵ
+ V (xj) + O(ϵ)

)
xN+1=x1

,

(A.8)
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where we used Eq. (A.6) and the fact that ⟨x|p⟩ = eipx. We ignored the terms O(ϵ2)
because we will eventually take the limit ϵ → 0 (equivalently, N → ∞).

The next observation is that Eq. (A.8) contains a set Gaussian integrals over the
momentum, which can be performed and lead to

Z =
∫ ( N∏

i=1

dxi
(2πϵ/m)− 1

2

)
exp

−ϵ
N∑
j=1

(
m

2

(
xj+1 − xj

ϵ

)2
+ V (xj)

)
xN+1=x1

, (A.9)

Now we take the continuous limit ϵ → 0. The different parts in Eq. (A.9) become

ϵ
N∑
j=1

7→
∫ β

0
dτ , xj+1 − xj

ϵ
7→ ∂x

∂τ
,

(
N∏
i=1

dxi
(2πϵ/m)− 1

2

)
7→
∫

Dx . (A.10)

These can be confusing, but let us try to understand them. If we focus in what we have
inside the exponential in Eq. (A.9), after taking the continuous limit we go from a discre-
tised set of {xi} to a continuous function x(τ), which we are integrating between τ ∈ (0, β).
The condition xN+1 = x1 translates to the requirement that the function is periodic,
x(0) = x(β). Of course, in the second element in Eq. (A.10) we recognise the derivative
with respect to τ .

The third identification in Eq. (A.10) is perhaps the most confusing. Before taking
the continuous limit, we were performing N integrals of the type

∫
dxi, which means that

every of the xi was allowed to take any value. In ϵ → 0 limit this means that we have to
integrate over all possible functions x(τ), subjected to the condition x(0) = x(β). In the
end, the partition function becomes

Z =
∫

Dx e−SE , SE =
∫ β

0
dτLE , (A.11)

where
LE = m

2

(
∂x

∂τ

)2
+ V (x(τ)) . (A.12)

Note that Eq. (A.13) looks very similar to the usual, zero-temperature path integral
in Minkowski space,

Z =
∫

Dx eiS , S =
∫ ∞

−∞
dtL , (A.13)

where L is the Lagrangian of the system,

L = m

2

(
∂x

∂t

)2
− V (x(t)) . (A.14)

We arrive to a very important conclusion: we can obtain the finite-temperature partition
function Z directly from the path integral Z of a given theory, by performing a Wick-
rotation to imaginary time, t → −iτ , and demanding that the functions are periodic. This
is true not only in quantum mechanics, but also quantum field theory.
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B Technicalities about QFT at finite temperature

B.1 Density matrices and thermal states

If the system we are describing is quantum, a particular state S will be described with
a density matrix ρS . We say that the state is pure when it is associated to a particular
element |ψ⟩ of the Hilbert space H, and thus can be written as

ρ|ψ⟩ = |ψ⟩⟨ψ| . (B.1)

Otherwise, we say that it is a mixed state, which we could decompose as

ρS =
∑
i

pi|i⟩⟨i| ≠ |ψ⟩⟨ψ| , ∀ψ ∈ H. (B.2)

Here |i⟩ is a basis of the Hilbert space and pi is the probability of |i⟩. Indeed, given a
density matrix ρS and an operator O, the expectation value of O is given by

⟨O⟩S =
∑
i

pi⟨i|O|i⟩ =
∑
j

∑
i

pi⟨i|O|j⟩⟨j|i⟩ =
∑
j

⟨j|
∑
i

pi|i⟩⟨i|O|j⟩ = Tr(ρSO) . (B.3)

In particular, the expectation value of the projection operator Pi = |i⟩⟨i| is pi.
Among all the mixed states that we could consider, there is one that is special, for

which the probability pi in Eq. (B.2) is chosen to coincide that of the Boltzmann factor in
Eq. (5.40). Indeed, this is the thermal state, which reads

ρβ = 1
Z
∑
i

e−βEi |i⟩⟨i| = 1
Z
e−βĤ . (B.4)

B.2 The KMS condition

Let us now consider the two point function ⟨ϕ(x1)ϕ(x2)⟩β of an operator ϕ. In equilibrium,
where there is time-translational invariance, it can only depend on t = t2 − t1. Then,

iGF
β(t; x⃗1, x⃗2) := ⟨ϕ(x1)ϕ(x2)⟩β = Tr[ρβT (ϕ(x1)ϕ(x2))] , (B.5)

with T (·) the time-ordered product. An observable O in the Heisenberg picture evolves as

O(t0 + t) = eiHtO(t0)e−iHt (B.6)

We have seen already that, at finite temperature, imaginary times will appear. Thus, we
consider t = −iτ . Now, we want to claim that GF

β is periodic in imaginary time. Taking
τ = τ2 − τ1 ≤ β, the time ordering leads to

T (ϕ (i(τ1 + β), x⃗1)ϕ(iτ2, x⃗2)) = ϕ (i(τ1 + β), x⃗1)ϕ(iτ2, x⃗2) (B.7)

and therefore

iGF
β(i(τ + β); x⃗1, x⃗2) = 1

Z
Tr
[
e−βHϕ (i(τ1 + β), x⃗1)ϕ(iτ2, x⃗2)

]
= 1

Z
Tr
[
ϕ (i(τ1 + β), x⃗1) e−βHϕ(iτ2, x⃗2)

]
= 1

Z
Tr
[
ϕ (iτ1, x⃗1) e−βHϕ(iτ2, x⃗2)

]
= 1

Z
Tr
[
e−βHϕ(iτ2, x⃗2)ϕ (iτ1, x⃗1)

]
= Tr[ρβT (ϕ(x1)ϕ(x2))] = iGF

β(iτ ; x⃗1, x⃗2) .

(B.8)
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This is the so calles Kubo–Martin–Schwinger (KMS) condition: correlation functions at
finite temperature T = 1/β are periodic in imaginary time with periodicity β.

61



References

[1] B. F. Schutz, A first course in general relativity. Cambridge Univ. Pr., Cambridge, UK, 1985.

[2] R. M. Wald, General Relativity. Chicago Univ. Pr., Chicago, USA, 1984,
10.7208/chicago/9780226870373.001.0001.

[3] G. M. Clemence, The relativity effect in planetary motions, Rev. Mod. Phys. 19 (1947) 361.

[4] R. S. Park, W. M. Folkner, A. S. Konopliv, J. G. Williams, D. E. Smith and M. T. Zuber,
Precession of mercury’s perihelion from ranging to the messenger spacecraft, The
Astronomical Journal 153 (2017) 121.

[5] J. Soldner, Über die ablenkung eines lichtstrahls von seiner geradlinigen bewegung durch die
attraktion eines weltkörpers, an welchem er nahe vorbeigeht, Annalen der Physik 370 (1921)
593 [https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19213701503].

[6] D. Kennefick, No Shadow of a Doubt: The 1919 Eclipse That Confirmed Einstein’s Theory of
Relativity. Princeton University Press, 2019, 10.2307/j.ctvc77fg5.

[7] J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions,
1807.04726.

[8] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, 1804.00491.

[9] J. Maldacena and A. Milekhin, Humanly traversable wormholes, Phys. Rev. D 103 (2021)
066007 [2008.06618].

[10] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge
University Press, 12, 2009, 10.1017/CBO9780511606601.

[11] LIGO Scientific, Virgo collaboration, Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [1602.03837].

[12] LIGO Scientific, Virgo collaboration, GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [1710.05832].

[13] LIGO Scientific et. al. collaboration, Multi-messenger Observations of a Binary Neutron
Star Merger, Astrophys. J. Lett. 848 (2017) L12 [1710.05833].

[14] A. Einstein, Über Gravitationswellen, Küniglich Preußische Akademie der Wissenschaften
(1918) 154–167.

[15] G. W. Gibbons and S. W. Hawking, Action Integrals and Partition Functions in Quantum
Gravity, Phys. Rev. D 15 (1977) 2752.

[16] R. Penrose and R. M. Floyd, Extraction of rotational energy from a black hole, Nature 229
(1971) 177.

[17] S. W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152.

[18] J. M. Bardeen, B. Carter and S. W. Hawking, The Four laws of black hole mechanics,
Commun. Math. Phys. 31 (1973) 161.

[19] J. D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737.

[20] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333.

[21] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199.

62

https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1103/RevModPhys.19.361
https://doi.org/10.3847/1538-3881/aa5be2
https://doi.org/10.3847/1538-3881/aa5be2
https://doi.org/https://doi.org/10.1002/andp.19213701503
https://doi.org/https://doi.org/10.1002/andp.19213701503
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19213701503
https://doi.org/10.2307/j.ctvc77fg5
https://arxiv.org/abs/1807.04726
https://arxiv.org/abs/1804.00491
https://doi.org/10.1103/PhysRevD.103.066007
https://doi.org/10.1103/PhysRevD.103.066007
https://arxiv.org/abs/2008.06618
https://doi.org/10.1017/CBO9780511606601
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://doi.org/10.3847/2041-8213/aa91c9
https://arxiv.org/abs/1710.05833
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1038/physci229177a0
https://doi.org/10.1038/physci229177a0
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF02757029
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020

	Introduction
	Differential geometry and conventions
	Lie derivative and Lie bracket
	Connections and covariant derivatives
	Killing vectors and geodesics
	Curvature
	Extrinsic curvature

	Spherically symmetric spaces
	Spherical symmetry considerations
	Birkhoff's theorem and the Schwarschild solution
	Relativistic Stars
	Trajectories in Schwarschild spacetime
	Mercury's perihelion
	Black holes
	Beyond spherical symmetry: the Kerr solution

	Gravitational waves
	Linear approximation and symmetry considerations
	Einstein's equations for linear perturbations 
	Gravitational waves: plane wave solution
	Effect of gravitational waves on test particles
	Gravitational waves generated by a periodic source
	Gravitational waves generated by a non-periodic source
	Final remarks

	Advanced topics
	An action for gravity
	Black hole thermodynamics

	Partition function for a quantum system
	Technicalities about QFT at finite temperature
	Density matrices and thermal states
	The KMS condition


