
1 The origins of holography

We think of string theory as a theory of quantum gravity. But it was not originally designed
to explain spacetime at its fundamental level, nor to be a theory of everything. All that came
later—let’s see how.

1.1 A glimpse into string theory
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Figure 1: Regge trajectories.

In 1959, Tullio Regge realized that the new
particles discovered in experiments probing
the strong interactions fell into straight lines
when their mass squared was plotted as a
function of their spin (see Fig. 1). Based
on this observation, Veneziano proposed that
hadron scattering in the strong interactions
could be described by the four-point ampli-
tude

A(s, t) = g2 Γ(−α(s)) Γ(−α(t))
Γ(−α(s) − α(t)) , (1.1)

with s, t, and u the Mandelstam variables of
the incoming particles, g the coupling con-
stant, and α(s) = α′s a linear Regge trajec-
tory. The amplitude Based on this observation, Veneziano proposed that hadron scattering in
the strong interactions was given by the four point amplitude (1.1) was designed to reproduce
Regge behavior, satisfy crossing symmetry (treating s, u, and t on equal footing), and produce
an infinite tower of resonances.

Remarkably, these ideas led to the development of string theory, because they suggested
that the hadrons could be viewed as vibrational states of a relativistic string. To understand
this statement, we would like to analyze a rotating relativistic string. But first—how does a
relativistic string move?

Recall that the motion of a point-like particle in a given (possibly curved) spacetime is
described by a trajectory Xµ(τ) that extremizes the length of its worldline. In other words, the
particle’s trajectory is determined by the action

Sparticle = −m
∫

dτ
√

−Gµν
dXµ

dτ
dXν

dτ . (1.1)

where m is the mass of the particle, Gµν(X) is the spacetime metric,

ds2 = Gµν dXµdXν . (1.2)

A string, on the other hand, extends over a two-dimensional surface in spacetime —its
worldsheet (see Fig. 2)— and it is natural to require that the motion of the string extremizes
the area of this surface. Typically, we parametrize the worldsheet by one timelike coordinate τ
and one spacelike coordinate σ (often denoting (σ1, σ2) = (τ, σ)). Hence, the action for a free
relativistic string is

SNG = −Ts

∫
dτdσ

√
− det

(
Gµν

∂Xµ

∂σα

∂Xν

∂σβ

)
, (1.3)
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Figure 2: (Left) Worldline of a point-like particle propagating in spacetime. (Right) Worldsheet
of closed and open string-like particles propagating in spacetime. In both pictures, the vertical
and horizontal axes represent the flow of time and the spacial directions respectively.

where Ts is the string tension. This is the Nambu–Goto (NG) action. The string can be closed
or open, depending on whether σ is periodic or not.

Consider now a rotating string in four-dimensional flat space. In this case the metric is just
Minkowski,

ds2
4 = GµνdXµdXν = −dt2 + dx2 + dy2 + dz2 . (1.4)

Because of the symmetries of the problem, a straight open string lying in the z = 0 plane is a
solution of the equations of motion. We can parameterize such a string as:

τ = t, σ = r, x = r cos(θ(τ)), y = r sin(θ(τ)), z = 0 , (1.5)

with σ ∈ (−l, l) so that the string’s total length is 2l. Substituting this ansatz into Eq. (1.3) we
get

SNG = −Ts

∫
dtdr

√
1 − r2θ′(t) . (1.6)

Because the action does not depend explicitly on θ(t), the associated conjugate momentum is
conserved. Taking θ(t) = ωt, the conserved quantity is the spin (angular momentum) of the
string:

J = ∂L
∂θ′(t) = Ts

∫ l

−l

ωr2
√

1 − r2ω2
dr = Ts

π

2ω2 (1.7)

where in the last step we have imposed that the endpoints of the string are massless, so that
l ω = 1 (the endpoints must move at the speed of light).

Moreover, the action does not depend explicitly on time, which means the energy is con-
served. We find

E = θ′(t) ∂L
∂θ′(t) − L = Ts

∫ l

−l

dr√
1 − r2ω2

= Tsπl = Ts
π

ω
, (1.8)

using l ω = 1 in the last equality. This result contains two important bits of information. On
the one hand, it gives us the interpretation of Ts as the energy per unit length of the string
(indeed, E = Ts × 2l). It also tells us that the energy of a relativistic string grows linearly with
its length (which is not the case for an ordinary classical string). In addition, Eq. (1.8) allows
us to find a relation between the energy and the spin of the string ,

J = E2

2πTs
≡ α′E2 . (1.9)
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This is nothing but the Regge behavior shown in Fig. (1). Note that the string tension is often
expressed in terms of the Regge slope α′:

Ts = 1
2πα′ . (1.10)

The tension Ts has thus dimensions of (energy)2, and for this reason it is also common to define
the string length scale ℓs via ℓ2s ≡ α′.

1.2 A quantum theory for relativistic strings

We have now seen why a theory of relativistic strings looked promising as a model for the
strong interactions. However, hadron scattering and resonance physics are inherently quantum
phenomena, so we need to take a step further and construct a quantum theory of relativistic
strings. This is how modern string theory was born.

Quantizing the action (1.3). is a complicated and lengthy task (and is part of the content
of the String Theory course). Here we will only summarize the main steps and state the results
that we will require later. Details can be found in Ref. [1].

The first observation is that Eq. (1.3) can be understood as a two-dimensional field theory
for D scalar fields Xµ(σ) defined on the string worldsheet. We will assume the string propagates
in flat spacetime, hence we set Gµν = ηµν . Unfortunately, the Nambu–Goto action is highly
non-linear due to the square root. A major insight is that the string action can be rewritten
in an equivalent form without the square root, at the expense of introducing an auxiliary field
gab(σ) (the worldsheet metric). The result is known as the Polyakov action

SP = −T

2

∫
d2σ

√
−g gab ∂aX

µ∂bX
ν ηµν , (1.11)

with g = det gab. This version of the string action eliminates the square root at the expense of
introducing an additional field gab, the wordlsheet metric, and is called the Polyakov action.

The Polyakov action has the following symmetries at the classical level:

• Target-space Poincaré invariance (a global symmetry on the worldsheet):

Xµ 7→ X̃ν = Λµ
νX

ν + cµ , (1.12)

with Λµ
ν a constant Lorentz transformation and cµ a constant translation in the target

spacetime.

• Worldsheet reparametrization invariance (a gauge symmetry on the worldsheet):
under a change of worldsheet coordinates σa → σ̃a(σ), the fields transform as

Xµ(σ) → X̃µ(σ̃) = Xµ(σ) , gαβ(σ) → g̃αβ(σ̃) = ∂σγ

∂σ̃α

∂σδ

∂σ̃β
gγδ(σ) . (1.13)

• Weyl invariance (another gauge symmetry on the worldsheet): a local rescaling of the
metric,

Xµ(σ) → X̃µ(σ) = Xµ(σ) , gαβ(σ) → g̃αβ(σ) = Ω(σ)2gαβ(σ) , (1.14)

which leaves the Polyakov action (1.11) invariant. This symmetry can be thought of as
a local change of scale on the worldsheet that preserves angles (i.e. a local conformal
symmetry).
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The crucial point is that these symmetries can also be realized at the quantum level. In
other words, Eq. (1.11) defines a two-dimensional conformal field theory (CFT) of D free scalar
fields. However, maintaining all these symmetries in the quantum theory imposes constraints
on the theory itself. Famously, requiring quantum Weyl invariance (vanishing of the conformal
anomaly) fixes the number of spacetime dimensions — which from the worldsheet point of view
is the number of Xµ fields — to be D = 26.

Once these consistency conditions are imposed, we can ask what the spectrum of the theory
looks like by analyzing the quantum vibrations of the string. It turns out that the various excita-
tions of the string give rise to a tower of particle states whose masses are inversely proportional
to the string length. The first of these states is unfortunately a tachyon (an excitation with
negative mass-squared), which signals an instability of the naive vacuum. The tachyon appears
in the spectrum of both open and closed bosonic strings.

If we ignore the tachyon, what other states does the string have? We find a whole zoo
of massless states, which fall into three irreducible representations — each associated with a
massless field in spacetime:

• A traceless symmetric tensor Gµν(X). This state is the most important of all, since it is
a massless spin-2 particle (a graviton). We therefore identify Gµν as the spacetime metric
(gravitational field).

• A traceless antisymmetric 2-form Bµν(X), often called the Kalb–Ramond field.

• A scalar (the trace part) Φ(X), called the dilaton. The asymptotic value of the dilaton
field is related to the string coupling constant introduced earlier: gs = eΦ(∞).

These three massless fields are common to all string theories. Apart from them, there is an
infinite tower of massive excited states whose masses are on the order of the string scale:

Mn ≃ nℓ−1
s , n ∈ Z+ . (1.15)

If the string length ℓs is sufficiently small, we do not expect to see these heavy states in a
low-energy experiment. Thus, at low energies we are left only with the massless fields listed
above.

One can eliminate the tachyon by introducing fermionic degrees of freedom on the world-
sheet and imposing supersymmetry. This leads to the superstring. In fact, after doing so we
are no longer left with a unique low-energy description, but rather several different ones —
each corresponding to a ten-dimensional supergravity theory. In these lectures we will focus on
Type IIB string theory, which is a theory of closed, oriented strings. In addition to the massless
fields introduced above, Type IIB has an extra scalar C0, a 2-form C2, and a 4-form C4, which
are gauge potentials The low-energy effective theory is a chiral N = 2, D = 10 supergravity.
The bosonic part of the Type IIB supergravity action is

SIIB = 1
2κ2

10

∫
d10X

[
√

−G
[
e−2ϕ

(
R+ 4∂µΦ∂µΦ − 1

12H
2
)

− 1
2

(
F 2

1 + 1
3!F

2
3 + 1

2
1
5!F

2
5

) ]

− 1
2C4 ∧H ∧ dC2

]
,

(1.16)
where H = dB, F1 = dC0, F3 = dC2 − C0H and F5 = dC4 −H ∧ C2.
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Figure 3: String amplitude as a genus expansion. Each manifold connecting the asymptotic states that
are scattered (top) becomes, through a conformal transformation, a compact two dimensional surface with
insertion of vertex operators —the gray “⊗” in the picture— that correspond to each state at infinity
(bottom). The corresponding values for the Euler characteristic χ = 2 − 2g is also indicated below each
surface, from which it is clear that we can identify the genus g with the number of “handles” of each
manifold.

1.3 String interactions

String interactions can be introduced by adding an extra term to the Polyakov action. In what
follows we work in Euclidean signature on the worldsheet. The additional term is also invariant
under worldsheet reparameterizations and Weyl transformations, and is given by

Sint = c

4π

∫
d2σ

√
gR ≡ cχ . (1.17)

This looks like an Einstein–Hilbert term on the worldsheet, and one might think it induces 2D
gravity on the worldsheet. But this is not the case, because Eq. (1.17) iis actually proportional
to the Euler characteristic of the worldsheet, which is a topological invariant (and thus does
not affect the equations of motion). More precisely, for a compact orientable surface the Euler
characteristic is an integer determined by its genus g,

χ = 2 − 2g , (1.18)

The scattering amplitude in string theory, obtained by integrating over all worldsheet met-
rics, thus becomes a sum over topologies. More explicitly, the n-particle scattering amplitude
obtained from the path integral is

A(n)(p1, · · · , pn) =
∫

DX Dg e−SP−Sint
n∏

i=1
Vi(pi)

=
∑

topologies
g−χ

s

∫
DX Dg e−SP

n∏
i=1

Vi(pi) ≡
∑

topologies
g−χ

s fχ(ℓs) .
(1.19)

This is illustrated in Fig. 3. Here Vi(pi) are vertex operators of the 2D CFT inserted on the
worldsheet to represent the external states, and fχ(ℓs) is some function that depends on the
topology (Euler characteristic) of the worldsheet as well as on the string length scale ℓs. In turn,
this function can itself be expanded in powers of ℓs (assuming ℓs is small compared to the other
relevant scales),

A(n)(p1, · · · , pn) =
∑

topologies
g−χ

s

∞∑
k=0

cχ,kℓ
k
s (1.20)

5



Using this formalism, one can study the scattering of string states. For example, it turns
out that the four-point tachyon scattering amplitude in open string theory coincides exactly
with the Veneziano amplitude (1.1). This result generated a lot of excitement. However,
further experiments revealed that the Veneziano amplitude failed to explain some of the new
observations, and string theory was set aside as a model for strong interactions at the same time
that Quantum Chromodynamics (QCD) gained prominence due to its success in explaining the
data.

1.4 The large-N limit of gauge theories

We mentioned in the previous section that string theory ceased to be considered a viable theory
of strong interactions after the success of QCD. Still, it is famously difficult to explain certain
infrared phenomena —such as the linear Regge trajectories— using QCD alone, due to its
property of asymptotic freedom.

Recall that the QCD Lagrangian consists of two parts: the Yang–Mills term and the
fermionic term,

LQCD = LYM + Lfermions = −1
4 F

a
µνF

a µν +
∑

f

ψ̄f (iγµDµ −mf )ψf . (1.21)

Here the sum runs over the different fermion species f , and the non-Abelian field strength is
given in terms of the gluon fields Aa

µ in the usual way:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + igYMf

abcAb
µA

c
ν , (1.22)

with gYM the Yang-Mills coupling.
In QCD the gauge group is SU(3), and there are 6 quark flavors. For reasons that will

become clear later, we generalize this theory by replacing the gauge group with SU(N). We will
also consider nf fermion flavors, although they will not play an important role in the discussion
that follows. The index a on the gluon field now runs over N2 − 1 values (the number of
generators of SU(N)), which is the number of degrees of freedom in the gluonic sector. The
quarks, on the other hand, transform in the fundamental representation of the color group, so
there are a total of nfN degrees of freedom in the fermionic sector. Importantly, we will be
interested in taking the limit N → ∞, in which case the gluonic degrees of freedom dominate.

At one loop, the Yang–Mills coupling gYM gets renormalized. Remarkably, it has the opposite
behavior than the electromagnetic coupling in QED: gYM decreases towards high energies (the
UV) and increases at low energies (the IR). This behavior is encapsulated by the beta function,
which encodes the running of the coupling with the energy scale µ:

βg2
YM

≡ dg2
YM

d logµ2 = µ2 dg2
YM

dµ2 = −β0g
4
YM , β0 = 11N − 2nf

48π2 . (1.23)

Notice that the term which makes the beta function negative (thereby giving asymptotic free-
dom) scales linearly with N in the large-N limit. The reason is that this term comes from the
one-loop contribution to the gluon self-energy shown in Fig. 4. That diagram has two vertices
and a single color index running in the loop, hence it scales as g2

YMN . If we want this quantity
to remain finite as N → ∞, we need to have gYM ∼ 1/N . In other words, we define the ’t Hooft
coupling

λ ≡ g2
YMN , (1.24)
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Figure 4: (Left) One-gluon-loop contribution to the gluon propagator. (Right) Same diagram in the
double line notation.

Figure 5: (Left) Quark loop contributing to the gluon propagator. (Right) Same diagram in the double
line notation.

Figure 6: Different scaling with N and λ of different vacuum diagrams.

and consider the limit N → ∞ with λ held fixed. Note that the beta function for this new
coupling is

βλ = µ

2
dλ
dµ ∝ −λ2, (1.25)

which no longer scales with N .
To make the most of this redefinition, it is useful to introduce the double-line notation for

Feynman diagrams, where each color index is drawn as a separate line. In this notation, gluons
are represented by two lines (see Fig. 4 (right)) while quarks are depicted by a single line (see
Fig. 5 (right)).
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Figure 7: Diagrams are sorted by topology.

Using the double-line notation, we can observe that Feynman diagrams organize themselves
in a double expansion in 1/N and λ. To understand this, consider vacuum diagrams made out
of gluon loops, as in Fig. 6. The scaling with λ is determined by the number of loops l: in fact, a
diagram with l loops scales as λ l−1. On the other hand, the scaling with N is determined by the
topology of the diagram: planar diagrams (those that can be drawn on a sphere with no gluon
lines crossing) scale as ∼ N2, whereas diagrams with handles (or other non-planar features) are
suppressed by powers of N .

More precisely, one can associate to every Feynman diagram a two-dimensional surface (a
Riemann surface), as shown in Fig. 7. The power of N associated to a given diagram is Nχ, where
χ is the Euler characteristic of the corresponding surface. Then, any gauge theory amplitude
can be expanded in the form

A =
∞∑

g=0
N2−2g

∞∑
n=0

cg,nλ
n . (1.26)

This result is remarkable: we recognize the structure of the string theory amplitude (1.19), if
we identify gs ∼ N−1. This suggests interpreting the large-N expansion of gauge theories as a
perturbative expansion in a dual string theory. Moreover, one expects the ’t Hooft coupling λ
to be related to the expansion in powers of ℓs on the string side.

For completeness, let us mention that adding nf quark flavors would correspond to inserting
nf boundaries on the Riemann surface; in general, for a surface with b boundaries the Euler
characteristic is χ = 2 − 2g − b, with b the number of boundaries. See Ref. [2] for further details.

1.5 Why would gravity be holographic

From the discussion above, we have uncovered a suggestive connection between theories con-
taining gravity (like string theory) and gauge theories (like large-N QCD), via the large-N
expansion and the genus expansion of string amplitudes. Independently of this development,
several arguments in black hole physics led to the conclusion that gravity itself should have a
holographic nature. Both lines of thought will converge in the next section, where we introduce
the AdS/CFT correspondence.

The work of Bekenstein and Hawking in the 1970s led to the realization that black holes are
thermodynamic objects, characterized by a temperature proportional to their surface gravity and
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an entropy proportional to the area of their event horizon. In particular, the Bekenstein–Hawking
entropy is given by

SBH ∼ A

ℓ2p
, (1.27)

where A is the horizon area and ℓp is the Planck length. This result is highly counter-intuitive,
as it suggests that the number of fundamental degrees of freedom associated with a region of
spacetime scales with its area, rather than its volume.

To see why this is surprising, consider a system of n independent quantum bits contained
within a spatial region of volume V . The number of distinct orthogonal states of this system is

N(V ) = 2n , (1.28)

and the corresponding entropy is

S = log N(V ) = n log 2 = V ℓp
−3 log 2 ∼ V , (1.29)

where we have assumed one bit per Planck volume. This naive counting suggests that entropy
should scale extensively with the volume.

The crucial observation is that many of these states would carry such a large energy density
that they would inevitably collapse into a black hole. In fact, one can argue that (at fixed
energy) a black hole maximizes the entropy that can be contained within a given region of
space[3–5]. If a hypothetical configuration had higher entropy than the corresponding black
hole, one could add matter to induce gravitational collapse into a black hole with lower entropy,
thereby violating the second law of thermodynamics.

A complementary argument, following Ref. [3], considers a gas of massless particles in a
volume V . On dimensional grounds, its energy and entropy would scale as

E ∼ V T 4 , S ∼ V T 3 . (1.30)

However, the energy cannot be arbitrarily large, since once it exceeds a critical value on the order
of the region’s size, gravitational collapse will occur. The maximum energy E∗ is determined by
the requirement that the Schwarzschild radius rs associated with this energy does not exceed
the size of the region. This condition is roughly

rs ∼ V 1/3 ∼ E∗ℓ
2
p . (1.31)

This implies an upper bound T∗ on the temperature,

T∗ ∼ V −1/6ℓ−1/2
p , (1.32)

and consequently an upper bound on the entropy,

S∗ ∼ V T 3
∗ ∼ V 1/2ℓ−3/2

p ∼
(
A

ℓ2p

)3/4

, (1.33)

up to dimensionless constants. For sufficiently large regions, this bound is parametrically smaller
than the entropy of a black hole occupying the same volume, which scales as SBH ∼ A/ℓ2p.

These considerations lead to a striking conclusion: the maximum entropy that can be stored
within any region of space scales with the area of its boundary, not with its volume. This suggests
that the fundamental degrees of freedom of quantum gravity inside a region can be captured by
a theory living on the boundary of that region, i.e. in one fewer spatial dimension. This idea is
known as the holographic principle.
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Recommended readings

• Sections 1 and 2 of Ref. [2].

• Section 4.2.1 from Ref. [2].

• Pages 2 and 3 from Ref. [4].
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