(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 13.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 752892, 16556] NotebookOptionsPosition[ 726378, 16136] NotebookOutlinePosition[ 726829, 16154] CellTagsIndexPosition[ 726786, 16151] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[TextData[{ "Please note that before starting you need to fix the Working precision \ (wpc). Normaly 40 is enough here\n\nSame for AccuracyGoal (", StyleBox["acc = 8", "Code"], " is enough) and PrecisionGoal (", StyleBox["prec = 8", "Code"], " is enough)." }], "Text", CellChangeTimes->{{3.9678625436239123`*^9, 3.967862579195866*^9}, { 3.9678646982326717`*^9, 3.9678647370745554`*^9}, {3.967951465541219*^9, 3.967951469826481*^9}, {3.9679673619697275`*^9, 3.967967382382856*^9}},ExpressionUUID->"e99dbb82-c588-4e16-9e80-\ 69f987e30657"], Cell[BoxData[{ RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"wpc", "=", "40"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"acc", "=", "8"}], ";", RowBox[{"prec", "=", "8"}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.967862581048873*^9, 3.967862588486355*^9}, { 3.9678646811725035`*^9, 3.9678646948476086`*^9}, {3.967967352496304*^9, 3.967967356213913*^9}, {3.9679696400906754`*^9, 3.967969640793538*^9}},ExpressionUUID->"50b07b87-a7f8-4c13-83fc-\ ae32391f9bec"], Cell["You may load our results (see section results).", "Text", CellChangeTimes->{{3.9678838146411448`*^9, 3.96788382899502*^9}},ExpressionUUID->"94450691-5e01-4c14-a868-\ 0f463c3d2bf5"], Cell[BoxData[ RowBox[{ RowBox[{"Get", "[", "\"\\"", "]"}], ";"}]], "Input", CellChangeTimes->{{3.96788382329322*^9, 3.96788382329322*^9}, { 3.9679514770440383`*^9, 3.967951477082966*^9}, {3.96796827686242*^9, 3.967968299936738*^9}}, EmphasizeSyntaxErrors-> True,ExpressionUUID->"4e08dff0-ec11-4586-baf4-b7b11d7c85e6"], Cell[CellGroupData[{ Cell["Understanding GPPZ background", "Section", CellChangeTimes->{{3.939873741355941*^9, 3.93987374437439*^9}, { 3.9398776459647846`*^9, 3.9398776471171045`*^9}, {3.9422258521120615`*^9, 3.94222586125733*^9}, {3.947168373723394*^9, 3.947168374654306*^9}, { 3.967875575362732*^9, 3.967875582143717*^9}},ExpressionUUID->"f9a58a06-eee8-47b0-bccb-\ fcab8aeb5bc7"], Cell["The Lagrangian we work with is:", "Text", CellChangeTimes->{{3.939352285519493*^9, 3.939352292499713*^9}},ExpressionUUID->"871d1392-d216-44bd-80bd-\ 064f8d5f56f6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[ScriptCapitalL]", "=", RowBox[{ RowBox[{ RowBox[{ FractionBox[ SuperscriptBox["\[Epsilon]", RowBox[{"10", "/", "3"}]], RowBox[{"16", " ", SqrtBox["6"]}]], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"\[Beta]", "[", "\[Tau]", "]"}], "+", SuperscriptBox[ RowBox[{ RowBox[{"R", "'"}], "[", "\[Tau]", "]"}], "2"]}], ")"}], RowBox[{"1", "/", "2"}]], SuperscriptBox[ RowBox[{"R", "[", "\[Tau]", "]"}], "2"], SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{ RowBox[{"-", "3"}], "/", "4"}]], SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"5", "/", "4"}]], RowBox[{"k", "[", "\[Tau]", "]"}], SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"]}], "/.", RowBox[{"\[Beta]", "->", " ", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]], "/", RowBox[{"(", RowBox[{"6", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"]}], ")"}]}]}]}], "]"}]}]}], "//", "Simplify"}]}]], "Input", InitializationCell->True, CellChangeTimes->{ 3.9473249696333303`*^9, {3.9679514831766853`*^9, 3.9679514833757153`*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"e530ac45-4b6b-45f9-a9b0-81ed9d026544"], Cell[BoxData[ RowBox[{ FractionBox["1", "96"], " ", SuperscriptBox["\[Epsilon]", RowBox[{"10", "/", "3"}]], " ", SqrtBox[ RowBox[{"h", "[", "\[Tau]", "]"}]], " ", RowBox[{"k", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"R", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SqrtBox[ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]], " ", RowBox[{"h", "[", "\[Tau]", "]"}]}], SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"]], "+", RowBox[{"6", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], "2"]}]}]]}]], "Output", CellChangeTimes->{ 3.939352293832711*^9, 3.9393525096396713`*^9, 3.939454191826349*^9, 3.9397159381255198`*^9, 3.9397231614687805`*^9, 3.9404082498849154`*^9, 3.940561031410386*^9, 3.940569333121202*^9, 3.9406550855694017`*^9, { 3.9406688088701344`*^9, 3.9406688130129147`*^9}, 3.940928615623859*^9, 3.940928681252053*^9, 3.940928794048654*^9, 3.9473103259827647`*^9, { 3.9473249701886616`*^9, 3.947324987138111*^9}, 3.9513886270839787`*^9, 3.952488201404171*^9, 3.9524886563038883`*^9, 3.9524887570720673`*^9, 3.9525013593408566`*^9, 3.9525023497956243`*^9, 3.9536059084737062`*^9, 3.953607943448057*^9, {3.9555208838793807`*^9, 3.955520904831114*^9}, { 3.967951480033408*^9, 3.9679514840975494`*^9}, 3.9679670258369665`*^9}, CellLabel->"Out[4]=",ExpressionUUID->"17fd753b-c7cb-4d63-bed5-d9d191f0b7b7"] }, Open ]], Cell["\<\ This is a consistency check, using the determinant of the 10 D action\ \>", "Text", CellChangeTimes->{{3.939352311702471*^9, 3.939352326001141*^9}, { 3.9397231700095415`*^9, 3.939723176026829*^9}, {3.96795149250983*^9, 3.967951494727594*^9}},ExpressionUUID->"8e5aa5c3-ea2e-4333-89cc-\ b724ee21972a"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"-", FractionBox["1", "2"]}]], SuperscriptBox[ RowBox[{ RowBox[{"R", "'"}], "[", "\[Tau]", "]"}], "2"]}], " ", "+", " ", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"1", "/", "2"}]], " ", SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]]}], RowBox[{"6", " ", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"]}]]}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"-", FractionBox["1", "2"]}]], SuperscriptBox[ RowBox[{"R", "[", "\[Tau]", "]"}], "2"]}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"-", FractionBox["1", "2"]}]], SuperscriptBox[ RowBox[{"R", "[", "\[Tau]", "]"}], "2"]}], ")"}], FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"1", "/", "2"}]], " ", SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]]}], RowBox[{"6", " ", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"]}]], SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"1", "/", "2"}]], SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]], RowBox[{"k", "[", "\[Tau]", "]"}]}], ")"}], "4"], SuperscriptBox[ RowBox[{"Cosh", "[", FractionBox["\[Tau]", "2"], "]"}], "4"], SuperscriptBox[ RowBox[{"Sinh", "[", FractionBox["\[Tau]", "2"], "]"}], "4"]}], "//", "FullSimplify"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ RowBox[{"R", "[", "\[Tau]", "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"k", "[", "\[Tau]", "]"}], ">", "0"}], "&&", RowBox[{ RowBox[{"h", "[", "\[Tau]", "]"}], ">", "0"}], "&&", RowBox[{"\[Epsilon]", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalL]", "-", SqrtBox["%"]}], "//", "FullSimplify"}], "//", "Together"}], "//", "Simplify"}]}], "]"}]}], "Input", CellChangeTimes->{3.9473249913707457`*^9}, CellLabel->"In[5]:=",ExpressionUUID->"29b8eb17-8fe0-4ff1-9a07-48482ac8b610"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"20", "/", "3"}]], " ", RowBox[{"h", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"R", "[", "\[Tau]", "]"}], "4"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "4"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]], " ", RowBox[{"h", "[", "\[Tau]", "]"}]}], "+", RowBox[{"6", " ", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], "2"]}]}], ")"}]}], "9216"]], "Output", CellChangeTimes->{{3.939352305258561*^9, 3.939352326991233*^9}, 3.939352509741499*^9, 3.939454193425619*^9, 3.939715940311909*^9, { 3.939723163952015*^9, 3.939723176953292*^9}, 3.940408251300542*^9, 3.94056103252899*^9, 3.9405693333591413`*^9, 3.940655085716942*^9, 3.9406688144517593`*^9, 3.9409286814603624`*^9, 3.940928794212304*^9, 3.947310328057658*^9, {3.947324989570995*^9, 3.9473249919100013`*^9}, 3.952488201597601*^9, {3.9524882528225985`*^9, 3.9524882568494816`*^9}, 3.952488639350941*^9, 3.952501359372354*^9, 3.9536059087229404`*^9, 3.9536065429045286`*^9, 3.953607944099717*^9, 3.955521311706506*^9, 3.9679514971146502`*^9, 3.967967025943158*^9}, CellLabel->"Out[5]=",ExpressionUUID->"7fc318cc-3cff-4585-a66d-c4f183a54105"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.939352305258561*^9, 3.939352326991233*^9}, 3.939352509741499*^9, 3.939454193425619*^9, 3.939715940311909*^9, { 3.939723163952015*^9, 3.939723176953292*^9}, 3.940408251300542*^9, 3.94056103252899*^9, 3.9405693333591413`*^9, 3.940655085716942*^9, 3.9406688144517593`*^9, 3.9409286814603624`*^9, 3.940928794212304*^9, 3.947310328057658*^9, {3.947324989570995*^9, 3.9473249919100013`*^9}, 3.952488201597601*^9, {3.9524882528225985`*^9, 3.9524882568494816`*^9}, 3.952488639350941*^9, 3.952501359372354*^9, 3.9536059087229404`*^9, 3.9536065429045286`*^9, 3.953607944099717*^9, 3.955521311706506*^9, 3.9679514971146502`*^9, 3.9679670261652746`*^9}, CellLabel->"Out[6]=",ExpressionUUID->"06c40906-deb6-4aef-9ff7-74872774840a"] }, Open ]], Cell["Now, K is", "Text", CellChangeTimes->{{3.9393523349010553`*^9, 3.939352338911964*^9}},ExpressionUUID->"4ac843f4-fbe0-4b4f-ad24-\ c978b6b9c9e8"], Cell[BoxData[ RowBox[{ RowBox[{"rulek", "=", RowBox[{"{", RowBox[{"k", "->", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"Sinh", "[", RowBox[{"2", "\[Tau]"}], "]"}], "-", RowBox[{"2", "\[Tau]"}]}], ")"}], RowBox[{"1", "/", "3"}]], RowBox[{ SuperscriptBox["2", RowBox[{"1", "/", "3"}]], RowBox[{"Sinh", "[", "\[Tau]", "]"}]}]]}], "]"}]}], "}"}]}], ";"}]], "Input", InitializationCell->True, CellLabel->"In[7]:=",ExpressionUUID->"77e160a1-26ab-4722-9114-4d61a1785665"], Cell["And the warp factor can be computed as follows", "Text", CellChangeTimes->{{3.939352402168354*^9, 3.9393524084623737`*^9}, { 3.9679515612305107`*^9, 3.967951562348446*^9}},ExpressionUUID->"d0a37084-3973-44d3-8125-\ c3557db45cbd"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"hprime", "[", "\[Tau]s_", "]"}], "=", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"\[Tau]s", " ", RowBox[{"Coth", "[", "\[Tau]s", "]"}]}], "-", "1"}], RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], "2"], " "}]]}], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}], "-", RowBox[{"2", " ", "\[Tau]s"}]}], ")"}], RowBox[{"1", "/", "3"}]]}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9405610611238422`*^9, 3.940561100834091*^9}, 3.967951551752493*^9}, CellLabel->"In[8]:=",ExpressionUUID->"fd873106-efed-4930-90a6-4d1eb2ba9a7c"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"integral", "[", "\[Tau]_", "]"}], ":=", RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{"hprime", "[", "\[Tau]s", "]"}], ",", RowBox[{"{", RowBox[{"\[Tau]s", ",", "cutoff", ",", "\[Tau]"}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "wpcback"}]}], "]"}]}], ";"}]], "Input", InitializationCell->True, CellLabel->"In[9]:=",ExpressionUUID->"667dc60d-c0b4-4ccf-aa3c-9a0ae7304d07"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"hprime", "[", "\[Tau]", "]"}], "//", "TrigToExp"}], "//", "Simplify"}], ")"}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"num_", " ", "\[Tau]"}]], "->", SuperscriptBox["e\[Tau]", "num"]}], "}"}]}], "//", "Simplify"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Series", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"e\[Tau]", ",", "\[Infinity]", ",", "15"}], "}"}]}], "]"}], "//", "Normal"}], "//", "Simplify"}], ")"}], "/.", RowBox[{"e\[Tau]", "->", RowBox[{"Exp", "[", "\[Tau]", "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"hUV", "[", "\[Tau]_", "]"}], "=", RowBox[{"Integrate", "[", RowBox[{"%", ",", "\[Tau]"}], "]"}]}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9409287823919954`*^9, 3.940928785536834*^9}, { 3.940928817830971*^9, 3.9409289052618313`*^9}, {3.9679515585466433`*^9, 3.967951566542754*^9}}, CellLabel->"In[10]:=",ExpressionUUID->"060f8f8a-885d-4d96-bec5-acc608cff0dc"], Cell[BoxData[ RowBox[{"computeWarpFactor", ":=", RowBox[{"solh", "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[ScriptH]", "'"}], "[", "\[Tau]", "]"}], "==", RowBox[{"hprime", "[", "\[Tau]", "]"}]}], ",", RowBox[{ RowBox[{"\[ScriptH]", "[", "cutoff", "]"}], "==", RowBox[{"hUV", "[", "cutoff", "]"}]}]}], "}"}], ",", "\[ScriptH]", ",", RowBox[{"{", RowBox[{"\[Tau]", ",", "cutoff", ",", "cutoffIR"}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "wpcback"}], ",", RowBox[{"Method", "->", " ", "\"\\""}], ",", RowBox[{"MaxSteps", "->", "maxsteps"}]}], "]"}], "//", "Flatten"}]}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409286269825354`*^9, 3.9409286651036615`*^9}, { 3.9409286962430267`*^9, 3.9409287167851887`*^9}, {3.9409289155849752`*^9, 3.94092896318171*^9}, {3.9409293923269997`*^9, 3.9409293924383507`*^9}, { 3.940929514116788*^9, 3.94092952993869*^9}, {3.9409298036240997`*^9, 3.940929841293848*^9}}, CellLabel->"In[13]:=",ExpressionUUID->"0dc76d9a-0ac6-41eb-9b79-3d331cff2c7d"], Cell["We can factor out the cahrges in the following way:", "Text", CellChangeTimes->{{3.9679516081229105`*^9, 3.967951620622733*^9}},ExpressionUUID->"a6d58908-5ac4-4f52-bc67-\ 5446eec6e150"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[ScriptCapitalL]dimless", "=", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"M0", ">", "0"}], "&&", RowBox[{"\[Epsilon]", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["M0", RowBox[{"-", "4"}]], "\[ScriptCapitalL]"}], "/.", "rulek"}], "/.", RowBox[{"R", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"M0", " ", SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "2"}], "/", "3"}]], " ", RowBox[{"R", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", RowBox[{"h", "->", RowBox[{"(", " ", RowBox[{ RowBox[{ SuperscriptBox["M0", "2"], " ", SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "8"}], "/", "3"}]], RowBox[{"\[ScriptH]", "[", "#", "]"}]}], "&"}], ")"}]}]}], "//", "Simplify"}]}], "]"}]}]], "Input", InitializationCell->True, CellChangeTimes->{3.9473255589640193`*^9}, CellLabel->"In[14]:=",ExpressionUUID->"7d49494f-c4f1-4f6e-bb29-98c8921ec59f"], Cell[BoxData[ RowBox[{ FractionBox["1", "96"], " ", SuperscriptBox[ RowBox[{"R", "[", "\[Tau]", "]"}], "2"], " ", RowBox[{"Sinh", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "\[Tau]"}], "+", RowBox[{ RowBox[{"Cosh", "[", "\[Tau]", "]"}], " ", RowBox[{"Sinh", "[", "\[Tau]", "]"}]}]}], ")"}], RowBox[{"1", "/", "3"}]], " ", SqrtBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]], " ", SqrtBox[ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "\[Tau]"}], "+", RowBox[{ RowBox[{"Cosh", "[", "\[Tau]", "]"}], " ", RowBox[{"Sinh", "[", "\[Tau]", "]"}]}]}], ")"}], RowBox[{"2", "/", "3"}]]], "+", RowBox[{"6", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], "2"]}]}]]}]], "Output", CellChangeTimes->{ 3.9409290717185616`*^9, 3.9473103346533456`*^9, 3.947324999793594*^9, { 3.9473255505699577`*^9, 3.9473255596285763`*^9}, 3.9513886306667233`*^9, { 3.9525013629563875`*^9, 3.952501383555151*^9}, 3.95250178380521*^9, 3.9525020210258684`*^9, {3.9525022237502594`*^9, 3.9525022282772236`*^9}, 3.9525023498651114`*^9, 3.9536059483305626`*^9, 3.9536066273005943`*^9, 3.953607160538196*^9, {3.953607197329957*^9, 3.9536072084750967`*^9}, 3.9536079510093126`*^9, 3.9555208877826805`*^9, 3.967951569279138*^9, 3.967951622633803*^9, 3.9679670297754126`*^9}, CellLabel->"Out[14]=",ExpressionUUID->"92013171-86e3-4279-b078-d88eba23f47f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"M0", ">", "0"}], "&&", RowBox[{"\[Epsilon]", ">", "0"}], "&&", RowBox[{"\[CapitalLambda]kk", ">", "0"}], "&&", RowBox[{"gs", ">", "0"}], "&&", RowBox[{"ls", ">", "0"}], "&&", RowBox[{"M", ">", "0"}]}], ",", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox["\[ScriptCapitalL]", SuperscriptBox["M0", "4"]], "/.", "\[VeryThinSpace]", "rulek"}], "/.", "\[VeryThinSpace]", RowBox[{"R", "\[Rule]", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{"R", "[", "#1", "]"}], " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}], "\[CapitalLambda]kk"], "&"}], ")"}]}]}], "/.", "\[VeryThinSpace]", RowBox[{"h", "\[Rule]", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "4"}], "/", "3"}]], " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", RowBox[{"\[ScriptH]", "[", "#1", "]"}]}], SuperscriptBox["\[CapitalLambda]kk", "2"]], "&"}], ")"}]}]}], "/.", "\[VeryThinSpace]", RowBox[{"M0", "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "/.", "\[VeryThinSpace]", RowBox[{"\[CapitalLambda]kk", "\[Rule]", FractionBox[ SuperscriptBox["\[Epsilon]", RowBox[{"2", "/", "3"}]], RowBox[{"gs", " ", SuperscriptBox["ls", "2"], " ", "M"}]]}]}], "]"}]}], "]"}], ";"}], "\n", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"M0", ">", "0"}], "&&", RowBox[{"\[Epsilon]", ">", "0"}], "&&", RowBox[{"\[CapitalLambda]kk", ">", "0"}], "&&", RowBox[{"gs", ">", "0"}], "&&", RowBox[{"ls", ">", "0"}], "&&", RowBox[{"M", ">", "0"}], "&&", RowBox[{"\[Tau]", ">", "0"}]}], ",", RowBox[{"FullSimplify", "[", RowBox[{"Simplify", "[", RowBox[{ SuperscriptBox["\[ScriptCapitalL]dimless", "2"], "-", SuperscriptBox["%", "2"]}], "]"}], "]"}]}], "]"}]}], "Input", CellChangeTimes->{{3.953607019680008*^9, 3.953607116007278*^9}, { 3.9536071470586157`*^9, 3.953607169368936*^9}, {3.953607228842882*^9, 3.9536073476975217`*^9}, {3.9679516354165125`*^9, 3.9679516391181636`*^9}}, CellLabel->"In[15]:=",ExpressionUUID->"e76015d9-a436-4348-8575-8f0003bd55c2"], Cell[BoxData["0"], "Output", CellChangeTimes->{ 3.953607010138898*^9, {3.9536070469535685`*^9, 3.9536071168140926`*^9}, { 3.9536071480892663`*^9, 3.9536071769106307`*^9}, {3.9536072091912723`*^9, 3.9536073479547973`*^9}, 3.953607391052765*^9, 3.9536079522194815`*^9, { 3.967951627194273*^9, 3.9679516423541603`*^9}, 3.9679670306822395`*^9}, CellLabel->"Out[16]=",ExpressionUUID->"1c465249-2d9d-41ed-bacb-52b881f9c9a9"] }, Open ]], Cell[TextData[{ "Now what the code computes is the integral of ", Cell[BoxData[ FormBox[ StyleBox["\[ScriptCapitalL]dimless", FontWeight->"Bold"], TraditionalForm]],ExpressionUUID-> "6dc5e6a5-d384-484f-9ab1-c821980b34a6"], ". Then the final result is \n\n", Cell[BoxData[ FormBox[ RowBox[{"S", "=", " ", RowBox[{ FractionBox[ SuperscriptBox[ SubscriptBox["M", "0"], "4"], RowBox[{"4", "G10"}]], RowBox[{"\[Integral]", RowBox[{ SubscriptBox["\[CapitalOmega]", "2"], RowBox[{"\[Integral]", RowBox[{ SubscriptBox["g", "i"], " ", RowBox[{"\[Integral]", "\[ScriptCapitalL]dimless"}]}]}]}]}]}]}], TraditionalForm]],ExpressionUUID->"7875a5f7-107f-453f-9642-a76ac19bda47"], " and ", Cell[BoxData[ RowBox[{"\[Integral]", SubscriptBox["g", "i"]}]],ExpressionUUID-> "b46b8bad-cce5-4248-afe2-bedd72745f03"], " = 64 ", Cell[BoxData[ FormBox[ SuperscriptBox["\[Pi]", "3"], TraditionalForm]],ExpressionUUID-> "87664522-5ae4-4d48-a43a-985d3b1dfe1c"], " and ", Cell[BoxData[ RowBox[{"\[Integral]", SubscriptBox["\[CapitalOmega]", "2"]}]],ExpressionUUID-> "36a6a888-aeba-4e0d-9b70-48a450740e0d"], "=4\[Pi] \n\nRecall that the volume of the ", Cell[BoxData[ FormBox[ SuperscriptBox["T", RowBox[{"1", ",", "1"}]], TraditionalForm]],ExpressionUUID-> "fb368f02-533d-4e72-9571-0ce34c16d038"], " part is:" }], "Text", CellChangeTimes->{{3.9536074165831566`*^9, 3.9536075700349903`*^9}, { 3.9679516664530582`*^9, 3.9679516723651843`*^9}, {3.9679517045087643`*^9, 3.9679517280946207`*^9}},ExpressionUUID->"2e8ed14e-eb66-48f4-b845-\ 3369b5aabc5f"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnPk/VG0fx3ue55fnx+c/CLMiRSlKiMoS0p1b1hbubCU01koyWcY+kjBk X1pEdkaRu8g+olKh2zqvCi8zbkszrznn5TnDYCwzc5gZ6e58XievGebMeV/X nM91fb/X9Z1k7d1PO/57x44dnv+Ffpy289UhEOyumf0PemLu5uni5OZw0dDN y8HJgaBu/x/olzjon8q/duzgPp5DhAgRIkSIECFChAgRIkSIECFChAgRIkSI ECH6yQVM9DZXl5SU13WNzG70XFZfSbDLJT9iaMgNX9Kj9zPS4EOE6BcSQK8k hyaWtQ+Mfv1Q4m+sffZO8yT8s2eaSHoa7iVj4NxsY4ieEtY0/hMgPVZEiP75 AnriTfCHvKhT3CfgcPIZPO78A8hhsASOZJ1TVvWsnoYes9rIZ44aeBXTYZ6L CNFPKIDZ++IhJSqUFJHwuGFIWEwJDJcSwyrgWolfsx+KElJrhufnNk539An8 XkI1zOgV/JJtjZe3zhpFXIjoFxCr5+lNM4NzpJIuOnN8qLM6wdMrtZu9/mtB eqGLOub35EGxgkZwrOaGrrpd5icOzBNmKtyVUOreNSxxriqmgKE8B+NrVRM/ flTYPiQQSo6DqQ91G6BsHxJxBfQ/vqShdbWEzvMYqynsmDxOJ7htPU+C38r8 jiiiUZu3JPi1ISf6lrOehnnoi6+w3wPouXsKhTaI6IRrYSmI3R5moKS03yKl /0ensNuHZI5NCz+utGevxf0fjrJ9SMQU8DnTZo+K3cOvS2MLuzPJ5qgxoZC+ tmXgWHXY7YTbJ3FiWJIn1kDhZW1t+8wP8KY91nMvNRm0RfLwjxsCmZXu2jaU MpL+8dDWHzlXbyeSOWaFh64lpTzEwCD4R3fKtiERUzP1/tpySpeL4Cx8ghM1 kSEFQ73xpyRgScj6HWH6qF0XskZguAz8mmGF34l1zJ/a0CXAqeGuhrrX3aPi f0bAYNpZTfcKBmcwzebIlVLGBk/fPiQQykhnQ12DZFAyrLWulnNRzh6+Urbx TvkHkogrVo2XKhplnjIEw1/Ml+TAR4MA8FmQJQHWFJMxsVYM5jSLazt2W7Sp qs6tWt52IjiSao1G6RKbBSSt/GK33tbByuzzrobdZeBoC8Xd1p6YXd1Q9yiK mFSUTTC/lPEJ7ulrAGgkgxMh7dzLMysImpZpA7BHpO1DAkU5zZSrVn8EZVa/ fvE4+lZScaanhVMG7Hx+DUp72An90AWUSnctm/sb6JR/Kom44nREHEOhlFzL x7tL4qPJMeTYqKAb/gm1g2vv/MlGcmDeZ4Ab6a5jycmuzKsmymjUTpl1D5xB 1DsOZEmSia7Lw8XWTj330UAd9KuBM0HPlDgpouR0Qlph2HeOm/HW3DRUPx3b Oc1r57sYYwUZrE06HdbpawXd/FrW6bwms2ih+oYLpviJSCCU5wFGqmZxbxZR 3pJNsbLylumb3Urixs+2qYso7SRDvVC4nfLPI2H31WQkJd1LSIRxJKWUvhN0 18+WuynJYA64Rsbdq/0G8iCrvI+qnc/oXtGk6ZY4YmbvvJfWWhIYeOBy6lxw HrWxndaU6nE1tZnWQaM9J7ndKmqHHnR0dPZ+m383cLwxJYgUn1tZT6PVpLob 6tjFNTHgtB3oT/oNjUKZxvfAGfyA4ceOamj9yI7lJkw8tN+FMiS/29zYB4WK 1jpu5Yzl56m23NDxJyKZA4bynVUxhuH8KI8u4tHG0e83jbLi0sBguhU3dPxF SSBLpidKwJKMB3YYGTT+IKGQb7sPHM6wxO36LWF57p6lJQakfuRNUKstCfRn +3g/WRyhXpOu5c2be7ry+vWy6XWuyRnvba2tor6gfR6HHYWyGm5pyKEwZ/PG Ybx4+lXAYZT86US+hTfWC281nPr1V3wXBJndrW/hrZezaGH6+qQ2flpGhZuW bZqodFo0CWeir+VZSWltS+84nJtg0yRz0/X+mliMGYUfpcbnEOrgjZe8d9tg oSM0QRusmqAZ5e46VqI7RSTJojh/UYtbRA/Z0iIBRt609Ews3PXA5GBbW99W FHDOFDhjZVAY25xv/A2HErcjWDldEm8XhNWVFJDydqnFqy3JGen5vGh5VgPx ysJMxm6PcIzogBdmitZUgTNeBr3bg/pd9Gtnnnmpy6BN7/BlA5zOqONoZaf5 NSxwvKMoLSEm7Iq+otaNejiDArPCQ8cqddXny2oLNdQPowltoAgSYKT6DjEq pejP17UPgyyP6rtmda43hEmCBELxUZXFGa1A6YrQwyk5FzPnNlPoyE1jl+Ln JZR2kp5BeLuIThFKsix2d8KZ3SfviqyZlBrJbKGjwk45+V37Dqnu2a1idLN8 eCs2V75TvVRk0SqE6hW3OreuBrcTY5vJNSrr/f3AxDd8t67g5Z252T/9rUkt 3H4Av2XZW1LEXpRdvORAojlKBqsbIryPF+DfRxniZDUCGpaRuetIGKx16sIG CmtscHD8+9QTe7wmHEsKioKAgTRLbc8K5nrnwCKZrPB1iKb9zfvDaKGjivyJ mLdC5srNk0AZbLQRSk7TfwVKugVW3iKVu9694UJHKF5eET8vo9y30vWoFNYp wkmW9P1dhr/lcayJKEtKkWS2iOgek558j5JdWNs9JjKIAWYmvn2hw9GXr2NT At8O+iyM0SgFl9IVoQrnI9kYtxNtzrXUZLGroc1V32s+S4eP2ylVjOwB8yvQ 4+v3akaXz2NWeOp5Vs/P7uwmop5FiqQ2EdltIcfkZPCWaTCSblbjzcMYtE0O XyT+d5GLMsoguou/G+BaUshaAaPMTccmQ/BatXAS4NMdExzGOosXnwBDlN9x 6KWnkiWB8okAbVnMWf5qxMniy0roE5ELnbLBQkcoftZbFT8vo3ho2mYK6RQR JAua7bwf/qA9205elCWlSTJbHBUrIvjg03RdhOVJUyNjGIeJqdm14i+CPmhW na8aBm2dveJO4HSGH8fJ7HbjpoLgzMQq6w+WehzAoEzJ7SOQ38eX7Q7Scy8c /OPxQrY3W+q6Vy9cUqU2rGdeB2Rk97pVwogzgf7E03icw9OlGBCkFzjuwx3w q1sRCcC0JDdTs1kdKi5htZH0DCMFRuciSEDmp6aWgcU/sjtIx3B7PZ8JNII4 JFwUczTeuZAPJd9xP0rt+ovVHQCn0JGbqVkKRgnWNw4X1ikiSabbkiMf9XMY eSItKVUSyJLkl53U7GQKJbOoeXjLdixZ9f7aqzPrqXLXPRhll+LxdY3MenVN HbM2cOV0xxkpnqHw9oNmnjjI73Iq3sA3r4RpKv+iwk6UQRis3BQYzDqvfJQ3 cgKjDbEXtHGyexwLV8YwsCwJDKTaCFvPBAZSLHUJVEGthEcyL+ZzPw0ls7gu QTxikkAo2bYqesE8lLH6WHsNPHqX41M+FLiFjsBAuqWw9UwoZLTR8qQKChlF kkw1UyLmVwtFWlLKJLNFPjY3C95NAHPsoVKvUzYxTRK6nUUJGMy7sO+we/lS 6gAM5drv2W2VJKjsfPYZYR8aZXx35Tg6Vet3GGN85wPvlywqYb+cml/Nhr+k vC7iEMUctxN7Du63QMDR1wnel/3CI0jBQeRHVXeg9M1ydRANx5Js0bt+jFJ3 zXPZAgN0OCTcrZLiK0eNfStGBN594pNA2X1jkqfrdVJE2O2g2IfUu1DSZH5/ nZeLKnRki971Y5Rd0bqQObwpksnX8ZHFCxG0KEtKmQS6AGvJApy3UUZ4k7gP W1RAAI7WRZrrmvmmVTe11BXEE0yOnYuuXye5B+nlIZecL5jp7pZXxCmo61s7 ObkntyxQz1a5KSv+lrC0bQh+ybFTxJon9kligQcKpPVwsmrX1kRZcDT5FErf 9CLfrOpMWJbsrch/LTi5W2Drf/akXmBeAIMEHG8I/8M5rnH9kEQ6JHPMIihp Mghf3Sm8iwktdGT3VBY0iBgbIZSCV182QcJ4SQ7J+zC+UPQ1kGqLPxHdNsaY ZG09CZRX9LTQlreDJvLsMNizW/nVQIDR11D+gJKU+bSui76Z7RfWl56+Uf55 FZykj0xKpgHzCS/qVMJm/D1Nvaq6JpGcg7+8IzmtRwIyW+95B+b3LsRO/fk5 sEqZxEepIhzgS5rEKHSULAlAr8+lLO6nJwSdPYQ6aBd8L/lJO6x6EkmSzHE+ xpqilNzKeZ4Ev6bbYBSc8oUta/9Kmi5ylEcruZaLHiqm32R62Tkm0BadBo48 clJRMI3uWGO9qXw7/OEVtQOSFRySKdo9p4vE3KoqKhU6yh4SXUIbpQA03ZHl c94xqX0Z5fHFvUpGMUs7W2IUOkqYhF/c0kOscdxHqcSKokkmqUTPnMHFi09W eBzcf7lERKDyy4i7a4bGGcWKrgRmNwdpo/cYkxeWgVhD1Nsm6obehX+tGO4n W3OjIoI9LdQVlXUuBISGxxV/lDyzaBKQXuCsLruiElg6/2cCu4V4BKdowlvP h1ACT2roeT/9zNcpmy50lDgJj4fZkh1+29lov/w+00vEyJzWv38ACUB/djc4 Jre27U1Laayr1SVKk9Dc4pfS9xpfVfTxEDhbRJyRFymRoRHR0eQ70WHEwJgH DcMSWWDauLYPyRxnuO5+OCkqMiaWHBN+i0jOXR9lM4WO0iHZAsHtE0Z/ey21 rq1Pal3ys4hNizU7rOn4YL74kE0j6cubxG2yJBkRIkTii/Wn30GFAw5cS4Kj VQQdg8CGjX11GREiRBIVONGcftMvMDgogHDJM5I6uAVrf4gQIUKECBEiRIgQ IUKECBEiRIgQIUKECBEiRFLQ/wFWH/lx "], {{0, 29.24634420697413}, {228.72140982377203`, 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{96.012, 96.012}, SmoothingQuality->"High"], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{228.72140982377203`, 29.24634420697413}, PlotRange->{{0, 228.72140982377203`}, {0, 29.24634420697413}}]], "Text", CellChangeTimes->{ 3.9525013766026726`*^9, {3.9679515099092665`*^9, 3.967951515153722*^9}}, CellLabel->"In[63]:=",ExpressionUUID->"92f5b118-c2ab-42b5-913a-4ee7d95d67be"], Cell["So to the final result we have to multiply by", "Text", CellChangeTimes->{{3.9536074165831566`*^9, 3.9536075700349903`*^9}, { 3.9679516664530582`*^9, 3.9679516723651843`*^9}, {3.9679517045087643`*^9, 3.9679517214352517`*^9}},ExpressionUUID->"79986201-4eca-4549-87bf-\ 24be6bb74d6f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ SuperscriptBox["M0", "4"], RowBox[{"4", " ", "G10"}]], RowBox[{"(", RowBox[{"4", "\[Pi]"}], " ", ")"}], RowBox[{"(", RowBox[{"64", SuperscriptBox["\[Pi]", "3"]}], ")"}]}], "/.", RowBox[{"G10", " ", "->", RowBox[{"8", SuperscriptBox["\[Pi]", "6"], SuperscriptBox["ls", "8"], SuperscriptBox["gs", "2"]}]}]}], "/.", RowBox[{"M0", "->", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{"factor", " ", "=", " ", RowBox[{"%", "/", RowBox[{"(", RowBox[{ SuperscriptBox["gs", "2"], SuperscriptBox["M", "4"]}], ")"}]}]}], "\[IndentingNewLine]", RowBox[{"%", "//", "N"}]}], "Input", CellChangeTimes->{{3.952501411508972*^9, 3.952501544635947*^9}, { 3.9525016128964624`*^9, 3.952501614462586*^9}, {3.952502170186533*^9, 3.9525021965486374`*^9}, {3.9679516811368136`*^9, 3.967951707523185*^9}}, CellLabel->"In[17]:=",ExpressionUUID->"5adef399-2391-4fb4-86d8-7444b71555cf"], Cell[BoxData[ FractionBox[ RowBox[{"16", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"]}], SuperscriptBox["\[Pi]", "2"]]], "Output", CellChangeTimes->{{3.9525014238183565`*^9, 3.9525014453802867`*^9}, { 3.952501538543709*^9, 3.9525015447456203`*^9}, {3.9525016146019588`*^9, 3.9525016166775017`*^9}, {3.952501696615283*^9, 3.9525017150225058`*^9}, 3.952501789491661*^9, {3.952502003508472*^9, 3.9525020265763597`*^9}, 3.95250215907351*^9, {3.952502196686803*^9, 3.952502228319579*^9}, { 3.952502278742814*^9, 3.952502286563281*^9}, 3.953605950583829*^9, 3.9536066363116817`*^9, 3.953607396111682*^9, {3.9536075426279583`*^9, 3.953607577509242*^9}, 3.9536079539399223`*^9, {3.9679516677344885`*^9, 3.9679516755336695`*^9}, 3.967951734810253*^9, 3.9679670307142525`*^9}, CellLabel->"Out[17]=",ExpressionUUID->"d95df904-743c-463a-adc3-f244e29bd87f"], Cell[BoxData[ FractionBox[ RowBox[{"16", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}], SuperscriptBox["\[Pi]", "2"]]], "Output", CellChangeTimes->{{3.9525014238183565`*^9, 3.9525014453802867`*^9}, { 3.952501538543709*^9, 3.9525015447456203`*^9}, {3.9525016146019588`*^9, 3.9525016166775017`*^9}, {3.952501696615283*^9, 3.9525017150225058`*^9}, 3.952501789491661*^9, {3.952502003508472*^9, 3.9525020265763597`*^9}, 3.95250215907351*^9, {3.952502196686803*^9, 3.952502228319579*^9}, { 3.952502278742814*^9, 3.952502286563281*^9}, 3.953605950583829*^9, 3.9536066363116817`*^9, 3.953607396111682*^9, {3.9536075426279583`*^9, 3.953607577509242*^9}, 3.9536079539399223`*^9, {3.9679516677344885`*^9, 3.9679516755336695`*^9}, 3.967951734810253*^9, 3.9679670307142525`*^9}, CellLabel->"Out[18]=",ExpressionUUID->"b785cfed-2904-422f-ad48-5ee6db487ff5"], Cell[BoxData["2.0425070731399275`"], "Output", CellChangeTimes->{{3.9525014238183565`*^9, 3.9525014453802867`*^9}, { 3.952501538543709*^9, 3.9525015447456203`*^9}, {3.9525016146019588`*^9, 3.9525016166775017`*^9}, {3.952501696615283*^9, 3.9525017150225058`*^9}, 3.952501789491661*^9, {3.952502003508472*^9, 3.9525020265763597`*^9}, 3.95250215907351*^9, {3.952502196686803*^9, 3.952502228319579*^9}, { 3.952502278742814*^9, 3.952502286563281*^9}, 3.953605950583829*^9, 3.9536066363116817`*^9, 3.953607396111682*^9, {3.9536075426279583`*^9, 3.953607577509242*^9}, 3.9536079539399223`*^9, {3.9679516677344885`*^9, 3.9679516755336695`*^9}, 3.967951734810253*^9, 3.9679670307195015`*^9}, CellLabel->"Out[19]=",ExpressionUUID->"f4c997f8-4a9c-4a1d-aecd-568c083065b2"] }, Open ]], Cell[TextData[{ "Similarly, the code uses dimensionless \[Rho]. So at the end of the \ computation I will multiply by ", Cell[BoxData[ FormBox[ SuperscriptBox["2", RowBox[{"1", "/", "3"}]], TraditionalForm]],ExpressionUUID-> "3d510ee9-fe6d-4051-a0eb-da7ca18514cc"] }], "Text", CellChangeTimes->{{3.953607591401937*^9, 3.953607642322303*^9}, { 3.9536079592753763`*^9, 3.9536079667444897`*^9}},ExpressionUUID->"a5935bc3-92c9-47f2-a2b9-\ bc1f2f1c6199"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", RowBox[{"\[Rho]t", "[", "\[Tau]", "]"}]}], ")"}], " ", "-", " ", RowBox[{ RowBox[{"R", "[", "\[Tau]", "]"}], RowBox[{"(", "\[CapitalLambda]kk", ")"}]}]}], "/.", RowBox[{"R", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"M0", " ", SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "2"}], "/", "3"}]], " ", RowBox[{"\[Rho]t", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", RowBox[{"M0", "->", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "/.", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"\[CapitalLambda]kk", "==", RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"2", "/", "3"}]], "/", RowBox[{"(", RowBox[{"gs", " ", SuperscriptBox["ls", "2"], " ", "M"}], ")"}]}]}], ",", "M"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]], "Input", CellChangeTimes->{{3.953607645700284*^9, 3.9536078110284634`*^9}}, CellLabel->"In[20]:=",ExpressionUUID->"ea952132-2e83-4f6c-9adc-03570f6a5c5c"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.953607652921816*^9, 3.953607659828225*^9}, { 3.9536076972913666`*^9, 3.953607814798483*^9}, {3.9536079612205534`*^9, 3.953607968004084*^9}, 3.9679517476971607`*^9, 3.967967030730102*^9}, CellLabel->"Out[20]=",ExpressionUUID->"b2b05ee2-f702-4b01-89d5-c0ad908e9bad"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Embeddings", "Section", CellChangeTimes->{{3.9473106301562166`*^9, 3.9473106375698495`*^9}, { 3.94732503487514*^9, 3.947325048704032*^9}},ExpressionUUID->"3bd4fce2-4f31-4f50-9b3a-\ 937c9c48ddf6"], Cell[CellGroupData[{ Cell["Equation of motion and solutions", "Subsection", CellChangeTimes->{{3.9473250764951477`*^9, 3.947325099961667*^9}, { 3.947325583343255*^9, 3.947325595019786*^9}},ExpressionUUID->"5cc1e249-f7e6-4441-867d-\ 7663d3cf0d55"], Cell[BoxData[ RowBox[{ RowBox[{"eom\[Tau]", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[PartialD]", RowBox[{"R", "[", "\[Tau]", "]"}]], "\[ScriptCapitalL]dimless"}], "-", RowBox[{ SubscriptBox["\[PartialD]", "\[Tau]"], RowBox[{"(", RowBox[{ SubscriptBox["\[PartialD]", RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]], "\[ScriptCapitalL]dimless"}], ")"}]}]}], "//", "Simplify"}], "//", "Together"}], "//", "Numerator"}], "//", "Simplify"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.939723221790882*^9, 3.939723224156644*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"497d94dd-9f07-422a-b5d7-bd760401d353"], Cell[BoxData[ RowBox[{ RowBox[{"eom\[Tau]subs", "=", RowBox[{ RowBox[{"eom\[Tau]", "/.", RowBox[{ RowBox[{ RowBox[{"\[ScriptH]", "'"}], "[", "\[Tau]", "]"}], "->", RowBox[{"hprime", "[", "\[Tau]", "]"}]}]}], "//", "Simplify"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409291241608915`*^9, 3.9409291405735154`*^9}, 3.967951756370719*^9}, CellLabel->"In[22]:=",ExpressionUUID->"17c95b3a-1b0d-48d2-b0db-2dec0438570c"], Cell[BoxData[ RowBox[{ RowBox[{"solTipTau", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"cR", "[", "1", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["2", RowBox[{"5", "/", "6"}]], " ", SqrtBox["3"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], RowBox[{"3", "/", "2"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], RowBox[{"2", "/", "3"}]], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], ")"}], "/", RowBox[{"(", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", "\[Tau]s"}], "-", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], ")"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"cR", "[", "2", "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", "3", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ SqrtBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "162"}], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "\[Tau]s"}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], "-", RowBox[{"72", " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], "+", RowBox[{"540", " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], "4"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], "-", RowBox[{"27", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], "+", RowBox[{"60", " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], "3"], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}], "2"]}], "+", RowBox[{"81", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}], "2"]}], "+", RowBox[{"54", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}], "2"]}], "-", RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}], "3"]}], "-", RowBox[{"81", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}], " ", SqrtBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", "\[Tau]s"}], "-", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], ")"}]}], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", "\[Tau]s"}], "-", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], ")"}]}]}], "+", RowBox[{"81", " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]s", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], "2"], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], ")"}], "/", RowBox[{"(", RowBox[{"30", " ", SuperscriptBox["2", RowBox[{"1", "/", "6"}]], " ", SqrtBox["3"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}], "2"], " ", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", "\[Tau]s"}], "-", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"12", " ", "\[Tau]s", " ", RowBox[{"Cosh", "[", "\[Tau]s", "]"}]}], "+", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"5", " ", RowBox[{"Sinh", "[", RowBox[{"3", " ", "\[Tau]s"}], "]"}]}]}], ")"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]s", "]"}]}], "-", RowBox[{"3", " ", RowBox[{"Sinh", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]s"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]s"}], "]"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}], ")"}]}]}], ")"}]}]}]}], "}"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409292380906305`*^9, 3.9409292382194605`*^9}}, CellLabel->"In[23]:=",ExpressionUUID->"fa9eb125-b44f-400a-8d1d-3e0edd37cd76"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"or", "=", "2"}], ";"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{"0", "<", "\[Tau]s", "<", "\[Tau]"}], ",", RowBox[{ RowBox[{"eom\[Tau]", "/.", RowBox[{"R", "->", " ", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "1"}], "or"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Tau]", "-", "\[Tau]s"}], ")"}], FractionBox["kk", "2"]]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Tau]", ",", "\[Tau]s"}], "]"}], FractionBox[ RowBox[{"or", "+", "1"}], "2"]]}], "/.", "solTipTau"}]}], "]"}]}]}], "//", "Simplify"}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "==", "0"}], ",", RowBox[{"cR", "[", "3", "]"}]}], "]"}], "//", "Simplify"}], "//", "Flatten"}]}], "Input", CellChangeTimes->{{3.9409291751493635`*^9, 3.940929175265911*^9}, 3.9409292194610195`*^9, {3.940929251006979*^9, 3.940929257049572*^9}, { 3.940930369450688*^9, 3.9409303700242963`*^9}}, CellLabel->"In[24]:=",ExpressionUUID->"d68a8acd-58a8-435e-851c-1f94e5e06971"], Cell[BoxData[ InterpretationBox[ SqrtBox[ RowBox[{"O", "[", RowBox[{"\[Tau]", "-", "\[Tau]s"}], "]"}]], SeriesData[$CellContext`\[Tau], $CellContext`\[Tau]s, {}, 1, 1, 2], Editable->False]], "Output", CellChangeTimes->{{3.940929252343427*^9, 3.9409292573788986`*^9}, 3.940930372891716*^9, 3.947310342950167*^9, 3.947325006712545*^9, 3.953607977884379*^9, 3.9679517672056804`*^9, 3.967967033262216*^9}, CellLabel->"Out[25]=",ExpressionUUID->"862d709e-b966-457f-a44d-73e77c7243bd"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellChangeTimes->{{3.940929252343427*^9, 3.9409292573788986`*^9}, 3.940930372891716*^9, 3.947310342950167*^9, 3.947325006712545*^9, 3.953607977884379*^9, 3.9679517672056804`*^9, 3.9679670332747297`*^9}, CellLabel->"Out[26]=",ExpressionUUID->"dcefa538-6ebc-45ca-95f8-91b2b84ce7ea"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"or", "=", "3"}], ";"}], "\[IndentingNewLine]", RowBox[{"Clear", "[", RowBox[{"RIR\[Tau]", ",", "dRIR\[Tau]"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"RIR\[Tau]", "[", RowBox[{"\[Tau]s_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "1"}], "or"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Tau]", "-", "\[Tau]s"}], ")"}], FractionBox["kk", "2"]]}]}], "/.", "solTipTau"}], "/.", RowBox[{ RowBox[{"cR", "[", "0", "]"}], "->", " ", "Rs"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"dRIR\[Tau]", "[", RowBox[{"\[Tau]s_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Tau]"}], "]"}]}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9409292600390053`*^9, 3.940929260388658*^9}}, CellLabel->"In[27]:=",ExpressionUUID->"b46c1ad5-c358-4d03-9d32-e7a493b91552"], Cell[BoxData[ RowBox[{ RowBox[{"solDiconnected", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"cR", "[", "n_", "]"}], ":>", RowBox[{"0", "/;", RowBox[{"OddQ", "[", "n", "]"}]}]}], ",", RowBox[{ RowBox[{"cR", "[", "2", "]"}], "\[Rule]", FractionBox["h0", RowBox[{"6", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", RowBox[{"cR", "[", "0", "]"}]}]]}], ",", RowBox[{ RowBox[{"cR", "[", "4", "]"}], "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"5", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["h0", "2"]}], "+", RowBox[{"18", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "-", RowBox[{"12", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", "h0", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}]}], RowBox[{"2160", " ", SuperscriptBox["6", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "3"]}]]}]}], ",", RowBox[{ RowBox[{"cR", "[", "6", "]"}], "\[Rule]", RowBox[{ FractionBox["1", RowBox[{"8164800", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "5"]}]], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "75"}], " ", SuperscriptBox["h0", "3"]}], "-", RowBox[{"630", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["h0", "2"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"216", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}], "+", RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", "h0", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"], " ", RowBox[{"(", RowBox[{"385", "+", RowBox[{"72", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}]}], ")"}]}]}], ")"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"cR", "[", "8", "]"}], "\[Rule]", RowBox[{ FractionBox["1", RowBox[{"1763596800", " ", SuperscriptBox["6", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "7"]}]], RowBox[{"(", RowBox[{ RowBox[{"9325", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["h0", "4"]}], "+", RowBox[{"11700", " ", SuperscriptBox["6", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["h0", "3"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"9936", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", "h0", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}], "+", RowBox[{"108", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"7", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}], "-", RowBox[{"36", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}]}], ")"}]}], "+", RowBox[{"60", " ", SuperscriptBox["h0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"7", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"162", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}]}], ")"}]}]}], ")"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"cR", "[", "10", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "16352875"}], " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["h0", "6"]}], "+", RowBox[{"15818600", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["h0", "5"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"29804544", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "6"]}], "-", RowBox[{"864", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", "h0", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"90629", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}], "+", RowBox[{"6840", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}]}], ")"}]}], "+", RowBox[{"180", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["h0", "4"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "227395"}], "+", RowBox[{"97978", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}]}], ")"}]}], "+", RowBox[{"216", " ", SuperscriptBox["h0", "2"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "116865"}], "+", RowBox[{"385924", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"4608", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}]}], ")"}]}], "-", RowBox[{"3360", " ", SuperscriptBox["h0", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"13691", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}], "+", RowBox[{"22572", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "6"]}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"40739086080000", " ", SuperscriptBox["6", RowBox[{"2", "/", "3"}]], " ", "h0", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "9"]}], ")"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"cR", "[", "12", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"8972541875", " ", SuperscriptBox["6", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["h0", "8"]}], "-", RowBox[{"222888928500", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["h0", "7"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"116237721600", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "8"]}], "-", RowBox[{"926580695040", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", "h0", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "8"]}], "-", RowBox[{"32400", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["h0", "5"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"], " ", RowBox[{"(", RowBox[{"168641", "+", RowBox[{"1592958", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}]}], ")"}]}], "+", RowBox[{"19440", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["h0", "2"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "6"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "7007"}], " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]]}], "+", RowBox[{"48259068", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"1268352", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}]}], ")"}]}], "+", RowBox[{"32760", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["h0", "4"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"2624455", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]]}], "-", RowBox[{"1157184", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"8678016", " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}]}], ")"}]}], "+", RowBox[{"2700", " ", SuperscriptBox["h0", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"46965695", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "-", RowBox[{"72606844", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}]}], ")"}]}], "-", RowBox[{"7776", " ", SuperscriptBox["h0", "3"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "31811745"}], "+", RowBox[{"90386140", " ", SuperscriptBox["3", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "2"]}], "+", RowBox[{"65664", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "4"]}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"1715930305689600000", " ", SuperscriptBox["6", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["h0", "2"], " ", SuperscriptBox[ RowBox[{"cR", "[", "0", "]"}], "11"]}], ")"}]}]}]}], "}"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.940930156626935*^9, 3.9409301613185315`*^9}, 3.9409303492215796`*^9, {3.9409303847032595`*^9, 3.9409304802217855`*^9}}, CellLabel->"In[31]:=",ExpressionUUID->"8f94740d-d964-4607-9907-4d8fc4e61afb"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{"\[Tau]", ">", "0"}], ",", RowBox[{"Series", "[", RowBox[{ RowBox[{"hprime", "[", "\[Tau]", "]"}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", "0", ",", "16"}], "}"}]}], "]"}]}], "]"}], "//", "Simplify"}], "//", "Normal"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"hIR", "[", "h0_", "]"}], "[", "\[Tau]_", "]"}], "=", RowBox[{"h0", "+", RowBox[{"Integrate", "[", RowBox[{"%", ",", "\[Tau]"}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.9409302089528418`*^9, 3.9409302909781704`*^9}}, CellLabel->"In[32]:=",ExpressionUUID->"6642fc27-7e9a-46e2-b245-a0e7e99085e9"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", "\[Tau]"}], RowBox[{"3", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]]}], "+", FractionBox[ RowBox[{ SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "3"]}], RowBox[{"9", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "-", FractionBox[ RowBox[{"37", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "5"]}], RowBox[{"1575", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"32", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "7"]}], RowBox[{"7875", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "-", FractionBox[ RowBox[{"1468", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "9"]}], RowBox[{"2338875", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"479449", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "11"]}], RowBox[{"5320940625", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "-", FractionBox[ RowBox[{"91523", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "13"]}], RowBox[{"7449316875", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"229693388", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "15"]}], RowBox[{"142468185234375", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]]}]], "Output", CellChangeTimes->{{3.9409302116156416`*^9, 3.9409302489811788`*^9}, { 3.9409302796903677`*^9, 3.9409302915329056`*^9}, 3.9473103441851244`*^9, 3.9473250088551245`*^9, 3.951388905307569*^9, 3.953607977958438*^9, 3.967951767889373*^9, 3.9679670333237195`*^9}, CellLabel->"Out[32]=",ExpressionUUID->"ee6b299e-8db5-40c2-bce9-69a66582c57d"], Cell[BoxData[ RowBox[{"h0", "-", FractionBox[ SuperscriptBox["\[Tau]", "2"], RowBox[{"3", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ SuperscriptBox["\[Tau]", "4"], RowBox[{"18", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]]}]], "-", FractionBox[ RowBox[{"37", " ", SuperscriptBox["\[Tau]", "6"]}], RowBox[{"4725", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"4", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "8"]}], RowBox[{"7875", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "-", FractionBox[ RowBox[{"734", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Tau]", "10"]}], RowBox[{"11694375", " ", SuperscriptBox["3", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"479449", " ", SuperscriptBox["\[Tau]", "12"]}], RowBox[{"31925643750", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]]}]], "-", FractionBox[ RowBox[{"91523", " ", SuperscriptBox["\[Tau]", "14"]}], RowBox[{"52145218125", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"57423347", " ", SuperscriptBox["\[Tau]", "16"]}], RowBox[{"284936370468750", " ", SuperscriptBox["6", RowBox[{"1", "/", "3"}]]}]]}]], "Output", CellChangeTimes->{{3.9409302116156416`*^9, 3.9409302489811788`*^9}, { 3.9409302796903677`*^9, 3.9409302915329056`*^9}, 3.9473103441851244`*^9, 3.9473250088551245`*^9, 3.951388905307569*^9, 3.953607977958438*^9, 3.967951767889373*^9, 3.9679670333363314`*^9}, CellLabel->"Out[33]=",ExpressionUUID->"bdb290b1-a84d-416a-8741-2fa1a91c4f48"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"or", "=", "12"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{"0", "<", "\[Tau]s", "<", "\[Tau]"}], ",", RowBox[{"eom\[Tau]", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[ScriptH]", "->", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"hIR", "[", "h0", "]"}], "[", "#", "]"}], "&"}], ")"}]}], ",", RowBox[{"R", "->", " ", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "0"}], "or"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox["\[Tau]", "kk"]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Tau]", ",", "0"}], "]"}], RowBox[{"or", "+", "1"}]]}], "/.", "solDiconnected"}]}], "]"}]}]}], "}"}]}]}], "]"}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"%", "[", RowBox[{"[", RowBox[{"3", ",", "1"}], "]"}], "]"}], "==", "0"}], ",", RowBox[{"cR", "[", "or", "]"}]}], "]"}], "//", "Simplify"}], "//", "Flatten"}]}], "Input", CellChangeTimes->{{3.9409291751493635`*^9, 3.940929175265911*^9}, 3.9409292194610195`*^9, {3.940929251006979*^9, 3.940929257049572*^9}, { 3.94093016465562*^9, 3.940930197955128*^9}, {3.940930296405171*^9, 3.940930406720049*^9}, {3.9409304373484793`*^9, 3.940930474444164*^9}, 3.9473103545614448`*^9, 3.951388903135187*^9}, CellLabel->"In[34]:=",ExpressionUUID->"1c8ac7a9-ab7c-4fef-9e22-dfc913c48594"], Cell[BoxData[ InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", "\[Tau]", "]"}], "17"], SeriesData[$CellContext`\[Tau], 0, {}, 17, 17, 1], Editable->False]], "Output", CellChangeTimes->{{3.940929252343427*^9, 3.9409292573788986`*^9}, { 3.940930190756738*^9, 3.9409301983192663`*^9}, {3.9409303193235035`*^9, 3.940930406958519*^9}, {3.9409304377383304`*^9, 3.9409304750153503`*^9}, { 3.9473103455021667`*^9, 3.947310354863979*^9}, 3.9473250109032836`*^9, 3.951388906092792*^9, 3.9536079781635857`*^9, 3.967951771814851*^9, 3.9679670335410786`*^9}, CellLabel->"Out[35]=",ExpressionUUID->"9432a3ed-c2c6-4cc8-822e-56f6a651735a"], Cell[BoxData[ TemplateBox[{ "Part", "partw", "\"Part \\!\\(\\*RowBox[{\\\"1\\\"}]\\) of \\!\\(\\*RowBox[{\\\"{\\\", \ \\\"}\\\"}]\\) does not exist.\"", 2, 36, 2, 25975096716195636101, "R4"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{{3.9473103454615026`*^9, 3.9473103548941555`*^9}, 3.9473250109207478`*^9, 3.951388906094717*^9, 3.953607978167593*^9, 3.96795177187976*^9, 3.9679670335567336`*^9}, CellLabel-> "During evaluation of \ In[34]:=",ExpressionUUID->"e3d8f712-726d-4484-af11-0033048087b7"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellChangeTimes->{{3.940929252343427*^9, 3.9409292573788986`*^9}, { 3.940930190756738*^9, 3.9409301983192663`*^9}, {3.9409303193235035`*^9, 3.940930406958519*^9}, {3.9409304377383304`*^9, 3.9409304750153503`*^9}, { 3.9473103455021667`*^9, 3.947310354863979*^9}, 3.9473250109032836`*^9, 3.951388906092792*^9, 3.9536079781635857`*^9, 3.967951771814851*^9, 3.9679670335567336`*^9}, CellLabel->"Out[36]=",ExpressionUUID->"1b2b3f85-85e1-42b0-b850-2c45b57603a3"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"or", "=", "12"}], ";"}], "\[IndentingNewLine]", RowBox[{"Clear", "[", RowBox[{"RIR\[Tau]dis", ",", "dRIR\[Tau]dis"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"RIR\[Tau]dis", "[", RowBox[{"h0_", ",", "Rs_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "0"}], "or"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox["\[Tau]", "kk"]}]}], "/.", "solDiconnected"}], "/.", RowBox[{ RowBox[{"cR", "[", "0", "]"}], "->", " ", "Rs"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"dRIR\[Tau]dis", "[", RowBox[{"h0_", ",", "Rs_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Tau]"}], "]"}]}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9409292600390053`*^9, 3.940929260388658*^9}, { 3.94093048776588*^9, 3.940930507586649*^9}, {3.9409305411673336`*^9, 3.9409305445065413`*^9}, {3.940930616273088*^9, 3.9409306208086295`*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"178c5efe-9f03-4dd7-ad90-606056dbe03e"], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{"computeDiskTau", "[", "\[Tau]snow_", "]"}], ":=", RowBox[{ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]IR", "=", "\[Epsilon]IRnow"}], ",", RowBox[{"\[Tau]s", "=", "\[Tau]snow"}]}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"dog", "[", "\[Tau]snow", "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"eom\[Tau]subs", "==", "0"}], ",", RowBox[{ RowBox[{"R", "[", RowBox[{"\[Tau]s", "+", "\[Epsilon]IR"}], "]"}], "==", RowBox[{"RIR\[Tau]", "[", RowBox[{"\[Tau]s", ",", RowBox[{"\[Tau]s", "+", "\[Epsilon]IR"}]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"R", "'"}], "[", RowBox[{"\[Tau]s", "+", "\[Epsilon]IR"}], "]"}], "==", RowBox[{"dRIR\[Tau]", "[", RowBox[{"\[Tau]s", ",", RowBox[{"\[Tau]s", "+", "\[Epsilon]IR"}]}], "]"}]}]}], "}"}], "/.", "solh"}], ",", "R", ",", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{"\[Tau]s", "+", "\[Epsilon]IR"}], ",", "cutoffDisk"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"WorkingPrecision", "->", "wpc"}], ",", RowBox[{"Method", "->", " ", "\"\\""}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}], "//", "Flatten"}]}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409292834175453`*^9, 3.940929311884711*^9}, { 3.9409293500064507`*^9, 3.9409293668610916`*^9}, 3.9409295824384623`*^9, { 3.940930625559063*^9, 3.9409306345971093`*^9}, {3.940930744886128*^9, 3.940930748561318*^9}}, CellLabel->"In[41]:=",ExpressionUUID->"500797b5-0cfd-435d-ada6-3b3923c50889"], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", RowBox[{ RowBox[{"computeDiskDisconnected", "[", "Rsnow_", "]"}], ":=", RowBox[{ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Epsilon]IR", "=", "\[Epsilon]IRnow"}], ",", RowBox[{"Rs", "=", "Rsnow"}]}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"dogDis", "[", "Rsnow", "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"eom\[Tau]subs", "==", "0"}], ",", RowBox[{ RowBox[{"R", "[", "\[Epsilon]IR", "]"}], "==", RowBox[{"RIR\[Tau]dis", "[", RowBox[{"h0", ",", "Rs", ",", "\[Epsilon]IR"}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"R", "'"}], "[", "\[Epsilon]IR", "]"}], "==", RowBox[{"dRIR\[Tau]dis", "[", RowBox[{"h0", ",", "Rs", ",", "\[Epsilon]IR"}], "]"}]}]}], "}"}], "/.", "solh"}], "/.", "ruleh0"}], ",", "R", ",", RowBox[{"{", RowBox[{"\[Tau]", ",", "\[Epsilon]IR", ",", "cutoffDisk"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"WorkingPrecision", "->", "wpc"}], ",", RowBox[{"Method", "->", " ", "\"\\""}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}], "//", "Flatten"}]}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409292834175453`*^9, 3.940929311884711*^9}, { 3.9409293500064507`*^9, 3.9409293668610916`*^9}, 3.9409295824384623`*^9, { 3.940930521388879*^9, 3.940930586620148*^9}, {3.9409307120020094`*^9, 3.9409307156814365`*^9}, 3.940930751914954*^9}, CellLabel->"In[42]:=",ExpressionUUID->"23565d0d-6625-4a54-84da-03d7caa71f51"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"labelStyle", "=", RowBox[{"Directive", "[", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", RowBox[{"FontSize", "\[Rule]", "14"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Clear", "[", "plotDisk", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"plotDisk", "[", RowBox[{"\[Tau]s_", ",", RowBox[{"plotstyle_", ":", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "R0", "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"R0", "=", RowBox[{ RowBox[{"R", "[", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"R", "[", "\[Tau]", "]"}]}], ",", "\[Tau]"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "[", "\[Tau]", "]"}], ",", "\[Tau]"}], "}"}]}], "}"}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox["3"]}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox["3"], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}]}], "}"}], ",", "None"}], RowBox[{"(*", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}], "}"}], "*)"}], "}"}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", ",", RowBox[{"PlotRange", "\[Rule]", "Automatic"}], ",", RowBox[{"AspectRatio", "\[Rule]", RowBox[{"1", "/", "3"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "500"}], ",", RowBox[{"PlotStyle", "->", "plotstyle"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}], ",", "\[IndentingNewLine]", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "cutoffDisk"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Clear", "[", "plotDiskdisc", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"plotDiskdisc", "[", RowBox[{"Rs_", ",", RowBox[{"plotstyle_", ":", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", "R0", "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"R0", "=", RowBox[{ RowBox[{"R", "[", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}], "/.", RowBox[{"dogDis", "[", "Rs", "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", RowBox[{"R", "[", "\[Tau]", "]"}]}], ",", "\[Tau]"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"R", "[", "\[Tau]", "]"}], ",", "\[Tau]"}], "}"}]}], "}"}], "/.", RowBox[{"dogDis", "[", "Rs", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", SqrtBox["3"]}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{ SqrtBox["3"], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "4"}], "}"}]}], "}"}], ",", "None"}], RowBox[{"(*", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}], "}"}], "*)"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"AspectRatio", "\[Rule]", RowBox[{"1", "/", "3"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "500"}], ",", RowBox[{"PlotStyle", "->", "plotstyle"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}], ",", "\[IndentingNewLine]", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "cutoffDisk"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}]}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9473106745018015`*^9, 3.9473106754854207`*^9}}, CellLabel->"In[43]:=",ExpressionUUID->"d8e53640-e2d4-40ba-a3fa-79a4a33d67e9"], Cell["\<\ Note that we increase the precision when computing the warp factor (since it \ appears later)\ \>", "Text", CellChangeTimes->{{3.9679517876306887`*^9, 3.9679518098405175`*^9}},ExpressionUUID->"792bde06-c577-4357-8ff3-\ fab16cd3dc02"], Cell[BoxData[ RowBox[{ RowBox[{"cutoff", "=", "15"}], ";", RowBox[{"wpcback", "=", "70"}], ";", RowBox[{"cutoffIR", "=", SuperscriptBox["10", RowBox[{"-", "5"}]]}], ";"}]], "Input", CellChangeTimes->{{3.939352410276062*^9, 3.9393524168740683`*^9}, { 3.9393525891075563`*^9, 3.9393525891565943`*^9}, {3.940561058052233*^9, 3.9405611289603357`*^9}, {3.9406688265591145`*^9, 3.940668829145111*^9}, { 3.9409286855547523`*^9, 3.940928689560033*^9}, {3.940928728059182*^9, 3.9409287290483737`*^9}, {3.9409294149606223`*^9, 3.940929501232279*^9}, { 3.940929537444964*^9, 3.940929545005251*^9}, {3.940929614158027*^9, 3.9409296143645506`*^9}, {3.940929730419341*^9, 3.940929744936552*^9}, { 3.9409298254702435`*^9, 3.9409298255494823`*^9}, {3.9409298570976458`*^9, 3.940929865912524*^9}}, CellLabel->"In[48]:=",ExpressionUUID->"a3eff2ad-2a15-4001-b5dc-54514bda595f"], Cell[BoxData[ RowBox[{ RowBox[{"maxsteps", "=", "20000"}], ";"}]], "Input", CellChangeTimes->{{3.940929848734299*^9, 3.9409298501680975`*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"6776eade-da7f-4ea2-a31a-0bab2f97fcc5"], Cell[CellGroupData[{ Cell[BoxData["computeWarpFactor"], "Input", CellChangeTimes->{{3.9473105553509245`*^9, 3.947310555398289*^9}}, CellLabel->"In[50]:=",ExpressionUUID->"716cf1a3-bbb0-432f-afbb-e73e2422a5c8"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[ScriptH]", "\[Rule]", TagBox[ TemplateBox[{ RowBox[{ StyleBox[ TagBox["InterpolatingFunction", "SummaryHead"], "NonInterpretableSummary"], StyleBox["[", "NonInterpretableSummary"], DynamicModuleBox[{ Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"], ImageSizeCache -> { 7.608310658428817, {0., 7.608310658428817}}], Appearance -> None, BaseStyle -> {}, ButtonFunction :> (Typeset`open$$ = True), Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`70.*^-5", ",", "15.`70."}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}}, AutoDelete -> False, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}}, AutoDelete -> False, BaselinePosition -> {1, 1}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], Appearance -> None, BaseStyle -> {}, ButtonFunction :> (Typeset`open$$ = False), Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`70.*^-5", ",", "15.`70."}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Order: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Method: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"Hermite\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Periodic: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["False", "SummaryItem"]}]}}, AutoDelete -> False, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}]}}, AutoDelete -> False, BaselinePosition -> {1, 1}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], ButtonBox[ DynamicBox[ ToBoxes[ If[ Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= "R4"], Style["This object cannot be used as input.", "SummaryEmbed"], BoxForm`EmbedSummaryLabel[InterpolatingFunction, 3680816, Dynamic[Typeset`embedState$$], Automatic]], StandardForm], ImageSizeCache -> {114.4, {5., 9.}}], BaseStyle -> {"DialogStyle"}, ButtonFunction :> BoxForm`EmbedSummaryInterpretation[ "Choose", InterpolatingFunction, 3680816, 8838867391587347229449051528031617227982742678996838871808, EvaluationBox[], Dynamic[Typeset`embedState$$], StandardForm, ElisionsDump`embedSummaryBoxes], DefaultBaseStyle -> "SummaryEmbedButton", Enabled -> Dynamic[ And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === "R4", Typeset`embedState$$ === "Ready"]], Evaluator -> Automatic]}, "SummaryEmbedGrid"], DynamicModuleValues :> {}], StyleBox["]", "NonInterpretableSummary"]}]}, "CopyTag", DisplayFunction->(#& ), InterpretationFunction->( " \ -5\n\ InterpolatingFunction[{{1.\ 00000000000000000000000000000000000000000000000000000000000000000000 10 , \ 15.00000000000000000000000000000000000000000000000000000000000000000000}}, \ <>]"& )], False, BoxID -> 8838867391587347229449051528031617227982742678996838871808, Editable->False, SelectWithContents->True, Selectable->False]}], "}"}]], "Output", CellChangeTimes->{{3.9409287202063847`*^9, 3.940928730385497*^9}, 3.9409287944674644`*^9, {3.9409289337575507`*^9, 3.940928965569297*^9}, 3.940929058258325*^9, {3.940929416011367*^9, 3.9409295459453154`*^9}, { 3.940929611345765*^9, 3.940929615238735*^9}, {3.940929731784453*^9, 3.940929745842922*^9}, {3.9409298177548466`*^9, 3.9409298690332603`*^9}, 3.947310392219648*^9, 3.9473105583402247`*^9, 3.9473250214229145`*^9, 3.951388833650559*^9, 3.953607980085681*^9, 3.955525280415933*^9, 3.967951787269433*^9, 3.967951822048707*^9, 3.967967035548888*^9}, CellLabel->"Out[50]=",ExpressionUUID->"390ef93a-3ee0-4b54-bff7-96352beae453"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"wpc", "=", "40"}], ";", RowBox[{"\[Epsilon]IRnow", "=", SuperscriptBox["10", RowBox[{"-", "4"}]]}], ";", RowBox[{"cutoffDisk", "=", "cutoff"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";"}]}], "Input", CellChangeTimes->{{3.940929307303246*^9, 3.9409293416997643`*^9}, { 3.9409293722093363`*^9, 3.940929374368329*^9}, {3.940929940334556*^9, 3.940929941912616*^9}}, CellLabel->"In[51]:=",ExpressionUUID->"13ecc728-3808-4d1d-a113-13bd9e6b3da1"], Cell[BoxData[ RowBox[{ RowBox[{"computeDiskTau", "[", RowBox[{"1", "/", "10"}], "]"}], ";"}]], "Input", CellChangeTimes->{3.9473104165755115`*^9}, CellLabel->"In[53]:=",ExpressionUUID->"f7bcfd02-0336-4d29-8102-a9017649f5d7"], Cell[BoxData[ RowBox[{"Do", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"computeDiskTau", "[", "k", "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "1", ",", "13"}], "}"}]}], "]"}]], "Input", CellLabel->"In[54]:=",ExpressionUUID->"486d1c5f-9512-4987-8edd-86446eb6e543"], Cell["It will also be useful to define:", "Text", CellChangeTimes->{{3.967951860101838*^9, 3.9679518676677265`*^9}},ExpressionUUID->"75390898-655f-46f8-b6a3-\ 0183c33a1349"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ruleh0", "=", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"0", "==", RowBox[{ RowBox[{ RowBox[{"hIR", "[", "h0", "]"}], "[", "\[Tau]", "]"}], "-", RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]}]}], "/.", "solh"}], "/.", RowBox[{"\[Tau]", "->", "cutoffIR"}]}], ",", "h0"}], "]"}], "//", "Flatten"}]}]], "Input", InitializationCell->True, CellLabel->"In[55]:=",ExpressionUUID->"244bf7ef-6532-4d50-8d02-e4d258e8bbff"], Cell[BoxData[ RowBox[{"{", RowBox[{ "h0", "\[Rule]", "0.718049781464047007739639198455994944679775065170980783437998008565345913\ 244919452845996667428688`69.22184852499288"}], "}"}]], "Output", CellChangeTimes->{ 3.947310591664959*^9, 3.9473250687412405`*^9, {3.951388877050167*^9, 3.951388910997747*^9}, 3.9536080204152355`*^9, 3.9679519937727013`*^9, 3.96796707548601*^9}, CellLabel->"Out[55]=",ExpressionUUID->"0781500a-1a34-45a0-b347-1fc6097a80ee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ SuperscriptBox["2", RowBox[{"2", "/", "3"}]], RowBox[{"(", RowBox[{"h0", "/.", "ruleh0"}], ")"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ FractionBox["1", RowBox[{"2", "\[Pi]"}]], SuperscriptBox["%", RowBox[{ RowBox[{"-", "1"}], "/", "2"}]]}]}], "Input", CellChangeTimes->{{3.952503597961692*^9, 3.9525036262074366`*^9}, { 3.9525045112354727`*^9, 3.9525045229459133`*^9}, {3.9679518909424667`*^9, 3.9679518953784094`*^9}}, CellLabel->"In[56]:=",ExpressionUUID->"ddaec892-3033-4617-8f9b-dc83697b8a55"], Cell[BoxData["0.\ 149073182307997748113263122644968272730991336841218382438130206188897097454202\ 211867448549227452`69.52287852065686"], "Output", CellChangeTimes->{{3.9525036002069798`*^9, 3.95250362640867*^9}, { 3.9525045132406597`*^9, 3.952504524852727*^9}, 3.953608020419237*^9, 3.9679519953842983`*^9, 3.9679670754946957`*^9}, CellLabel->"Out[57]=",ExpressionUUID->"252e0b17-5d9b-4c73-b271-72f34c4a8565"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Do", "[", RowBox[{ RowBox[{"computeDiskDisconnected", "[", RowBox[{"k", "/", "10"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "2", ",", "26", ",", "2"}], "}"}]}], "]"}], ";"}]], "Input", CellLabel->"In[58]:=",ExpressionUUID->"72807864-04e5-45bc-aac0-deb5170dc055"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{ RowBox[{"Append", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"plotDisk", "[", "k", "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "1", ",", "13"}], "}"}]}], "]"}], ",", RowBox[{"plotDisk", "[", FractionBox["1", "10"], "]"}]}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"plotDiskdisc", "[", RowBox[{ FractionBox["k", "10"], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "2", ",", "26", ",", "2"}], "}"}]}], "]"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "cutoffDisk"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "cutoffDisk"}], "}"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", "Black", "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "0"}], "}"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Black", ",", "Dashed"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "2.2"}], ",", "2.2"}], "}"}], ",", "All"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellLabel->"In[59]:=",ExpressionUUID->"6b4912ff-9bdb-4745-bc32-8b8178878ea5"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwdzns01HkfB/DpJjRpDVnSuFvXnw0VufT9to91eVw2l91G2aRMaWk7KKxS epJyGal02guilrZYR8ZKq55PyyAKs2QeNURjSWL8Zvx+agZ5frvvc97nfV7/ vc33Hw3jL2exWHFM/97/bXC8vmJZOiRW50njWCTq4P1kxs+vgKKVZvZLuiQi MnYtNQbXQGNUfdpVSxJ1Owcba2bXwWC9f7vDFhK9mbxUp9r7G7DWDq1v9iVR UfW+pb9e3QMrfmIsj0cigVcBVWLzO/g9XCWUHybRt6XT0nTn/0LBEaedxgIS WXAWzi4ufwR1rc2ld0tJFCY9z7k98ggk3F3TfrUkah/suOiV0Qzc7tO5x/pI NGdinHR/dytUO/0p6jJSoJgS+zH+ijYQZ/P1Yh0USO2jM7n9VhtQL1Uxai8F WucxHbhM1g6eFy2WPtmnQFiz1M/UsRM6Z5K3ZVYqUMZX9VedUTdM1BrUuLgq 0bt5kcKksRvYWlULj32UqDW1McL30x7YFIMCo79SonG2Fu3PFkOqbtxE3ndK ZNkzm5QxJQaNpPsWY6BE8QUKeUJBL1i6Rl27FjSLqkjVXmFqP+z9rTxzgU+h z9rOe7dU9gM6Opa19jsKHQ+dLEvu7wczO7sck3wKediu/RycJTBaXHsJ11FI Lzdyw/ZxCcRlwY2sD4yDykrS8QAkhw+J2Ndo1DsbRatbXsAFhaEW9/EcmmRl SiQewyAkCi9526tQgH/AzjeRw5Dk/cZsjZcKcYLWbR5OGwaX4M9qB4JV6Oim pG9SGoahNoHqTk5UIcIuO5AwHIGaKh77TqMK/XF6T/+PF0fgFzvz8wZ+anT/ yND7+OOvoNS67uTMgXlknVsxNW8+CrncZ4fKSxbRY89J85NrxqHlrfnjLxdZ 2MtYT1TVNgHHWb6XnfeswDOk7PIc6y1MiPWhtHAVVvm4UxGm06DzvKd8P70a I03OlItCDr5tZb+qQrRxb2W99LYbCfjoxo0WmWws55wSnp0mQf5FFi4f0cEN q+4kWP9HAU4pT0Z5+R/hwmBumM9yJcgbhps6b+ji5wfqTv95QgkX9Cblr8Uc XLFkONP0UgkrugP6uib1sNeNHlO21yzwfr7Oid64HhuLOZuD8mZh65HM8Uh/ A7zNtmAm58ks0Fca4rn7PsYLZPrU/GoKBBJZYP5FQ/xux7auHncKNFJjh1ru GGEThbdn1kEKIl0HOyqHNmDYhqVsAQVbZC//Pau9EZ8y6hHqV1OglG/N0LTi 4nW+PuGcDgpyPj6n3RFhgofDPXt3jVDAKrUNCEs0xa+i9kh0KQrO5DkUWPiY 4Y6VK0fTNGiY6feuSJSa4eODHwy3rKchuEetXxFnjo91vTs8akHD9xIXl5pl FnjM/Wd+uBMNNrtqjaauWWC9n1blpLjRcCt7IFLHyhJzdNWKGUSDvuiEn8YD S3zTuNi91peGxNoOgSzACrfIYlyjg2jgGHxdOvvMCh+LySm7GUpDWU581It4 a2xbXqnq+5IG02qr5Ir31jg3JTzxbiQNeYM8N99Ln2DuSq+A5igaXje5RTwx tcFZsS82R0TTcEE/yvNclQ3mpdXrCWNoMDgx36P/L1ssPOP55MoBGooKP394 QWyL/bjNUcF8GpaE2rzew3b4mFhw6/eDNNTsXP9wJ8selxQLqqWHaAgp7kwX 5ttj6xG27VgcDVJaPfbWygGTYSebGg7TwPvQf1tT6ICzKYdq/jc0GGXOue3e 7ojNJMlxGvE0tK+7nHym3xGPiD5yOcf4YMjAasF+ArfWP/Q4z9hxurFvOZ/A WqGKHTmMZ/N+uJ52iMDazWSggHFmx2632AQCnxIdCbnK+AefoYOeKQRuGPLT qWD81EPW+iaHwOMnr2S2MHa1mTrre5fAV3foRrUyVrc+/eKBkMCvyS1b2xk/ iv3V2KWBwPcmUsc7GQfd+FbIbSKwp6Zqa+/f/7gKGSUicM0m0fcjjH/Um9tx c4DAWUKLaBnjfXWStUZSAr90d7P6i7FN6L3nBUMENlefu/OacX1BWmK6jMCT 83235Iy7tObLQqcInOS1cIBkXPSLNKFdTuBnT1+ZKBnv9nvg7q0gsDB1opBm PJ6VIbadI/Do12v83zGuttxbXPqewBEOM4vvGSc3b4/TnydwiKioTs3YI8Z0 c+4igVPZi/wFxqx/4oT/D0AeZ4M= "]], LineBox[CompressedData[" 1:eJwdzns0lAkfB/DpJjRpDVnSuFvXx4aKXPr92te6vC6by26jbFKmtLQdFFYp vUm5jFQ67QVRS1usI2OlVa+WQZTLknnVEI0lifHMeB41g7zP7vec7/mez39f 0/1HQ/jLWSxWDNO/938b7K+vWJYK8ZU5khgWCe28n0z4uWVQsNLEdkmbBCJt 11J9YBXUR9SmXDUnocsx0FA9swYGa33b7LaQ8GbyUo1y72/AWju0vsmbhILK fUt/vboHFvz4aB6PBIFHHlVk9Tv4PFwllB0m4dviaUmq438h74jDTkMBCWac hbOLyx9BTUtT8d1iEkIk5zm3Rx6BmLtr2qeahLbB9oseaU3A7TqdfayPhDkj w4T7u1ug0uFPUaeBHKKKbMf4K1qhJ5OvE20nB5WX1uT2W61AvVRGqTzksM5t 2n+ZtA3cL5otfbJPDqhe7GNs3wEdM4nb0svlkPZV7VVH6IKJar0qJ2cFvJsX yY3qu4CtUbHw2EsBLcn1Yd6fdsOmKPCP/EoB42wN2pfdA8naMRM53ynAvHs2 IW2qB9QS7puNNSogNk8ui8vrBXPniGvXAmahglTuFSb3w97fStMX+BR81nre s7m8H+DoWMba7yg4HjxZktjfDyY2NllGuRS4Wa/9vNFRDKOF1ZewhgKd7PAN 28fFEJPReCPjA+OAkqJUHIDE0CER+xoNvbMRtKr5BVyQ62twH8/BJCtdLHYb BiGRf8nTVgl+vn4734QPQ4LnG5M1HkrgBKzbPJwyDE6Bn1UPBCrh6KaEb5Lq hqE6jupKjFcCYZPpT+iPQFUFj32nXgl/nN7T/+PFEfjFxvS8no8K7h8Zeh97 /BUUW9acnDkwD5bZZVPzpqOQzX12qLRoER67T5qeXDMOzW9NH3+5yEIPQx1R ResEHGd5X3bcswJnSOnlOdZbmOjRbSzOX4VKL1cqzHgatJ53l+6nVyOoc6ac 5DLwbi35VRmkib3ltZLbLiTg0Y0bzdLZKOOcEp6dJkH2RQaWjmhh3ao7cZb/ kYND0pNRXu5HmB/IDfFargBZ3XBDxw1tfH6g5vSfJxRwQWdS9rqHg2VL+jMN LxWwosuvr3NSBz1udBuzPWaB9/N1TuTG9WjYw9kckDMLW4+kj4f76uE267yZ rCezQF+pi+Xu+xgXyNSp+dUUCMRS/9yL+vhux7bOblcK1JKjh5rvGKCR3NM9 4yAF4c6D7eVDG7BxG0rYAgq2SF/+e1ZzI54y6BbqVlKgkG1NU7fg4jpvr1BO OwVZH5/TbA8zwuFQ995dIxSwiq39QuKN8VXEHrE2RcGZHLs8My8TbF+5cjRF jYaZfs+yeIkJHh/8oL9lPQ2B3SrdshhTPNb57vCoGQ3fi52cqpaZ4Zjrz/xQ BxqsdlUbTF0zQ52fVmUludBwK3MgXMvCHDnaKvkM0KArOuGj9sAcbxoWulZ7 0xBf3S6Q+llgszTKOTKABo7e18WzzyzwWFRWyc1gGkqyYiNexFqidWm5su9L GowrLRLL3ltidlJo/N1wGnIGeS7elz5B7koPv6YIGl43uIQ9MbbCjOgXm8Mi abigG+F+rsIKeSm1OsIoGvROzHfr/ssahWfcn1w5QENB/ucPL/RYow+3KSKQ T8OSUJPXe9gGj/UIbv1+kIaqnesf7mTZYlGhoFJyiIagwo5UYa4tWo6wrcdi aJDQqrG3FnZIhpxsqDtMA+9D/211oR1mUnaV/G9oMEifc9m93R5NxIkxarE0 tK27nHim3x5HRB85nWN8MGhgtWA/gS21D93OM7afru9bzidQI1i+I4vxbM4P 11MOEajZRPoLGKe373aJjiPwlOhI0FXGP3gNHXRPIrBuyEerjPFTN2nLmywC x09eSW9m7Gw1ddb7LoFXd2hHtDBWtTz94oGQwNfklq1tjB9F/2roVEfgvYnk 8Q7GATe+FXIbCHRXV27t/fsfVy6lRARWbRJ9P8L4R525HTcHCMwQmkVKGe+r Ea81kBD40tXF4i/GVsH3nucNEWiqOnfnNePavJT4VCmBk/N9t2SMOzXmS4Kn CEzwWDhAMi74RRLXJiPw2dNXRgrGu30euHrKCRQmT+TTjMcz0nqs5wgc/XqN 7zvGleZ7C4vfExhmN7P4nnFi0/YY3XkCg0QFNSrGblHGm7MXCUxmL/IXGLP+ iQP+HwI3M4M= "]]}, Annotation[#, "Charting`Private`Tag$6639#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwdz3k41AsXB/DfmKFBCN2yTGTPMki33BBHJWmRSJaSLFEKJVmSaUTSIi63 LOlFixK6QrLEiZRtJNtV9mVIss6USrjv733P85znPJ/n+8d5vkru/rbHBAiC YJP7vxs2sc0/U5KFm/954/s7QcDxVJnzi4KPMbG0pe4InQDP0C/OYoP5OJnW q3J1BQFf7Fj6UhlFaMn+zCqUIeCPC6efGNa/wEyPbx971xLQ1tPZq5dQhr92 UDbSNQlYaL4/9WhVBdpricUbrCdA3cK8TKv2FQrPqu64Yk7ALN0lYbS+Cj3a 9TOfWRFw85qbU3hlNVa8MFno3k9AESdfZdnlGjzDOlCg707AA17T4wdPavGj aJRC1yUCMq1Nx0941OGG6bhQ2nUC9EX+7X++qh5jW++06yYSsLw+Qj7NrwHN UwqvRd4nwCl7unhhgoPZ6sNzOjUENDnc2dMS2YRUken9Dhyyf8/B4rjV79Bl cj43op0AbSdXn5BNzShZJOXxD5eApIXLzT+fvMdQ863NFwUpYNif7i878R7b VK21nohRwEHbQHKDTgsy6c6X23+jwKmAG2Xs7BYcfHfGWFOdApySz48TU1rR 6nDmo9YdFPj0cHje9GA7ygYTbLUYCviZLBf8fq0dzzov794XT4HOS3nJDGzH pi0ym84nU8Bri79xlVoHRtD0J949poBJs2t290QHfv7T1TGkngIlwa+/ah7r xNLcSv1GEQEIChw5p3q7E3WaFI4+lBaATc2mBnlvOzFjkhV3kSEAThlHRALV P2C0rtnUBl0B0I2hbmMMfsAD+ZiTtl8Ahg1Ke4u3d+FU4St1v2QB2Bfoa1L6 vgdVy6sZkupU6AhzzTL83oPJ3cp7vuhSYZwqEReyphdFFy6FvTGkwul7EskW J3qRZ7KtK9SKChe97tiqLfUiVr5OGjpFBUUHZtffa/rRubpGqqiQCkXUAp59 2gDG1b+lO5jT4O6HyseeOQPoGUkXvWNFA1fG8yq3sgE02rJLrH8/DZYdsOnU +DCA3PwmSW93Gmg7DLPGpAbRKLldLjiSBuJCsveOXh5ErteQTtIbGii11Znp uw6hEW3JptNKEGo5rSeqJoaRa7oxxcFWCGScG9SMfwzj0zqWbICzEOQWGgjk ULkYYluXcsNdCNwkzrn6ynFR1OtQalWAELzvPBXEsuSiQWzEHe1EIXCRzuH0 p3OR3d109982IdCL9O6g7hpBRojXvUf2y+BZpWAUO3oU7Z8l5Xx3pEN9g3FH Sfwo/hGykah2o8O3hCtyn1NHkWHWduCGDx0kwvXy1v89ikMc8aW1F+ggMhKl 6Nk5in5jl212pdOhQbPVykH9E0YrBn5LG6FDi3TxsbLKT1gSa2O2NUAYjM6X i+zrHkOGj3Dbjesi8HNvi8F/8sfRPWyw4HbycqjOaEx1dZ/Apda6R7daxGGn xQ/x9HeT2C1tKyHHXgHlTit4SV+nMGicl3U/ShIS7W96xNJmcIunfL1GuhQU hy/mpQXO4DaRYMvRLGm4W21dX9Q+g51POdGB2SvB6eWJ4mS9Wbw9l22zWPUb 5Mo8Gg4NncW/fMqCXtWugpWLCjG/4yxWRthqsIZXA0Y4N1+dn8WgJG6y6LwM PDicUvJWi4e+H7O92hZlYehHm6uDIw/jKucqb62Wh9qlvb224TycaQ46m6DA ALqd8HmlDB6GR7EKrhqvAZmzImHZFTxMNmQX2NgpwOZTm3JSOnjIW/Vc3NZR Ecz3sAoUJ3j4klMyn7V5LYh/OXPaYYmHCg/0GdUVa2FmaPbXqBgfa8+rKViY KUHq6q9PrzL4KKRy5NibRiXQbpe7dWgdHz3d8ruGrJVBNe0ow28DHx3P7Li1 2KMMJZ/Svd+a8DGR7aTPPq4CLg7rr+3bzscpteif6eMqYDAk+d1lNx/70uaW VQSrwkLv9uOi+8k8m709+JcqKGtv5PbZ89Gi+IpbygU12Bo2FevhzEeDv1pf l9DVYSBeQlDwCB9N6YYHzl1XB06NX623Gx8H9vZr6slqANTaNCh48jFTM5MZ fVcD4izNb5704mM2bUDSQnEd2DwPT4s/zkfLZ+7GlNx1EOqofXKnDx8Fvy4l OOtpglJhFWXwJNmH3q/3rEITonLU6Ya+fOTJm+T5W2lBbNC7Vzv9+Jj7psCx sVELNMwfyln683EBfK1UnbQhVNttu9RpPp60NT8u16sNfmOedRWklTwSvEOO 6IDs1nIjlzN89LXQyG0b14H19oMRPaQ/VHQocHyZQBspiesjPeDlPLXyNBO8 fXXTBkh/luivcAlgAkvyez6X9Lzb2OHpICaYa8o0TJBeI/QrVYrNhLdlHuUL pN2t1652SmACsdIuQz6AjxN9PhKjxUzQ+Pggcg3pr1em+3RLmTBWl39MkfSi fuDT4HImZMbMq6mQFo8M3yv8igkCYr5JWqTXa8Rf16lnQkxEjOlm0kH+z5ed 7WZCrPygmDFploxRZ3kvExqVKT0mpK9UVWbRBpjQUpwaCKSTpessbnOZ0B+z K8mSdPmLrsjSSSaoqn47bEW65qirncAME2pSfZV2k+YIc5V385hgZtmYZU26 79BkVc8cEzykCrxtSI/SAv5U+8mEc8MnNGxJT+fNHfX7Rf6L5I/Ykf5xMEz/ xSITrF/uu29Pmvj/6MJ/ASzq9YY= "]], LineBox[CompressedData[" 1:eJwdz3k0lQsXBvD3OIcOQuiW4UTmDC/SLTfU3ipJg0QylGSIUijJkJyOSBrE 5ZYhfWhQQldIhihS5mS6yjwckoznlEq43/t9e6299vqt54+9HiVXX+ujAgRB cKj93w0Z3+qbLsmGjf+88f6dIPBYssy5BcFHEF/cXHOYSaB78BdHsYFcmEjp UbmyjMAvNmx9qbQCMOd8ZufLEPjH+VOPDWufQ7rbt489qwls7e7o0YsrgV/b aeuZmgTON92bfLiiDGy1xGIN1hKobmZaolX9CoRnVLdfNiVwhukUN1JbAW5t +ulPLQi8cdXFIbS8Esqem8x37SOwoCFXZcmlKjjN3p+n70rgfV7jo/uPq+Gj aIRC50UC0y03jx13q4F1UzHBjGsE6ov82/dsRS1Et9xu040ncGltmHyKTx2Y JuVfDb9HoEPmVOH8eANkqg/N6lQR2Gh3e3dzeCPQRab22TVQ/bsPFMasfAdO E3PZYW0Eajs4ewVtaALJAim3f7gEJsxfavr5+D0Em25puiBIQ8O+VF/Z8ffQ qmqp9ViMhnbaBpLrdJqBZDpeavuNhif9rpdwMpth4N1pY011GjYUfX4Un9QC FofSH7Zsp+GnB0Nzmw+0gWwgwVGLoqGPyVLB71fb4Izj0q69sTTsuJiTyHrZ Bo2bZDacS6ShxyZf4wq1dghj6I+/e0RDkybnzK7xdvj8p7N9UC0NiwJff9U8 2gHF2eX69SICGOA/fFb1VgfoNCoceSAtgBuaNhvkvO2AtAl2zAWWADqkHRbx V/8AkbowuU5XAHWj6FtZAx9gf+7LrJR9AjhkUNxTuK0TJvNfqfskCuBef2+T 4vfdoFpayZJUp2N7iHOG4fduSOxS3v1Fl45jdImYoFU9IDp/MeSNIR1P3ZVI NDveAzyTrZ3BFnS84HHbWm2xB16Wv04YPElHRTuy8+9VfeBYWSVVkE/HAnoe zzalH2Jq3zLtTBl450P5I/esfnAPZ4retmCgM+tZhUtJPxht2inWt4+BS/Zb dWh86AdubqOkpysDte2G2KNSA2CU2CYXGM5AcSHZu0cuDQDXY1An4Q0DlVpr QN95EIwYi1YdFoJY3dByvGJ8CLib1yfZWQuhjGOdmvGPIXhSw5b1cxTC7HwD gSw6F4Ksa5Kuuwqhi8RZZ285Loh6HEyu8BPC9x0nA9jmXDCIDrutHS+ETtJZ DX2pXOB0Nd75t1UI9cI92+k7h4EV5HH3oe0SfFouGMGJHAHbpwlZ3+2ZWFtn 3F4UOwJ/BK0nKl2Y+C3ustzn5BFgQev+615MlAjVy1n79wgMNogvrj7PRJHh CEX3jhHwGb1ktTOViXWaLRZ26p8gUtH/W8owE5ulC4+WlH+Comgr2OInjEbn SkX2do0Cy0u49fo1Efy5p9ngP7lj4BoykHcrcSlWptUnO7uOw2JLzcObzeK4 w+yHeOq7CeiStpaQ4yzDUodlvISvkxAwxsu4FyGJ8bY33KIZ07DJXb5WI1UK C0MXclL8p2GrSKD5SIY03qm0rC1om4aOJw2R/pnL0eHF8cJEvRm4NZtptVDx G2bLPBwKDp6Bv7xKAl5Vr8DlCwpRv7+cgfIwaw320Ep8GebYdGVuBgISuImi czJ4/1BS0VstHnh/zPRoXZDFwR+tznb2PIgpny2/uVIeqxf39FiH8mC6KeBM nAILmTbC55TSeBAawc67YrwKZc6IhGSW8SDRkJNnZaOAG09uyEpq5wFvxTNx a3tFNN3NzlMc58GLhqK5jI2rUfzL6VN2izxQuK/PqixbjdODM79GxPhQfU5N wQyUMHnl1ydXWHwQUjl89E29Emq3yd08uIYP7i65nYOWyqiacoTls44P9qe3 31zoVsaiT6meb034EM9x0OccU0Enu7VX927jw6Ra5M/UMRU0GJT87rSLD70p s0vKAlVxvmfbMdF9VJ7J2Rb4SxWVtddze235YFZ42SXpvBpuCZmMdnPkg8Ff La+LmOrYHyshKHiYD5uZhvvPXlPHhiqfak8XPvTv6dPUk9VArLaqU3DnQ7pm Ohl5RwNjzE1vnPDgQyajX9JMcQ1aPQtNiT3GB/Onrsa07DUYbK99YocXHwS/ LsY56mmiUn4FbeAE1YfZp/e0TBMjstSZht584Mmb5PhaaGF0wLtXO3z4kP0m z76+Xgs1TB/ImfvyYR69LVQdtDFY22Wb1Ck+nLA2PSbXo40+o+41ZZSV3OI8 gw7roOyWUiOn03zwNtPIbh3TwbW2A2HdlD+UtSs0eJPIGC6K6aXc7+E4ufwU iZ7euin9lD9L9JU5+ZHIlvyey6U85zJ6aCqARFNNmbpxyquEfiVLcUh8W+JW Ok/Z1XL1Soc4EonlNmnyfnwY7/WSGCkkUePj/fBVlL9enurVLSZxtCb3qCLl BX3/J4GlJKZHzampUBYPD90j/IpEATHvBC3KazVir+nUkhgVFrV5I+UA32dL znSRGC0/IGZMmS1j1FHaQ2K9Mq3bhPLlivIMRj+JzYXJ/kg5UbrG7BaXxL6o nQnmlEufd4YXT5CoqvrtkAXlqiPONgLTJFYleyvtotwgzFXexSMRzOszLCn3 Hpyo6J4l0U0qz9OK8gjD70+1nySeHTquYU15Kmf2iM8v6l84f9iG8o8DIfrP F0i0fLH3ni1l4v+ji/8F3du1hg== "]]}, Annotation[#, "Charting`Private`Tag$6714#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0Hk01YsWB3CvPH7HeAhlyFCGwi8ZS1fZSRF5TS8iL48oZOyopNtJylQZ mowRmUryOKZuFztCJOoYn/EajjGcX7ejkbq/9/Zae33X55+9vmtreAQe8loh JCQURe//0tozQVmg+iua9zT6mwgRkLVrrnoiLQ8Hg+4s1YgSwG6+Ye/gVIxs cfcbNtIExMturjWL4aB6/iYlrgIBg7Kxw2uPV2A9LD1yUSXgTMPd6zeHqtBz oGULT4uAL0ZtT13VnqPIueQmf5IA08Iqzg71WrR7YsQLtyAgYKT87TM+4txu IZaYNQHdxbZ1/R0vMH6k7W937QmwfTV6PsOnHjvlfdQKXAjI9vuh+sa8EV3D H7i0hRLQe0dbp3O4EX8o+c84hhPQXHdl9TS7CbMqtoWORBOg6iTX1lL6Cnmz 3fc+JhGg+9JhT99sC/ofkeAqVhBwZ2bw0Kbg18ik+txyqgm4FMYurRK8Rs71 ggX9BgIun5xLEha04ie0koBOAgqes3TW9rYhW/eCzckPBGj4Fdu22LWjeuOe Hv4XAtKwpTG1uh3r3eS8LggxwILo4X9Oe4si9/4TcVOaAX4Rmda2D99hws+J Gg7JAGeiuzZdrwOzug6Z/PRhgILBjxBdlw60ClR/GRPMgJOj0VXGMR3IYywc lL3AAKlHStqNYx240TI2UCuGAS4Tg79Z3+5EzmMstM9ngMytXVY2Q134kq2v kTLGgP6ubyr2RDc+H3u9/HKWAXtVbISmjLqxZI9PP/9PBjRIN92iorrxvlT+ HZuVYnBY2z0xVrcHQzLVRD6vF4OG4Hm9aPde1KyVfX/ESwykeMcO703tw2vL X8pXTYvBkyvFI2XP+zDMPfmWJSUGBrGrRCcH+jCo0TTg9BcxeB0bHZO7th9d 487ovCTEYfjwZbHszH40WTuXemajOChm523bnjyAPIs/2FxfcTB6Updz9NQQ 7v610TZhXhz4D0iu8ZUhZHrfj9y8KA45DQWlC2lD2H+YVc9dEof9k6484fYh DNLTsJCTkAB9L0+daqNhvN//q0GqrgQ4Gv6+Ne3TMAq2mijknJIAZWejx99M RjB38eF45agEKDV9z0yMHEXhwHD2cLckHJjwk7FIGEXNnHpf5yFJePHQJHY4 ZRR39Qo7dfEkYfbVrVdE0ShGWMYavP4oCXb3avUF3FEUYt4eqZCRgq/SUUHG KmO4XJJjFecgBQfzpBw5hWP46c8mEYtGKXCbUq3cwhnH6XOSCanl0nDeMDGp 9Pk4uoaot1RWS8OKj5U7NV+O49tg45VdDdIg4x2vIegcx0o/5/NS3dJwdKxx veXiOF7zyHO7uigN7qYOTdfNeMgsUE0xU2ZCUMhs0tZyHhbdrvRWd2WC/Kff m0syJnDcZ5IhGGKCx/gtS73cCYzRl3CqGWVCYE3BxuzCCdTnG+ZGTTChdVb1 9OWqCQwJubRDcZ4J0Z06uiLcCRS+LMfascSEnPNXy2HlJGrftRqMUZKBAK1D v8R6TqJvbWbxWicZiDt9RsleeQopWafDNu9koPUq2RoQOo0XJkcceT2yICLz mbEnfQbvNXTaVP13FSS6/FOv+Nos7s/otTRrkQObIK6Lh9t7jMwSfPjRJg/H TFN+sWTOoUvmuiesOgV4tDlSoaVgDuvyfzuoWrIa9ku9ENHbMo95fT4c2bI1 ILT+IG/0yTzqiOopleUqwlYPrtc/lBZQy+3vFhmFSmBXG7smKXQBK+ts7Wue KEMTKzfsRuMCTqhmuMemqwDvwGe1e1J8vJUvZvTgwVpoLT15c5MdHwc2xDLc b6vC9ONNlvcj+JjdrZ7ul6oGMtE7r7Zz+HipiSnZ66AOk+/a5zT7+Rj6QPGd Q5M6BO9PqPL/ycdSSYOgGVsN4H5cEpqRotD865tVA/UawGE25C4rUyjuq1Z8 ats66HR2ZXltoFA5iK2lWL0OGE+p/HAjCsM+emWpm64HVlO5ipQFhaslXL7s e7YeDsY9HTK0pvDH4xU2cuaaMP9sl1yHHYUmjcaphqWaED924638QQofnQ1u ZhlrQdklTTnSkcLTOVu+iz/VAmaVc9kNFwrPO3I0LTW1Qae1Jv/pcQrrM831 kvO0QT5tuYzwoNDVc6/pblUdONq/7aiRF30fvVTWZOtAn7B3Xv0pCo8li4nu VN4A7maybIEPha2CE9PCdzZAooSFmYgf3X+qJX9ebiPUXXXaV+ZPYajTM2/9 +I2Q7h5xbk8gheWuZaKJMroQbp8lSA+i/zPlkRF/Wxe2F784URJMoSQ/zWxc TA9GWQY7ys9QqHbzjyLXOD2Y+hQFUSwKr+QXaeuL6sOiSUyCeQiF+ns2JSex 9YH1vs5sjLb8xWqelhAJ5ivOsnzPUuhAdpqKXyCBu47z2I92ysh3QuciCQzl hOEA2mN3NAetLpFwgtKzZtEO/XY2IuwKCUW5xM+LtHNfrXk7E0uC0g7CJI72 N/fj3s1pJIim9WQV085PmkmLrCZhqiu/qIT2h72yAdm1JPhObq7i0LZY3raz 5gUJ80Vnmytpc0/cnBI0kHD9eu9ALe2lzQYmnm0k+Cg8bmqnfbg1pM1qmATD 86zad7Qz2RlZx0dIWPi0sqKD9rRhEytsjAT7I2GZPbTZKauVOJMk7IvgegzT LvR6flKDT8LTjtEDI7QX14ybb/9AgsO22u1jtOGNuKTzRxIEVsOrJml3G/2r LPEzCcWu65enaKtPRkYVfSVh1eUtEzO0fVOLnZu/k/BvL+U372lX7OvV5y2T cPL129J52kL/n03wF98VL+w= "]], LineBox[CompressedData[" 1:eJwd0Hk01YsWB/DzyuN3jIdQKEOmwo+Mpav2TgOR1/Qi8vIIIYqOSrqdpIhK SCmKyNSAxyG6XZTpZAgdwiNcwzGG8+s6NKr7e2+vtdd3ff7Z67u2lteJfT5L GAxGNL3/y23e8Woi9V/Buqs+yIJBYMbW6YrR1BzoC076XilBIKfhmqOTSyFw pDyv2ckReENhXZVVDBc0c41V+coE9inEDqw6/Axq8PsjN3UCT9bdunq9vxy8 3zeuF+gS+NmspcBd4wWIn77DCyIJtHxSzt2sWQUOT80EETYEHh8sbXsufAnT 2xlsyW0EdhbaV/e2v4Ibgy1/u+VIoP3roTNp/jXQoeSvkedGYGbgD/U31vXg HvHArSWMwO4kPf2OgXr4oRo06RxBYEP1xeUTHB5kPNsYNniFQHUXxZbG4tcg mOq8PZdMoEGt046eqUYIOiDNV3lGYNJk3z7jkCZgUT0eWRUEng/nFJeLmoB7 NW/WqI7AC77TyWKiZlh4aSuNHQTmvWDrr+puAY7BWTvfjwRqBRbaNzq0gmb9 ji7hZwJTXzbWp1S0Qo2Hos9ZBhNtiC7hp9Q2EL/9n8jrckwMjEzfZv/wLcT/ HK3kkkx0JTqr7hm2Q8a7fRY//ZmobPIj1MCtHWxPaNbGhDDRd+hKuXlMOwiY s3sVzjJR9pGqXv1wO6yF2BO6MUx0G+37bdvNDuA+fvnEMZeJ8olbbe3630Et x0jr7jATe999XelIdMKL4abF2ikm7lxpxxg364SiHf69wj+ZWCfHS6SiO+G+ bG6S3VJJ3K/nmRBr0AWh6Rrin7QlsS5kxvCKZzfoVCl8OOAjibKCQ/t3pvTA 5cXPpcsmJPHpxcLBkhc9EO55JxEoSTSJXSYx9r4Hgustjx/7LIlNsVdislf1 gnvcSf1aQgoH9l+QzEzvBYtV0ykn10qhSmbOxk133oPA5g8OP0AKzZ5WZx08 2g/bf623j5+RQuEDkm9+sR9Yfvej1s1LYVZdXvFsaj/07mfX8L9L4e4xd4FY az8EG2rZKEpLo5GPt36F2QDc7/3VJMVAGp1Nf9+QujAAog0WyllHpVHN1ezx V4tByJ5/OFI2JI2qvG/pCVFDIHYigjPQKYN7RgPlbeKHQCerJsC1XwZfPbSI Hbg7BFu7xVzeCWRw6nXiayJ/CCIh1qRpTgYdblcZifhDwGDdHHwmL4tf5KKD zVcOw2JRlm2ckyzuzZF15j4ZhoU/eeI29bLoMa5etp47AhOnZeJTSuXwjGlC cvGLEXAP1Wwsq5DDJXNlW3RqR6AtxHzpuzo5lPe7oSXqGIGyQNczsp1yeHC4 XhvmR+CyV47HpXk59LR04l21EgArT/2ulRoLg0OnkjeUCiD/ZpmfpjsLlRZ+ byhKG4UR/zGmqJ+FXiOJYJg9CjFG0i6VQyw8UZm3NvPJKBgJTbOjR1nYPKV+ 7EL5KISGnt+sMsPCKx36BuL8URC7oMje/J2FWWculeLSMdC7ZdsXoyqPx3X3 /RLrPQYBVemFq1zkMe7YSVVHtXGgFFz2272Vx+ZLZPPxsAk4OzboLOhSQHH5 T8wd9ybhdl2HXfl/l2GC2z8NCy9Pwe60brBqVES7YL6bl8cHiMoQffzRooSH LO/+AqxpcEtf/ZRdrYyP1kUpN+ZNQ3Xub3vVi5bjbtlX4obrZyCnx5+rULIC Gdp7BUNPZ0BfwlC1JFsFN3jxff6hOgu6Hn+3SXuiig5VsSuSw2ahrNresfKp GvLY2eHX6mdhVD3NM/beShTs+aRxW1YIibmSZg8erMLmYt/rxg5CeL8mlul5 Ux0nHhvD/UghZHZq3gtM0UD5K1sutXKFcJ7Hkul20sSxt63TOr1CCHug8taJ p4khu+PLg34KoVjGJHjSXgv5c98Zk7IUWH95s+x9jRZyWXXZi2oUSAVoFB7d uBo7XN3ZPmsoUAvm6KpUrEZmAZUbYUZB+JxPhqalNrJ5pStlbShYLu32eddz bdwbV9Bvuo2CH4+X2Cla6+DM862K7Q4UWNSbp5gW6+CN4WttSnspeHQqpIFt rosl53UUSWcKjmWt/yZVoIuscteSa24UnHHm6oCOHuo3V+YWHKagJt3a8E6O HiqlLpYQXhS4e++03K6ujwd7Nx4086Hvv/RZuSJTH3vE/HJqjlJw6I6kxBa1 NehppcAR+VPQLDoyIZa0BhOkbazEA+n+4425M4prsfqSy66SIArCXJ77Gd1Y i/c8I0/vOEFBqXuJRIK8AUY4ZojuBdP/GfdKu3HTADcVvjpSFEKBjDDVakTS EIfYJptLT1Kgcf2PfPc4QxxfiMZoNgUXc/P1jCSMcN4iJt46lAKjHcZ3kjlG yP5QbTVMW+lchUCXQaL1klPsgFMUOJEdllJnSeSv5j4OpH138Buhf45Eplr8 wHHaw0k6fbbnSTxCGW5j0w77eioy/CKJ+dnEz3O0s1+vaJuMJVF1M2ERR/ur 52G/hlQSJVK7Mgpp5yZPpkZVkDj+Lje/iPbHnQrHM6tIDBhbV86lbbO4cUvl KxJn8k81lNHmH7k+Lqoj8erV7vdVtL+vM7HwbiHRX/kxr5X2/ubQFtsBEk3P sKve0k7npGUcHiRxdmHps3baE6Y8dvgwiY4HwtO7aHPuLlfljpG4K5LvNUD7 ic8LXy0hiQXtQ3sGac+vGLHe9JFEp41Vm4Zp4xspGdc5EkW2A8vGaHea/ask 4ROJhe7ai+O0NceiovO/kLjswvrRSdoBKYWuDd9I/LeP2psPtJ/t6jYSLJLo 29RWPEOb8f8xxr8A+57s3Q== "]]}, Annotation[#, "Charting`Private`Tag$6744#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0Xk01YkXAHDLoEi/71vKFj1krW8/S1K2uSkzvQZHtEiSEU80GU8Za1qY qEk0qpEwKEKERFHmeshWSHmIh/fwwqNNRpOt+f5+95x77vn8c+8992r7/Ozq JyMlJZVA5f+qo0bGyzqlcFwzObxZXYoATmytwv6KbKRdNU69LEvApaWINq++ fJS3Dfkio0DAHuLUMlePezgvrvIIUyQgSotWthRThh8uSz+ZVCZAFBoaQr9Y jmJLtqY3jQCfgkaLSp8K7BMmx3QxCci5rbrpY/4jfGrG2lajQQD/5db3M7rV WN3vn2O6loAvBr77VS4+xtK4Etk8HQIWwvetM9X9C9O67RovGxHgXchJ4Xgg Jp0+byBLEuCv/tSvwb4W4wzbE8JMCNjZ1zRg7sXDoMhDP3hbEkALnVymJObh Ed3coi4rAt4enVnV5V+H7s+nlNl2BEx0B4vP+tTjdq3oF6YOBPjWaH0xM3+K qnVpe2XdCChmbtkwkPUUlY8NV4bto/rditK2WdGIMkxj1akDBByU42nfEDTi lF9VX5c3AWqtHuPIaUbe8t7DeUEEpDAXI9WeNmPl/bU89RACuuOiLkxpt2DR QX+dpFAC+mWqG6GnBa8Xz46GRROgJS2IMDV7hoG7VwWyLxKgkNjbsbK8DZk3 XE9O5RIwm/7SSrTUhsvt0/jeBdR8C1+XXnY7LklEm/lFBNg6BFxwGmjHcRvu l5pyAqTX7Iz9NNeBNcKkmCQeAePBG0vLFDuRY9iWYDZAwJmHOjUFZCfqRD92 +iik/mu/2tnRpROHOgropaMExDiLPqZe7UT3sPPp5BQB3JhWjFV7iezGb0sN 5wnYlD30Wm71K9zge79HS40GP9DTGrjDXTj95x/6SntpkB74dTZusQvvffp1 ssWdBst4A40Bqnw89v3J0gRPGiz8PKt814mPo+9crOR9aXDIZ2hEq5KPfFtF Z+kTNODa6pS7ne7GR/3RoZ+TacDLu5YSN9uDp1R8Gkae08DBzcfXX6kXvfRV pY68oMHxetm7/2X1op1Fu/XwKxrIeixWcNm9uORqVS7so8Hd7Qr29Wm9eOYy PWdgnAbXD9z16tryGs/J1Z/u+YYOo2k5sda+fRj/Sdf6mQ0d4qetpqXPCfBK h7jsfhEdkksSahKvCPC5nawXq5QOGk7DfMVsAcrfYyleLqeDfOGfe1+jAKMv HfQJqKZD7x+p+1sXBMhhd9JZzXSobRzOo50cQJv6JycSR+jQXxvV0+k+iGOV KRZH1RlQbPB3wndfh9A2c1uVZgIDVl59s/CTvBDtHsm18H9jwJCqeo+JshDh ZUtvYhIDFA8YMO6oC3GHvOs/i9cZIPUw/JqzhRAdg3wsB3Opfj8eG0wOEKKn XWxFZj0DwthuqSrtQowcbChb+5UB017cZzkJIqzU2lmo/QsT2Fap33QkilDw 6ZVJWgQT5JIGkz7/LkKZlsMP6aeYENj8ucg2Q4TOJ8IaZOOYUDuvxM0sE6G4 KW9QfIUJLl1u8RWvRcjkyjEKi5lwIqe42c1gGLn1dVFmYiaUvM32XFE1jBuO 2jpt37MKFDjzA2THCAYfGXi9uGM1BE5ySuorR9ExdO+ZPaYq4KqzzLo8WIx6 Lk96m5VVofNITPq6tW/wmaBNvXtBFVSUg8JPF73BILP2ldICNUjxe+/9Vm8M CzLz1jRXqkPV3yGx5jfGsOyJEdPwtgZMO1Vx/T+PYeWtmzW5Z9fAIqFd+M5l HC/YPHJ5wtWEarGDydOMcZyZLFoMOqQFzxQDh/mCcfT0Tfb8dutaEDfpH1ZS m0D290muXQwWRLXOCU/tmsDh2rYOlVgWzL7J3ZQdMYE+KSLenXkW5IpUrE1z JnAjV1QrF6INNUHLj12qn8Dw8t7UEKE2YExyacDIBBY454rXu+uAUmOG+Mbi BLo7ByjNNOmAV7tQeg9Tgm4H1OwuWuiCzJDqA5qxBC1qMsU/FenCRzWl8g/W Erz+qwbHS2MdbNHpXb/oKMGBvOMH01PWASPeIiv/oASDX909lL9cDyb5bf95 6C/Bc76iLfVheuDQyvu89YQEo5ynEozf68H+EYFccbQEp9PflWV56cN7m+Sm gTgJVswKxkaf6cODzh7rsksSPFyQ9XuovQHsPeBnopkiwfjag6tXlRmAo5HD Jusb1D4mUyuljQxBz3f3b3aZEtSVOymcTzWEKB3jV1dzJLgwOvZXg7wRPC6K MX6YJ8Enmqb0vlNGcP7qexX1QgnOV3PtlqaMIDhobmp3sQRZZfFDQX7GkNXU L8csleCV+xcSi/uNwV9ljdG++xI8qxrLnGevh+2Z2VNRDyS4v2c3cY23Hg6X HIuwrZRg0ZyK2NZ0A5zjeOfzHkrQyai18UHmBmCNeRLmVRLkl+7WDF9FQmN+ iMKP1RLsT3/huCuOhPMRMrN+lI96ZOhuPU/CIx5PFEh5RiVwziCBBIcV/NKT lFemyObLXSJB8XYkmUAZLmyW5aWQYNO9Nuce5duh6VWWt0jI07wW+4VykPNR fb06EiosmBpLlOeULBYZDSTY130qkXlM3bNFukumkQQ/Vl+nEuWsHTfPCltI 0Fc9PqtJ+aVVu+BmJwlz8dP12yhbGmxKoYtIWHnI0Ow7yg2jUoHSIySsGuNn 7KLsktMGH0ZJYLVnHHejHKjp/65tnITR/GXvfSmnM9LYFz5QntRlB1A27OSw wqdJuGNZl3WccsVl88+cGeoecYk7f6Hcvrzt9o5/SNiyuyY1krJH040o8zkS +mtC38RQHovjuOoskOC48ZFpLOWT9uZGtCUSsuXOR8ZTlvp/bIR/ASdPQt0= "]], LineBox[CompressedData[" 1:eJwd0Xk01YkXAHDLoEi/71tkix6y1refJSnbvSkzvQZHtCIZ8UST6YkhSgsT NYlGNQiDIooiWWPy7CqkvIgn7+GFR5sMk23m+/vdc+655/PPvffcq+P7k5u/ jJSUVDyV/6tOmhkv65UiYPXE0CYNKQI5MXUK+8qygXbNJOWKLIGXl062e/fl g7xdyFcZBQJ3E6eXuXnch3lxlUe4IoFR2rSSpegS+HRFumZCmUBRWFgI/VIp iK3YWj40An0Lmi3LfcugT5gU3c0kMOe22sbP+ZXQZM7aWqtJIP/llo/TetVQ 3R+QY7aGwK+GfvtULz2G4tgHsnm6BC5E7F1rpvcnpL22b75iTKDPXU4yx+MJ JJ65YChLEhig0eTf6FAHsUYd8eGmBO7oaxmw8OZBcOTB732sCKSFTSxTEvPg sF5uYbc1ge+PTKt0B9TD/ueTymx7AsdfHxef822AbdqnXpg5EuhXq/3V3KIJ 1OrT9si6E1jE3Lx+IKsJlI8OlYfvpfrditKxXdEMMkwTtckDBHrK8XRSBc0w 6V/V1+1DoPpTj7EnnFbgLe89lBdMYDJzMVK9qRXKH67haYQQ+Do26uKkThsU egboJoYR2C9T3Yw9bXCjaGYk/BSB2tKCk2bmzyBol0oQ+xKBCgm9nStL24GZ 6hY6mUvgTPpLa9FSOyx3SOP7FFDzLf1ce9kdsCQRbeIXEmjnGHjReaADxmy5 X2tLCZRevSPmy1wn1AoToxN5BI4d31BcotgFHKP2ePMBAs9W6NYWkF2ge+qx 82ch9V+HVS5Orl0w2FlALx4hMNpF9DnlWhfsD7+QTk4SyI1++iRG/SWwm6HY aJ7AjdmDb+RWvYL1fg97tNVp+D09rZE71A1Tf/xuoLSHhulB/8zELnbD/S+/ TLTtp+Ey3kBzoBofjn4XWhzvRcOFn2aU7znzYeSDq7W8Hw0P+g4Oa5fzgW+n 6CJ9goZcO91S9zOvobL/VNhsEg15edeTY2d64LSqb+Pwcxo6uvv6BSj1greB mtThFzQ81iB777+sXrC37LAZekVDWY/FMi67F5bcrEuFfTS8t03BoSGtF85e oecMjNHwxoF73t2b38B5uYYzPd/QcSQtJ8bGrw/ivujZPLOlY9yU9ZT0eQFc 7RSXPCykY9KD+NqEqwJ4bi/rzSqmo6bzEF8xWwDy91mKV0rpKH/3jz1vngjg 1GVP38BqOvb+nrLv6YIAOOwuOquVjnXNQ3m00AGwbag5kTBMx/66qJ6u/W9h tDzZ8ogGA4sM/4r/9p9BsMvcWqUVz8CV194t/CgvBPtKuTb+rwwcVNPoMVUW Ar5s601IZKDiAUPGHQ0hbJd3+3vxBgOlKiKuu1gKwSnY1+ptLtXvh6NvkwKF 4GUfU5bZwMBwtnuKaocQIt82lqz5h4FT3txnOfEiKNfecVfnZyayrVO+6UwQ geDLK9O0k0yUS3ybOPubCGTaDlXQTzMxqHW20C5DBC4nwhtlY5lYN6/EzSwR gbgl7634KhNdu93jyt6IgMmVY9wtYuKJnKJWd8Mh4DbUR5mLmfjgfbbXiqoh WH/EznnbbhVU4MwPkJ3DcPzwwJvF7aswaILzoKF8BJzC9pzdbaaKbrrLbEqP i0Hftaa3VVkNuw5Hp69d8w6eCdo1Xi+ooapycMSZwncQbN6xUlqgjsn+H33e 649CQWbe6tZyDaz6KyTGInUUSmqMmUa3NXHKuYobMDsK5bdu1uaeW42LhM7d D65jcNG20rWGq4XVYkfTpowxmJ4oXAw+qI3PFIOG+IIx8PJL8oIta1DcYnBI SX0c2N8lunUzWBj1dE54euc4DNW1d6rGsHDmXe7G7JPj4Jss4t2ZZ2GuSNXG LGccNnBFdXIhOlgbvPzo5YZxiCjtTQkR6uCT6KTiwOFxKHDJFa/br4tKzRni 1MVx2O8SqDTdooveHULp3UwJuB9Qt79kqYcyg2qPaCYSsKzNFP9YqIef1ZVK P9lI4MYvmhxvzbW4Wbd33aKTBAbyjnmmJ69FRpxlVr6nBI6/uncwf7k+TvDb /1MRIIHzfqLNDeH66PiUN7vlhASiXCbjTT7q475hgVzRKQlMpX8oyfI2wI+2 SS0DsRIomxGMjjwzwEddPTYllyVwqCDrtzAHQ9xzwN9UK1kCcXWeq1RKDNHJ 2HGjTSq1j+nkSmljI9T32/WrfaYE9ORChfMpRhila/LqWo4EFkZG/2yUN8bH hdEmFXkSqNEyo/edNsYL1z6qatyVwHw1135p0hiPB89N7iqSAKskbjDY3wSz WvrlmMUSuPrwYkJRvwkGqK423vtQAufUYpjz7HW4LTN7MuqRBPb17CKu89bh oQdHT9qVS6BwTlVsZ7Yez3N88nkVEnA2ftr8KHM9ska9CIsqCfCLd2lFqJDY nB+i8EO1BPrTXzjtjCXxwkmZGX/KRzwy9LZcILGSxxMFUZ5WDZozjCfRcQW/ OJTyymTZfLnLJCrejiTjKePFTbK8ZBJtX6/JuU/5dlh6ldUtEvO0rsd8pRzs csRAv57EMkum5hLlOSXLRUYjiQ71Xx7IPKbu2SbdLdNMoj+rr0uJctb2m+eE bSQaqB2b0aL80rpDcLOLxLm4qYatlK0MNybTRSSuPGhk/i3lxhGpIOlhElVG +Rk7KbvmtOOnERJZHRnH3CkHaQV8aB8jcSR/2Uc/yumMNPbFT5Qn9NiBlI26 OKyIKRLvWNVnHaNcdsViljNN3SM2YcfPlDuWt9/e/jeJm3fVpkRS9mhJjbKY I7G/NuxdNOXRWI6b7gKJThsqzWIohzpYGNOWSMyWuxAZR1nq/7EB/wXSUf7O "]]}, Annotation[#, "Charting`Private`Tag$6774#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd1Xk01YsWB3BDVELR7xyHRGbH8atrLJJ2qFAoDQgl11BJwlFU7jVkikqJ JipRokQ0SWzKu3JMx3QM58p0jqmXQomervd7b6+1116ftfda+8+vmneQs6+Y iIhIItX/myNRO/vlckNR+dOgqZIIAfyCZWXmd2/ji6BlhpbiBEgUvj6dfjAH Hb8Zkd6SBLwo//N4wMM8HA330I1fSoA0uy99xuoxRv86r1EgTUBJ8yG1gOCn qBRTqNK0nIDiO+IDxY+K8bkkT3FKnoAzQZw6F5NSHF6us8JckYBm7j9tbI/n +Oc1p2UHlQnYmn9qfFfoC2QohkvGqBKwqD2TaxTxCu3V6+brtAgoz63qSwh4 jUMPJ3981iXg3QO6bdjeMjzHUpqW0yfg+d3KAx9lyrHIOGDMzZCAPwwTvXv7 ytG2LE0QaULAtVWfe5Ifv8XBTW/7sjcQMGrWXz9lUInEdhnemCUB6wJb3rTF VGG4W9G7iB0EnM/xlDHrqkK5j50VWY4EiNfQ13SwqrHAW6SsejcBzC85LbSm auwN2F201JWACLJ+u7joe7T6Y/r2TR8CrF4a88/av0e+mPL1Cn8CoqRSPGuu vkd2gs3VgWME9Hy33jOrWoN5qemJzGACWks9bTXW/gulc9aHlUUS0BSnbWCo Vou82rOO3RnUv8nJuk0etRi0M9fu100CPLdKZ9/JqMUlLQ02alkEvA16ejF0 6Qfc2LN649EcAhpPmocNj3zAe/9GnbkiAiYStSbXJ3PwqNwiUcU6As7dYPoX VXNwOP5KZlQDAZIdhzjZPzjoM6+yYbSZgGTOGhT3rkevEbOgVzwCSm9I3pY2 aMD9FUG9+wQE2HRvDfN604g2R/llVxcIgCoDhxZrLqpWl4RIm9Igus04edSV i5mmIMs2o8HkOsUX/EAuKj1pzOdb0CBX7f68y3Uu0q+P9hdYU/eLfxe+HOWi dKCKk91uGiw4kPTwuBb8ybjAij9OgznRhCxufit2nDwsWLhPg1FxVyeFN61Y zPCuIB/S4EeK+WE7TiumVHlnuOfTQFU0L+bkeCtarfCxfVVEA1psRBqX2YZP i/yenHhLA9vGrc/EH7RhwkQAu7eDBuO/fVsRcKkdzY6fWlS+hA64vj102piH Wf7JmqdO0MGxINiL2MJDMf0HkteC6ZAdtnGY6cDDI18rR5+x6aDPsJY18uWh ccTUk89n6HDvUvAcXuMh54KbiW8CHRR18zntkzycKdTZtvceHXxC/HR8cjtx 17f3/oatdOiYnpVxn+hCsej5ggkTBSCXy3fNzHbhTtOz5C4zBViaLZGSJN6N GZ/mip5ZKMBEp2A4jdGNevt/PGdbU/vN1p2brLrRmTVV+XOXAmRvOFAymdaN OR0jrZLHFeBVcfkXlkEP2ui1/VS5rwDlW2nza/fxMa4t395JlgGRzT9M7Tz5 qF9+W+q0HAOyvy5Ue/rysf3+Rc4dggGnMx8OhIXxUT0k2H5CiQGcq33fvNP5 WLXCzP6iDgNmk7tLTdr5OO/wwa4eGOB/xbZa6PA3sj8M224PZcDzEzZ5aYa9 6FOhsX1zFwMSswhxydGP6N3f7aFQqgiiRm4aNXr9+Eur8/VkkhKksviKMpX9 OC2WHezuvAok+kVPcm0HcIlinnUhSxnyq3JKassGMOKviJBLM8oQkxn9j92q QYzPSBsJrlgNsd47xNzCB7Hk7ljYpnQVqKnsbW6vGURzkD5846AqRB7wcp+R GcKvKS9KApXXwK7VRl80HYZQPnmJa2rCGsgfmZF3ix7Cwfbqx2c+rQGnaebx pNIh3LJRUbrbRQ2SljtJL+8dQsfPPKWFt2ow+DacNrVIgOPlhqY39dRBXCLw V4qOADtWlbCNM9RhJbPZeZONAANrrx++/lMdGua/mPUfEmD65VXuJ/w1QE83 8V7dKQEG5EiIyzRqgG43sb/zggAv265sevKbJnzv98gxvCNAKyl8UJWpCblH HJu3PBVgjkILK1NUC7oSjhmXVQjw2pboyk8ntMCl47yLXr0A2+b3si16tGDM YtTAmSfAKvHLXXsttYEYWrKRGBCghY6/3UCBNhTevKUjMi5Av4wHR0xW6EAf STvdPCnAjxmLH18I1QGPyKgHbnMCHC5d/HNPnw7kfWu3u7UgwEzlEz8E1rqQ 0s46c1dCiAPZIaLjxbrwRvuJZ6aUENtDeste0pmw2vBL/aysEGkdAennzzBh 26zOO/2VQhzecyPyr2Em2N+VlXpEF6KPCovg7tADa7ZqvoiSEEMkPF45lOlB UVTB1RFlITZFFkc2aLLgtWtcm6OqELu2BEzJJ7GAa1f/6I6aEIPVa0Ibv7Mg c6mIY6KGEF87xuY4uevD3Es3gZGWEB2l/WZaK/WpPKhLbdYWYujw8D6OHgkB /XU0TV0hbpNu+j3pMgmv1i55yqRMa7e03HGFhK+2B63XURbcLmLIpJEQy3Px Naccw7rSmJpBQthAfvwuyhX2e9ffyCKBk7USzlE2TuqRyntMwllD7RstlDUk R57V1JLQwjXk8ShPNbqkxNeRUBgZJ/c35ar0D3629ST03BKLGqZ8UKtgVUMT CZ2DMRb/oXzLJjCurYME7wMtxppMIcrHTrsODpFQYybczqQ8YO9jlCskQcx0 n+taysXyHTJ+IyR4fXUM3kDZ8f7Ld2PjJGSaNMfupJxUHaE/OUnC9bqx6N2U XZPGJUunSXDeHBC5n7L2bvcB9ncSUrUeHfeiXNNvkTE7S4LeZj8vX8ppjwpP vvlJQlFK6u5jlL1Pquw4N0/CLy9dCKJssOGyluU/JGyTXafPpizy/1oL/wW+ cSkB "]], LineBox[CompressedData[" 1:eJwd1Xk01YsWB3BDpKKi3zkOicyO41fXWErtHSqUqQmh5BoqSTgqlXsNZYhK yVBRCYkSUUmGKO/KMR3TMZwr0zlIrwGFPF3v995ea6+9PmvvtfafX1XPgD3e YiIiIrFU/2+Ohu8ekM0OBqVPQyaKIgTy85eVbbp3B14ELDPYKk6gRMGrM8mH ssDuuyHpKUngi/I/T/g9zIWxs2460UsIlGb3J0+bP4aIXxfV86UJLG45rOoX +BQUIwuUm1cQWHRXfLDoURE8l+QpTMoReC6AU+9kXAIjK7RXblIgsIX7Tzvb 7Tn8edN+2SElArfnnR53CH4BDIWzkpEqBC7qSOcahpaCjVr9fL0mgeXZ1f0x fq9g+OHEzGcdAt/m0K1C9pXBBZbilKwegc/vVR38IFMOhUZ+H10MCPzDINaz r78crMqSBGHGBN5c/bk3/nEFDG2p6M/cSOCY6UDDpH4VEDtleB+3Erjev/V1 e2Q1nHUpfBu6i8CLWe4ypt3VIPuhqzLDjkDxWvraTlYN5HuKlNU4Esj8mtVK a66BPj/HwiXOBIaSDTvFRd+B+R9Td255EWj+0oh/3uYd8MWUUit9CQxfmuBe e+MdsGMsbwweJ7D3h8XeWZVayE1MjmUGEthW4m6lvu5fIJ21IaQsjMDmS1r6 Bqp1wKs7b9eTQv2bmKjf4lYHAbuzrX/dItB9u3Tm3ZQ6kGpttFTNILAi4OmV 4CXvYXPvms3HsghsOrUpZGT0Pdz/9xvtn4UEfonVnNgQz4FjsotEFeoJvJDG 9C2s4cBI9PX08EYCJTsPczJnOOA1r7xxrIXAeM7aN+KeDeAxahpQyiOwJE3y jrR+IxyoDOjbLyDQsmd7iMfrJrA8xi+7sUAgVuvbtlpwQaWmOEjahIYR7Ubx Y85cSDfB5WxTGk6sV3jB9+eC4pOmPL4ZDbNVH8w7pXKBnjo2kG9B3S/+Xfhy jAvS/sr21o40XLAl6WcvtcIc4zIr+gQNf4rGZHDz2qDz1BHBwgMajok728u/ boMihmcl+ZCGMwmbjlhz2iCh2jPFNY+GKqK5kafG28B8pZdVaSENaVGhSVxm Ozwt9HlysoKGVk3bn4nntEPMFz92XycNx3/7vtLvageYnji9qFyKjm82dARP GfEgwzde4/RJOtrlB3oQ23ggppcjeTOQjpkhm0eYtjw4+q1q7BmbjnoMi+WG 3jwwCp188vkcHe9fDfz55iYPOJddjL1j6Kigk8fpmODBdIH2jn336egV5KPt ld0FDt/f+Rq00bFzalbG9Us3iEXM538xlkdyhVz39Gw37DY5TzqYyuOSTImE OPEeSPn0s/CZmTx+6RKMJDF6QPfAzHO2BbUHi64t5j2whzVZNecgj5kbDxZP JPVAVudom+QJeSwtKv/K0u8FS932OeUH8li+nTa/bj8fLrXn2dgvZ2BYy4yJ tTsf9MrvLD0jy8DMbws17t586HhwhXOXYOCZ9IeDISF8UAsKtPmiyEDOjf7v nsl8qF5panNFm4Gz8T0lxh18mLd9b92ADPS9blUjtP0b2O9HrHYGM/D5Scvc JIM+8KpU3wndDIzNIMQlxz6A50CPm3yJAooauqjX6g7AL82uVxNxipjI4ivI VA3AlFhmoOue1SgxIHqKazUIUgq5FgUsJcyrziquKxuE0L9Cg65OK2FkesQ/ 1quHIDolaTSwcg1Gee4Sczk7BMX3PoZsSVbG2qq+lo7aIdiE0kfSDqlg2EEP 12mZYfiW8KLYX2ktOqwx/KphOwxy8VLOiTFrMW90Ws4lYhiGOmoen/u0Fu2n mCfiSoZh22YF6R4nVYxbYS+9om8Y7D7zFBcqVHGo4ixtcpEAxssNTG7pqqG4 hP+vBG0BdK4uZhulqOEqZsueLZYC8K9LPZI6p4aN819NBw4LIPnaateTvuqo qxN7v/60APyyJMRlmtRRp4c40HVZANesVjU/+U0Dfwy4ZRncFYD50jc51eka mH3UrmXbUwFkybey0kU1sTvmuFFZpQBubouo+nRSE506LzrpNgigfX4f26xX Ez+ajenv4QmgWvxa976tWkgMS20mBgVgpu1rPZivhQW3bmuLjAvAJyXnqPFK bewnaWdaJgTwIWXx48vB2ugWFp7j8lMAIyWL5/b2a2Pu9w7r2wsCSFc6OSOw 0MGEDta5exJCGMwMEh0v0sHXWk/c05cKoSOor+wlnYlrDL42zC4XAq3TL/ni OSbumNV+q7dKCCN708L+GmGizb3lSx/RheClzCK4u3TRgq2SJ6IohCAJt1Lb Ml0sDM+/MaokhOaworBGDRa+cr7UbqcihO5tfpNycSzkWjc8uqsqhEC12uCm HyxMXyJiF6suhFd2UVn2rnr486WLwFBTCHbSPtNtVXpUHtQntmgJIXhkZD9H l0S/gXqaho4Qdkg3/x53jcTSdVJPmZRpHVu37rpO4jerQxbrKQvuFDJkkkiM 4jl5b6IcybrelJhCYshgXrQD5UqbfRvSMkjkZKzCC5SN4nqX5j4m8byBVlor ZXXJ0We1dSS2cg14PMqTTU4J0fUkFoRdkv2bcnXyex+rBhJ7b4uFj1A+pJm/ urGZxK6hSLP/UL5t6X+pvZNEz4OtRhpMIchFTTkPDZNYayrcyaQ8aONlmC0k Ucxkv/M6ykVynTI+oyR6fLML3EjZ7sHLtx/HSUw3bonaTTmuJlRvYoLE1PqP EY6UnePGJUumSNwDfmEHKGs5ug6yf5CYqPnohAfl2gGzlNlZEnXBx8ObctKj glOv50gsTEh0PE7Z85TyrgvzJP7y0MEAyvobr2lu/YfEHcvX67Epi/y/1uF/ AWmC5PI= "]]}, Annotation[#, "Charting`Private`Tag$6804#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwdz3k41AsXB3AJt0Iib34zw4SyhF+kUtHV0aJQqVQopGTfW7RNWQtZJnFb 0KKFm0sSosJJUWJosmadn6VuNfayNvH+3vc8z3m+z+eP8zzfo3bEf4+ruJiY 2CV6/5ebk853Fxn7o7Kw24gpRoDKiLfPg84ktLfqq+4XJ4Aj9sD9iuktvPbP qHOZJAG3LdiztrakYYP0zGjSHAKycianba8+QHmfOTEe0gRUr5+eCptIx508 edX18wkYF62w5S55hLF6rAI5eQL2RFprLRFloVQ/KXi2iIAxvp6/6/PHuGnH mhOXGQQkmnQMK+o/wZBsmOukTMDHU6euNBXk4i9fm5WS6gTszOVeuOWZj0MD pyNtSAKGRCmTKnMKkLQOU9YyICDeVJDenlaAXjkxuVOGBPRaJpGJlc/ws//t trS1BIjnT377/b0IW4fe6A9tov8NNTo55v0cid015W/MCdDJadli+v057stt sr9uQcAWq+yuPYIXyA/8Fm5qTYDF6izZ2TnFWDEy/1PsAQK8bEN/S7JLUNyG 8HV2JEAiz0phQ0wJQp6a+CpnAr7OXVF617kUXxxfpdfmSgA/4KDJ+ATik5/2 IcsC6b7xod9fnSzD5LEH2m8jCZgq4bx0u1eGzfsfl9y8TEDduhb52NoyVCws 3OMbR8Dbri3iRzVeI/dUFUcxkYCLzRY+6TWvMWJikH/kNgElWfcr+ueVo9+U 8ZmZfAJI53tCzVXlmJ3gLpQrIqC+btYskUM59mknOaq+JIB3VHp3eHY5etn2 m5mVEXBIvmF4o2UFuuXfmRdeQ8DKZcl5OifeopOfRKrUFwKc9RmSDYmVaN1d UyqrxID3bK9LH/MqMf7MlAGbyYBXJ5Iab9RXYu0CrfvLVRjgkZ2sHaXwHrdv CIm0XsIAMbnpiJm497gt1XBXgj4DFr5quzZ0rgph//UuxW0MeNz5+qrMWh4a VDlLKJ9hQF6Z1+D7XTyUks46O3GOAQyRnp2HJw/brcaHGi4w4PxWpRSLZB5G 1cR1xEUwYN9gWk76FA8p/otnM1wG3M8QfZZ5VoPcZkXPnnQG1Iw3BR1gfMCB 3sqazAYGlBb8Hn9Xy8fsGYPr6wyYoKysdGXuJz6aMrbm/LGSCUcko1M3dvGx 1tDxXeNqJrzLNbZO+cHHAdfo8UATJkRkbHj5VekjGvC6bDPNmbCj9RpL7NBH zL9xlWA5MiHac4EX59+PWLzi501RNBMYG0Qeyr11WO1SmIo9TCi6ckfRtK8O nfKHEqq+MMF9b8aw3c86HJLQiWz8xgSdx0L3sxL1qJieGigcZEJGvbqd79J6 dPgaaq4kYkKPzoEElks9DvhsH/JTZMHfnBmr5rZ6VAjq2sTewoKHf12Mv1Dc gPZR0kJOOgs+XPnrRPHrBgwLc+m1ecSCzPWNSmOVDZjFedmhk8UCqz/y/nZo bMDpAG/+p1wWhFm8PDne34D37KsLVpWw4Nj3N0/c2Y3YpxMT0lfPgsQy64Jd nEa8UDNvkcMsZVjzfVsXm2zCewrzzEwclKHpNzmcE9KMBx2bBAZqKjDiQVnO u/0JC5rshuO7VcDAZSx938UWrCq4OG/gGhucnDdUxju3ovW+EJ+IA4uhbbbY Gi3FNtyarSCMm6MK13c0m2s8acO1W6FF9ogqwO/5e2abt+PhsgbvZW9Ugdct kSD9uh3d/UzDKlTUALZ5kcHrOvDhr/l//g5Wg2APOd75tA5cddd4hSelBiVP tYPlJzrw7imTR/uM1eGx1JK4n1aduFn/fkVHijoohJ/XFCZ0YgWDcv0ypg5q d1f35DR24oXe8MzL9kvArWiUISYvwKi3YdouL5aAnI/F6psbBRjQtl+nWHEp 2ATzRnnHBMjlJ/CfBC2FIu5ghGqKAGMn0qY06paCScCn6OJSAbaukXX6oKsB Uvpm1b5dAnS2FbgqxmnAKi2Zh5xpAb55dGm45V8NEMNnbodkKXRqT1IzsdSE ythsk3cMCi01py/zMzUhU2irSy6lcOH99ae/SGhBYOqw8c7lFCqKdc+94aYF 1alxI1VGFI5wHRZXlWlBsrbxpJUphWprDP0MWNpwdlHz6K0tFEaV+h025GhD YL/r1VdWFPJOh3zKb9IGlZwOw+e7Kdy2cPJH3dplEFPbce/5fgrTKPPEwKRl wGXbyGscpNCqYtB788Ay+O7Lizp+iELy8szXp9Y6ELQlZ66cC4V9ob3f0jJ1 oFL/c9EVNwp77A24erK6sKguIeiBJ4W6Fs2+Ql9dEDJXb1/rQ+Eubxu+TqUu pNwpsn3hR2G2r1GzpI4ebNbuLqsPoPDrvYHDhy/qwc+MZ3aPj1F4fHCW5nAn bfEzKZwTFBopc+KVgYT/WH4InjlJYfO56rOVySQMFL7olQyi73dQdo6pJBxt SzeXoT2xeNRo5BYJ3fxLsxi0meXsH6w0Ep4axtoY0naQOebtn0GC+n3K8yjt 7lTCYVE+CewR0vMt7b4S1z+P1pDwT1tDAI+2iHuWNVlLwqXCjJN1tGWPcCfj +CTciWgK6qS9XOp5QWE9CfJzztuO0Q7cKbNcupWEOQ4LEjVOUTjW+ZT99AsJ jcEKfrq0pXLficy/kvDIcp/5CtpK4e2tbd9I+NyfNrCe9lotqeuS/STEjJ5l 76V9zt9ezv4HCWHUwx572rFmfv39P0lwTGKlH6KdujC8OmyMhByHPnVv2qWF WZFZkyRkjlh0BNCujS5zNftFwrW940lBtAUHmzY1iUioKBu14NAeIoVq3tMk TJw2F4XSFvv/LIf/AoxbN/w= "]], LineBox[CompressedData[" 1:eJwdz3k0lQsXBnCEWySRL+85hxPK7I1UKrr2VlGoVCoUpYTMNGg6ZWyQOW4D GlDcXJLMilKUOHQyZjyvoW5lVsZOfO/37bX2etbvj73Ws5WP+uxxFhESErpC 7/9yS/zFniJDH1Do7zFgChGoOObh+bArHuwsB2oGRQjkCD10jTG+Czf/GXcs FyPwnjlbeGtrMjRKzo3HzycwM3t61ubGQ5DxnB9+XJLAmo2zM8FTabCTK6O0 cRGBk4JVNtHLH0OEDitfWobAPVet1JcLMkF8kOQXLCVwgqfj41z8BDbvWHfq OoPAOKPOUTndpxCYhQsOKRD48cyZmOb8HPjlZb1aTIXAnTnRl+665cHI0Nmr 1iSBI4LEacX5+UBaBSuo6xEYZcxP60jOB/fs8JwZfQL7LOLJuKoC+Oxzrz15 PYEiedPffn8vgraRN7ojm+l/gwxOT3gUA7G7tuKNGYFa2a2mxt+LYV9Os90t cwJNLbO69/BLgOf3LcTYikDztZlS87JfQOXYok8RBwh0twn6LcYuBRFrwsvR gUDRXEtZCC8FzFUWWeNI4NcFq8oeOJZByck1Ou3OBPJ8DxpNTr2Epz/tAjX9 6L5RQd9fnS6HhImHGm+vEjhTynnuklIOLfuflN65TmD9hlaZiLpykCss3OMV SeDbblORY6qvIfpMNUcujsDLLeaeabWvIXRqmHf0HoGlmamVgxIV4D1jeG4u j0DSMaVfbU0FZMW69ksXEdhQLywssK+AAY14B6XnBHKPSe4OyaoAd5tBE5Ny Ag/LNI5usqgEl7z7EiG1BK7WTMjVOvUWDnmLJol/IdBRlyHWGFcFVj21ZVLy DHzPdr/yMbcKos7N6LGZDHx1Kr7pdkMV1C1WT12pyMDjWQka12Tfw3YIvGq1 nIFC0rOhc5HvYVuS/q5YXQYuedV+c+RCNeD+W91y2xj4pOv1jYXruaBX7Siq cI6BueXuw+93cUFcMvP81AUGMgQ6tsfduNBhOTnSeImBF7fKJ5oncOFabWRn ZCgD9w0nZ6fNcIHilRTMRTMwNV3weWFBLUS3yLn1pjGwdrLZ/wDjAwz1VdVm NDKwLP/35Ls6HmTN6d3aoMdEBQX5mAWfeGDM2Jr9x2omHhULS9rUzYM6fYd3 TWuZ+C7H0CrxBw+GnMMm/YyYGJoOz7/KfwQ9brdNhhkTd7TdZAkd/gh5t28Q LAcmhrktduf8+xFerPp5RxDGRAYIjiv01UONU2HSy14mFsXclzMeqIdDeSOx 1V+Y6Lo3fdT2Zz2MiGpdbfrGRK0n/a7nRRtALi3Jr3+YiekNKrZeKxrA/muQ mbyAib1aB2JZTg0w5Ll9xFuOhX9z5ixb2htA1r97M9uUhY/+uhx16UUj2F2T 7OeksfBDzF+nXrxuhOBgpz7rxyzM2NgkP1HVCJmc551amSy0/CP3b/umRpj1 9eB9ymFhsPnz05ODjZBiV5O/ppSFJ76/eerKboIBrfDAgQYWxpVb5e/iNMGl Woml9sIKuO77tm422QwpshImRvYK2PybHM0ObIGDDs18PWVFHDtOWUjc+wT5 zbajUT2KqOc0kbbvcitU51+WGLrJxkOOUBXl2AZW+wI9Qw8sw/Z5QuvU5dph a5Zsf+R8Jby1o8VM9Wk7rN+KrVJHlRB/L9ozz6wDjpQ3emi+UUJuj2is5OsO cPU2Dq5UVEbc5k4GbOiER78W/fk7QBkDjktzLyZ3wpoHhqvcKGUsfaYRIDPV CQ/OGD3eZ6iCT8SXR/607IItuqmVnYkqKBtyUa0/tgsqGZTzlwkVVH6wtje7 qQsu9YVkXLdbji5F4wwhGT5cexus4VSyHKU9zdfe2cQH3/b9Wi/kVqB1AHec e4IP0bxY3lP/FVgUPRyqlMiHiKnkGdX6FWjk+ynsRRkf2tZJHfqgrYriuiY1 Xt18cLThO8tFquIa9YWPOLN8ePP4ymjrv6oo9LLA5bAUBYc64pWNLNSwKiLL 6B2DAgu12eu8DDXM6LfRJldQsCR149kvourolzRquHMlBXJCPQtuu6hjTVLk WLUBBWPR9suqy9UxQcNw2tKYAuV1+t56LA08v7Rl/K4pBdfKvI/oczTQb9D5 xitLCrhnAz/lNWugYnanfvFuCrYtmf5Rv14Tw+s6U4r3U5BMmcX5xWtiNNta RvUgBZaVwx5bhjTxuxf32snDFJDX574+s9JCf9PsBdJOFAwE9X1LztDCKt3P RTEuFPTa6UXrSGnj0vpY/4duFGibt3j1e2ljP3Pt9vWeFOzysOZpVWlj4v0i mxJvCrK8DFrEtHRwi0ZPeYMvBV9Tho4cuayDP9MLbJ+coODksLDaaBdtkXOJ nFMUGChwohSQxP9YfAiYO01By4Wa81UJJA4VlvSJ+dP3OyhbhyQSj7WnmS2k PbVs3GDsLok9vCvCDNrMCvYPVjKJz/QjrPVp2y884eGTTqJKKuV2jHZPEmG/ NI9E9hjp9pb2QKnzn8dqSfynvdGXS1sQfZ41XUfilcL00/W0pY5GT0fySLwf 2uzfRXuleHF+YQOJMvMv2kzQ9tu5cKVkG4nz7RfHqZ6hYKLrGfvZFxKbAmS9 tWmL57wTmH0l8bHFPrNVtOVDOtrav5H4eTB5aCPt9erit8QGSQwfP8/eS/uC j5203Q8Sg6lHvXa0I0y8Bwd/kugQz0o7TDtpSUhN8ASJ2fYDKh60ywozr2ZO k5gxZt7pS7surNzZ5BeJN/dOxvvT5h9s3twsILGyfNycQ3uE7Ff2mCVx6qyZ IIi20P9nJf4XqOT07Q== "]]}, Annotation[#, "Charting`Private`Tag$6834#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0Xk01A0XB3ChbHlCWug3Y+zrz1KeeizpmnophRBFlCRLKaJICElaJCpL RYs9hMq+dGWdytITM2ZalLW0WKN1eH/ve8+5557PX9/zPVfRw9/+gKCAgEAU tf+7sS9Wq3Xt90Hi88BaeQEC0jy9K007EnBOreNAhiABAUkR6b8SkvGdR+U1 xkIC4vT6Is/a3MCGW3ebskQIKI3VaHmw/RZmvro4pSZOgEz6TYMzX+5gzPJg xYLFBJy6pmNuEpuJnvbu28klBOgaDA96uOSg+jPD4jWyBMimCwntz8xF0UUK byuWE5B7ocJ+HzcPP5mLLTaWI4BxpOym6coCLKp+6wt0An7MKykukC3G1ffO qlprECBY8rdnBb8YZYcDdrzQIoBlquR6+H0JzjB2xziQBDRNRqWef1qKVWl6 /c6rCUiQ+Jt71fUhrj/HTfcyJeDlLsWImtqHSG9ufD5qRkCLiyXxYeUjFBC4 /8vPnIArFiLBTzoeYWNI9K4gCwJ4vuELhFXKcbO3lmzUdgK+ib1z/nm8HLWy ZDcKORBg1uEUfKu1HCXezR0960iAhAI/X9+zAjudurviXQg4toU90pFUiQ4W 4RevexLg331g0A+rcY9qp+CjE1SfTae2HF1Qgxv2VRmsDSMgwmalZjWzBhkZ me7VEQTU7MyZ1GiqwUHZkMd4moCJP3YyMnW16CPMONkeT4D0+4PLipLqMWjw 6OTwHQICaeET5Z31eCx9vfHtLAJ2Z/KWkxKP8ZijWMyuXALG1orPB5ym3HZH 9nkhAdfNa4XyDyIGF3atK62g+usvs6VfacDQIPLUyXbqPwNbRaNVGzFSaFR8 yQ8CjGKnI5jrGzGqrsyB9YuA/P7czW92UD4elR7NJ+DgyXHLmzGUP6zQ/SZI g1/HPvGd3jXi6ecWdjxJGrTapFkbJzZh7NXs1CxlGjQozdCbXjXjRWV3lX9s aXDp81Ct/tdmdOXPrGuyo0FxWHRl3Hwz6vRe3GqzgwaM0MHHU8ot2HmhMtDT mQY5Y9mnmg61oMzUX08S99PAqqCfH/m9BdMa6t1GQ2iwzH1RSrVAG2a7rUq9 cYcGyTnS5QUDLKxP5YjxJ2nAUvSvOD/BwhOLRneGfaNBx4cQU9c5Fhoe/53z c5YG1cneem/knmKBPYM5+5sGE2XaUlbbn2KaJNV0IR1+MxaPjtc8xaAY/qd+ OTpcp+1NG417hpr+Ku2t5nS41/daV024HZMtAhMSk+iwQd/RyUeqHQNWe81u ukYHt1WF8XeIdrSiu+z5mUKHCzR792nDdpybMdf1SKeD81C4ocqBdvTJke5c k0eH/tW2eY+b2tFU+IFkbx0dXpFHZvVPduDAk/F42kc6CP1TX3imsxN11x++ WGCmAM7Fr61eRL7Afu8J43XvFSBgPVnEj/kXtQ77GuRYMmDq8N1AffeXWLnx q2xKBgO+mXmQX5Z2o51huV3DVwZcjfMhorAbn7OKnt3fpAitzTcUVln3oH3I x/SeZEXQUzZk81k9qNNU8dhjWBG4exU2fQY2fnhYRpSZKMETr/i909lsLK6b 7TaLV4L6meT8JYs46HTQpy1+UAksTi79Y7ebg3blfuJMI2UIPFfwaCCTg87y 5bn655VhD6d4rOsjB5nKZOTAO2UI+iO1Jku5F9dZjJZ26KtAGyNUQsGtFyUl 2fTwcyrQYDt9auRyL6496vAmqU8F1A2cJbGmF/3Gl02/11WF4G1so5ahXjwt LWoxHasK3Otpt5iiXMyxNpsy61WFVJtLNQPqXFylLjI2qaYGEkMtrXwLLgZm z6v6RKhBYkpVw7Z9XGSbmFau6FSDvbWZMcphXJQLyT9zQVUdYmwVapdc4WKp bd5dzzB1kIo7zA/J4eIO5qcVJ56rg1tnEyRVcZHLdX1mo6QBkszk6joWF33P L+XsCdKA1DGTy2QvF617XQ04jRqw2f9eue8wF2WesllScpoQrmd76cQkF4d6 rlSf8dWE/9wT83LkczHlTORIbYMmeKhIr9knwkNHm1I/HRktYIxdZjtL8dC7 PIgp7KEFP/JlnPXleOjS4LXjdpUWmOD77iIGD52HMzBITBuaRDlsUQ0eGhUL e0vs04byNsGUJF0e+snOuYlXaoNIUN89eUMeFl0zKWaK6MBf2Sl7LxnxsL0q 39hsjw6wmjW9tcx4+HPWmRFUogNr5J9JbGHyMPRlhuOSeR3QXPhq7S4LHr6y k2474kjC1/lxPdYWHlp+ZiWJ5JKgmjr6gkP5Rlt0kH8eCSNSLYeGKX/JMnbs zSdh8F/ty4JWPLziWrQyr5AE/s75eFPKfR2Xb1s8IOFt2KRXCeXgUqf7sXUk mJh65iRu5WH28SGWUDeVNxIQd4vyd7uMgkM9JCQUFu8vomyl6xTfzSbhtmqb OIvyxEibbRaXhP3yJUvnKZvsKuQw+0hweHRUxm8bD18aBw5Fj5KQLF6SFkpZ dYV26+gnEjYkb5SLo3xiejDP7gsJA/lhYpmU6UWOhxTHSXht65vbS9mXZjTV 8I3K67o7P0S57udkt8YsCW8MNjlMUf6LU1Ce+J0EgcGu0cXWPCxLIELdf5Gg /LJeR56yyCG2C+s3CeuG6AfVKbtYJpjq80n44TVz15DyfWVLetocCWTexh5z ygL/H134L9vw7yg= "]], LineBox[CompressedData[" 1:eJwd0Xk0lQsXBnChTLkhDfSe43DMvIZy6xqyN/VRCiGKKEmGUkSREJI0SFSG igZzCJV5iIynMnTDGRqUsTQYo/Hke79vr7XXXr+/nvWsrejhb79fUEBAIIra /93Y56tVu/f5APFpcK28AIFpnt6VJp0J8Ee1c3+GIIEBSRHpPxOS4a1H5VXG QgLjdPsjz9hch8abd5qzRAgsjVVvvb/tJmS+vDCtKk6gTPoN/dOfb0PM8mDF gsUEnryqbWYcmwme9u7byCUE6uiPDHm45IDaU4PiNbIEyqYLCe3LzAXRRQpv KpYTmHu+wn4vNw8+moktNpIjkHG47IbJygIoqn7ji3QCv88rKS6QLYbVd8+o WKsTKFjyt2cFvxhkRwK2P9ckkGWi5HroXQnMMnbFOJAENk9FpZ57UgpVaboD zqsJTJD4m3vF9QGsP8tN9zIh8MVOxYia2gdAb2l6NmZKYKuLJfF+5UMQELj3 08+MwMsWIsGPOx9CU0j0ziALAnm+4QuElcthk7embNQ2Ar+KvXX+cawcNLNk Nwg5EGja6RR8s60cJN7+OXLGkUAJBX6+nmcFdDn1dMe7EHh0c99oZ1IlOFiE X7jmSaB/z/4hv4Zq2K3SJfjwONVn48nNRxbUAOyt0l8bRmCEzUqNavMaYGRk uldHEFizI2dKvbkGhmRDHjWcInDyt52MTF0t+AgzTnTEEyj97sCyoqR6CBo6 MjVym8BAWvhkeVc9HE1fb3Qri8BdmbzlpMQjOOooFrMzl8DxteLzAacot9+W fVZI4DWzWqH8Aw0QXNi9rrSC6q+3zJZ+uRFCg8iTJzqo/wxuEY1WaYJIoTHx Jd8JNIydiTBf3wRRdWUOrJ8E5g/kbnq9nfKxqPRoPoEHTkxY3oih/H6FzldB Gv48+pHv9LYJTj2zsONJ0rDNJs3aKLEZYq9kp2YxadioNEtvftkCF5juyv/Y 0vDip+FavS8t4MqfXddsR8PisOjKuPkW0OZc2GKznYaM0KFH08xW6DpfGejp TMOc8eyTzQdbQWb6r8eJ+2hoVTDAj/zWCmmN9W5jITRc5r4opVqgHbLdVqVe v03D5Bzp8oJBFtSnssX4UzRkKfpXnJtkwfFFYzvCvtKw832IiesfFhgc+5Xz Y46G1cneuq/lnkCBPcN87hcNJ8u0pKy2PYE0SarpQjr+Yiwem6h5AkEx/I8D cnS8RtuTNhb3FDT8lTvazOh4t/+VjqpwByRbBCYkJtER9BydfKQ6IGC119zG q3R0W1UYf5voACu6y+4fKXQ8T7N3nzHogD+zZjoe6XR0Hg43UN7fAT450l1r 8ug4sNo271FzB5gI35fk1NHxJXl4Tu9EJww+noinfaCj0D/1hae7ukBn/aEL BaYK6Fz8yup55HMY8J40WvdOAQPWk0X8mH9B85Cvfo4lA6cP3QnUc38BlRu+ yKZkMPCrqQf5eWkP2BmU2zV+YeCVOB8iqqEHnrGKnt7bqIhtLdcVVln3gn3I h/TeZEXUZRr08Vm9oN1c8chjRBG5exQ2fsI+eP+gjCgzVsLHXvF7ZrL7oLhu rsc0XgnrZ5Pzlyxig9MBn/b4ISW0OLH0t90uNtiV+4mbGzIx8GzBw8FMNjjL l+fqnWPibnbxePcHNpgzycjBt0wM+i21JovJgXUWY6WdesrYzgiVUHDjgKRk Hz38rDI22s6cHL3EgbVHHF4n9Sujmr6zZEMNB/wmls2801HB4K19hq3DHDgl LWoxE6uC3GtpN81FuZBjbTptylHBVJuLNYNqXFilJjI+paqKEsOtbXwLLgRm z6v4RKhiYkpV49a9XOgzNqlc0aWKe2ozY5hhXJALyT99XkUNY2wVapdc5kKp bd4dzzA1lIo7xA/J4cJ2848rjj9TQ7euZkyq4gKX6/rURkkdJc2Tq+tYXPA9 t5S9O0gdU8eNL5EcLlhzXPXZTeq4yf9uue8IF2Se9LGk5DQwXNf24vEpLgz3 Xq4+7auB/7kr5uXI50LK6cjR2kYN9FCWXrNXhAeONqV+2jKayBi/1OcsxQPv 8iBzYQ9N/J4v46wnxwOXRq/tt6o00bjhXU8RgwfOIxkNQWJa2CzK7hNV54Fh sbC3xF4tLG8XTEnS4YGf7B838UotFAnqvytvwIOiq8bF5iLa+Fd2yp6Lhjzo qMo3Mt2tjawWDW9NUx78mHNmBJVo4xr5pxKbzXkQ+iLDccm8NmosfLl2pwUP XtpJtx92JPHL/IQuazMPLD+xkkRySVRJHXvOpny9PTrIP4/EUanWgyOUP2cZ OXLySRz6V+uSoBUPLrsWrcwrJJG/Yz7ehHJ/56VbFvdJfBM25VVCObjU6V5s HYnGJp45iVt4kH1smCXUQ+WNBsTdpPzNLqPgYC+JCYXF+4ooW+k4xff0kXhL pV2cRXlytN02i0viPvmSpfOUjXcWss37SXR4eETGbysPXhgFDkePkZgsXpIW SlllhVbb2EcSIXmDXBzl4zNDeXafSRzMDxPLpEwvcjyoOEHiK1vfXA5lX5rh dONXKq/7zvww5bofUz3qcyS+1t/oME35L3ZBeeI3EgWGuscWW/OgLIEIdf9J IvNFvbY8ZZGDfS6sXySuG6YfUKPsYplgoscn8bvX7B0DyveYlvS0PySSeRt6 zSgL/H908L+M8K8o "]]}, Annotation[#, "Charting`Private`Tag$6864#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0nk41fkaAHD7kjJIJJm+5+BYf5YugwpvTfbUKHGjJJVrbC1KSbaylBGN QlEUx5A1HInwYk6UKM5BB0WLSEqjQknc373f53mf7/P5610ZPoe2HxQREhKK puN/f8S1oJDtT3ww+fgR1WVCBCJqS23P28eji/DTKJYwAZDlu9ezUlDxwoYR axECZ53Odp5YTMW+lbn2u0QJ9IjHX/J9nYZX2ZKlR8UIKLb9vq/k0BXcbRQk nyROYEG6iDrQkIk/1/OO50sQ0Jbxez/Nz0Y2/7qVQIrAAa/+kVq3G+i7VzRv SpqAS2z+sZhfbqLOhJ+kjAwB6wzN+w59uVgmYtJluYyAlqF1Sv+dfKw1bt+X J0/go37xYtXev/B0g2FrvQKBPLHmsjjRArRySNPtW04gZ/CGAduyELne3p+l lAgMXndz94ktwscpM7HBqwi89GTuX1xWjH+q7h5PUCUg8FVz5l4uRteCZueb qwkYBluPHswswf7GJKWenwkU+K1oKD9fhiMfmIUW6gSGubfNtwuVY0HYuaU7 NAhgqo6e/PFy9BefPByoSSAr0nZplv5t/Li61iJHi55X8tZQCckKnHPa9khM n8DUFY8FpaxKlCsKn3xiQqBzb8Tmz+2VyDd9uX3clJ5nuJa6/Vwlpjfb1oiY EYhP+2Qe4F6Fqv3y0aYWBEzMtW9/k+EgS6pQPsuSQMf69Y96vKtxvW+Pia8t AYbQSab2hWq8xj+/OcOOQGpNgZlCbTXOg7XrA3sCh6dKwzk/3cFG1aIQXScC s1wvuyN37+Cm7qjKyW0EIl8Ibzr3rQbtN+gZndhFoHUlb8/M5jp0Uzijdy6Q QNsrBcj4Tx3WRJmtrw0iEGhZ7rJ4vg5Xfnjv+C6YvqdqydPaj+twoM3df8sR Ag2C10IzO+7hngjqllwogVfTVW803erxwFsB62oUfW/MhdpNFo14tNGQWZRK gNh1PDd3bUTBbM5c6yUCIS6/5ckeakQrYzn+68sECh/WH/FgN6I0+5+zahkE amN7/316GeKN8xVvLmYR2LNuINJgAPGJ679unWATeCT31CazvAn1J34xsrlD wPEn05JZ+RZ8o2xl9aKfzqdeGG64ugUFYTbRswMEZEXV9nmxWrBjcEuL7DMC QqJZpTfXtWBljqet5RCBqlrXRfRpwUitsK2ZrwiEVqnG+lW0oLIZx8t1ggAv zOvKA/u/0cFNN+rBPL1/V283Fx8ull5Warq9hgEr/K9p/h7ARStBUOkwYcCj wpDBsGNc7FK9nynLZECUdKZGfDwXP+WGHA/UYIDDTLWjUxEXzSu6dLV1GMAN kY+7+A8XWzoT03LWMmCPTK6E3cn72Cex6J9swwCGzEioVmgrLp4cWxEYwIB3 H/SapFQf4AWvgEyVSgZYW5bO7WQ/RHbx2KeKBQbs4y9mvPzcjvKrDSpGHJig MxQ9+VayA+suaGVLX2TCQbPDgrPynfjeV2WvyjMmZIt6ap6d7ESPjY1bVdXV 4YOU8E6fisf4szXFrvFTB7OoqOb0Q08wgH2504qjDqfatc3bJbvwy5Jyzbtz 6jCXy5lWc+tCif5ml9V2GmDz91fpmKwuDG7Pfr0qVQNcbNcEbuzrQoUGA7aM QAOeK5ct6Ml1o7VyjfmYuiZIoufozo3dWHj003eOvyZEOr5cyzvSjZmmrEtB NZqQODh1Su56N75S1bjYJMKC/KVxV0aau9FXtPeeuAMLDMZOlnmOdmPI9sh7 pmks+GEznxUizsP63IFx92csYO8u0Qpg8NBTSThSkakFfyp73jK25OHZqTWj 94K0oG7onPOEKw/HOqdO7+RoQbilcs6xQB72yNeP9QtpwxfjbUrJMTxUDvvt 7lcnbRh9J1Jy9RIP019m1EinakMAa5qdmM/D7IqnieJD2rAu2FdqhMPDV2fa kz5r6MDyiBWc+hYenj6R8CXcXwf2WxWnJHTxMIe/wehjtQ7E5f/wdnvGwwWj /EzXeR1Y2jvsrfiWh6PT4v1se13AX/NFmZ94uKRexXYsRRdkD+WkmXznYWz+ 7Epury4EuJW1WIrxMWGmE/9g6EHpsMuPORk+ttq7p9n46UGJQm9ayXI+Jov0 W73j6MGMwKojbRUfS4Y1tuoI6YPGm7tnYggfJRrVkzxs9WH0GtvZl8XHcVHV 7NBUfTBWGeMc1eOjlNP9odh+fYgrvZstbMTHiGqLOGoNBc8rzdhJJnwMT/hr scmfgvS22rnD5nys9mgttK2gQIOZlBdD23GjenJMJQXM4g22qbRfaEWH1FdR oOewMayK9pJpC6u1dyh4/4dy+jRtr5RSvto9CgZ03pectKDzcy8vfOFSoFZR 5HVqHR89qP2ueQIKEgpS7BJpf1zeZDHUTwG16apuJu3YudVrVAYpEMwzh2tp l7f1jSc/p2A+YYvIN9piPo5Rp15RcH1f79rQ9XwsTTcucnlPQfBzMYyjvSki OSXpAwVcsXCbNNqC/RPH2iYpCK3/dSOHtohxvrXlFAXdR2K+TNF2e7SyV3uG AjJFdghv4ONExfG6/bMUPOxRLpGjHX2Fl5P9lYLvSorOhrSLDyb5K36nIDpT Lc2KNmwZ37ZtnoJdHfFPnWn3rbU1TfxB99vgoriHdoBK3qr7C3S9p6OdAmkL /f8ZwH8B7GHaqw== "]], LineBox[CompressedData[" 1:eJwd0nk41fkaAHD7kjKUSJi+5+BYf5Yug8p5X022tIwSN0pSuQYtUkqyZSsj GkVFURxD1nAkss+JEsU56KBSEok0KiqJ+7v3+zzv830+f70rw/vwtgNiIiIi kXT87w+7djBo2xNvSDoeqLZEhGBYdbHdOYc4cBZ9GsESJYjyArdaVjIonV83 DGIEo52iO04spEDvimyHneIEuyXjLvq8ToWrHOnioxIElVp/31t0+ArsMjmo mChJcF62gNpflw4/1/KP50oR1JXznZgWZAJHcJ0tlCG437NvuNr1BvjsEc+Z kiXoHJN7LOqXm6A37istJ0cQLmvfd+zNhhIxs07rJQR1jCG5704uVJu27c1R JPjBsHChYs9fcLrOuKV2KcEciaaSWPE8YDum6vcuI5g1cMOIY50PPC+vTzLK BAeuu7p5xxTA4+SZmEMrCb7yYO5bWFIIf6rtGotXIyj00djMu1QILnlNm2+q EzQ+BCMH0ougrz5Ruftngnm+y+tKz5XA8HtmvpUmwUHebcttIqWQF3J28XYt gg0pegaKx0vBT3LySIA2wYxwu8UZhrfhg3q1VZYOPa+kLcFS0mUw67T1kYQh wakr7vPKGeWgUBA6+cSMYMeesA2f2spBYP5q25g5Pc9QHU2H2XJIa7KrErMg GJf60dLfrQLU+hQjza0Imlnq3v4mxwWWTL5ihjXB9rVrH3V7VcJan24zHzuC DJGTTN3zlXBNcG7DZXuCKVV5FkurK2EOweWBA8EjU8Wh3J/uQL1aQZC+E8Ev PE/7wLt3YH1XRPnkVoLhL0XXn/1WBQ7rDExO7CTYsoK/e2ZDDbguPWNwNoBg 69BSvPyfGqiKsFhbfZBggHWp88K5GljxfmLju0P0PVVKn9Z9XAP9rW5+mwIJ 1glfi8xsvwe7w6hbCsEEh6Yr3mi71sL+t0LW1Qj63pjz1eut6uFovTGzIIUg sW9/bulSD8IvWbMtFwkGOf+WI3+4HtimCoLXlwjmP6wNdOfUgyznn2iNywSr Y3r+fXpJA9w4V/bmQgbB3Wv6w436G+CJy79uneAQfKTw1Da9tBEMx38xsb1D cONP5kVfFJvhjQqb/bKPzqeZH2qs3gzCENvIL/0E5cU19nqymqF9YFOz/DOC IuIZxTfXNEN5loed9QuCFdUuCw3ezRCuE7IlfYhgcIVajG9ZM6hYcD1dxgny QzyvPHD4Gxxd9SMezNH7d/FydfbmQfEl5cbbqxi43O+a9u/+PGALDxYPEgY+ yg8aCDnGg061++nyTAZGyKZrxcXx4GN20PEALQY6zlRudCrggWVZp76uHgN5 QYqxF/7hQXNHQmrWagbulsuWsj95H3qlFvySbBnIkBsO1glugYWTo8sD/Bn4 7r1Bo4zaAzjv6Z+uWs5AsC6e3cF5CJzC0Y9l8wzcK1i4/OpTGyiqG5UNOzJR 70Xk5Fvpdqg5r5Mpe4GJByyOCKMVO2DCR3WP6jMmZop7aEdPdoC7Tf0WNU1N fC8jusO77DH8DBSnylcTLSIimtIOPwF/zqUONlcTT7XpWrZJd8LnRaXad2c1 cTabO63h2glSfU3O6vZaaPv3V9mojE441Jb5emWKFjrbrQqw6e2EpXVGHDmh Fj5XKZk3UOgCUKmyHNXURukGj5EdNl2Qf/Tjd66fNoZvfLWaH9gF6easiwer tDFhYOqUwvUuGFLTutAoxsLcxbFXhpu6wEe8556kIwuNRk+WeIx0QdC28Hvm qSz8YTuXESTJh9rs/jG3Zyzk7CrS8WfwwUNZNFyJqYN/qnjcMrXmQ/TUqpF7 B3Ww5sXZzeMufBjtmDq9g6uDodYqWccC+NCtWDvaJ6KLn023KidF8UEl5Le7 X510ceSdWNHVi3xIe3W5SjZFF/1Z05yEXD5klj1NkHyhi2sO+cgMc/kwdKYt 8ZOWHi4LW86tbebD6RPxn0P99HAfuzA5vpMPWYJ1Jh8q9TA294eX6zM+zJvk prvM6eHinkEvpbd8GJmW7OM46GPDr7nizI98WFSrajearI/yh7NSzb7zISb3 ywpejz76u5Y0W0sIIH6mo+EPhgEWDzr/mJUTQIuDW6qtrwEWLe1JLVomgCSx PvY7rgHOCNntqSsFUDSotUVPxBC13tw9E0UEIFWvmehuZ4gj1zibfVgCGBNX ywxOMURT1VHuUQMByDjdfxHTZ4ixxXczRU0EEFZpFUutovB5uQUn0UwAofF/ LTT6UZjWWj17xFIAle4t+XZlFGoxE3OiaG+00UyKKqeQWbjOLoX2S53IoNoK Cg0cbUIqaC+atmKvvkPhxB8qadO0PZOLBRr3KOzXmyg6aUXn512a/8yjUKOs wPPUGgG4U/tccoQUxucl2yfQ/rCs0epFH4XU+qv66bRjZtVXqQ5QKJxjDlbT Lm3tHUt6TuFc/Caxb7QlvDdGnBqi8PrentXBawVQnGZa4DxB4aHnEg2xtNeH JSUnvqeQJxFqm0pbuG/8WOskhcG1v9pwaYuZ5oL1FIVdgVGfp2i7PlrRoztD IZki20XXCWC87HjNvi8UPuxWKVKgHXmFn5X5lcLvykqbjWkXHkj0U/pOYWS6 RiqbNm4a27p1jsKd7XFPN9PuXW1nnvCD7rfOWWk3bX/VnJX35+l6T0c6BdAW +f8zwv8CnWGaqw== "]]}, Annotation[#, "Charting`Private`Tag$6894#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0nk41XsTAHBb8SYqQnW1nK/tWH5ZSlrQUJEllepGciqlxSlEyNu1lFBd SpdEJPuuIpLlnBFyHOcnW3vKVirXRcga3fO+8zzzzPP5a+aZGYaLh72rmIiI SLAw/1dPJgWwuzkH8brP2d9kRAgcvteUo58ehCoePNtZoceljUa/yofhk5PL AwdFCSzN3SNZ/u0a2rp4P+gUI3A3siKd++s6djnxO1vECZR+j9dX3HETffet lKuRIGCS7p+yeuAvnLfTZ0vxHALnc7slU1tv4VpzRmasJIHW/hH+E8Zt5G/y ex0uRSD/q37QJVYcsgwbpfz/Q6DTcuXAprw7GM70ZztJExhbLWcWx03Cd7It eqsWENDom7+vveAeekhpuCxaSMDN5Gy/mE0ySogFRIstIhAFvBepmilI/WCO fZIjcLzXd6OgLhWD3wdX5CgS0Az//Z+jzDRUePmq/44SAYl5H/Wmw9Mw97nO ioglBJTV3gbHmqVj29M3we7LCPi0BLQtTslA9Ww9izUrCFTXOnrZ/sjAipQw P9WVBN56fNijuz0TdyW0ZyusIhAfefyiXl8m+l+/Ij3BIJAT6GcetCob6XOd zZVqBLgT3tEjrFz0MotysqAI/Nka2SaZlouSm3ojjFYTGHCYE+Dcm4uJa425 TF0CBuGlIj1uefhM4+sqaX0CXZMtrG52Pi6Rhd6mtQR6qtsdXXbfR+67QU9H YwLqHXY5kVH3UeTt6N8sEwLLMvxmVZvuo9nryePHTAl42/RnZlg/wNo2cWcP IHBBpTEofflDbKCVrEK3Cu8jbqv+TKwQX3E3MwpthfvwaYmLzSzCwdQbLVLO BOgmQ1FnLEK9lBhbWRaBR3aWUdOvi9DrXjxP/hABVv7xmBqpRziWkMZZcYRA k2WC942Tj/BnTGnOWlcCNvNiOiMYxSgV3nHx8BkCk52sbRv+KMFVbF2DJwEE Rt0n/7x9owTFv291zA8kIP7Qh9mRWoK9vgeCk4MIFDyycNTml2DBpdDnVy4S aK6xXMJd/Bg33nnv5hhKgD3XIWcm6zHu5YenTUUQ+PQzlGlcVYrhGp2LTRIJ 7E0T7zKtKsOBnqjxp+UE+hf4zp3XVIa+nrF7CysInFRY97j+Qxn++plQmFxJ YKbtvgxjugwXKmaxg7gEqiYMZjYbluOa7ZwO42oCuom/y1llleP5/G+8Uj4B 0xcP3siEVKCoj3lcwRsCmcVTjcPKHFw8d3R9/BiB2l0+5eu0OGh9O7sjcVz4 n92ilZ5GHAxiOoclTxCoDwxcz9vNwT7rurasKQKuV1wyf4VyEG/EuT+eFc63 LPZQbj8H3ZaapLfNVYHEqTPyZo+4WKUTtkBWSQUmvE29RuWr8PSeJb2XjFRg JNBnusj6KepeZd1WOqcCRky2coBHNar2uRZzS1RgkLVU04tdg2dH3XesGVOB qylHnnsb16Lml/g+ewNVYCwjKywln6H8nLCRy96qQHFJe3DhMzwlHSPi8lAV 7vBcOO3b61CpIu3q/H5VUC9wtOn+UIfjt84F8nXUgChTtQ4HeWjueMJP/5Qa mLKbj1i95SFa/tael6sGyffHD4ha1WNMR3PlSJ8axG3wveyTXY8vDmWn9Kqr Q1JejNRpST5aSJsN/31CHYwqHo/wHfioem/aIjFdHSyeyEQJcvi4huUneahX HSZpp9mnw3xMqBvdMqiuAYM7E18F6Degu1LMZa2jGnDJtdfW0LMBvaNH9c6n a8C+zz1X1mU2YM+4b5dnlwbo89qLN79uwLw50zJGy5nw5bThxBkpAWaYQuYC FhP0lR4YtRsIUPpwlnn0HSaU9ey4dMRZgKn5Tdaa7UxYZJc00BsiwJupk88j lDXhw/eI2dUZAuwP3rY/wUETEnlfA+7WCdD/mr1NZbwmpKaa2V3uEeDZPy5u ufJKE2ZCnZa/mxHgU6WiUoacFhzxDF50cAmNWz6m3W601wL33lAfG10a9SJL L6je0IKNG7gSjhY07jwRIYhs1oKRUbrP9gCN7zRDVqbKaMMOwcxQ4GkaObcu DIZYaYP21Mf85kAaW3UMtc9f0wa7mTnNBddptM9fyFbiaUOYQgSVnESjxP4C Rb6UDuy3li1fXkCjbJ6N6XYrHbjQ02ieV0ZjyBdpN69QHTCI/GutXR2NWjsj RR/U6UDFGXYHtNBock/vbqw4BZYGS3U3v6cxO+5lsc1mCsYT08d2f6ZxG2fT evlgCrzC5BLmD9C4o6EGQyspeOm0UddAaNWK2uxoDgXOZ06V7hd6Ku/ZzRQu BelJ/WmpQmdH8o5yqihYfHL4H6NB4by7BZI/ailw6ttldXiIxvLXrTuPNVLg urDGKHuYRvXPXR3mHymQ2K+1lxZ65mV3/a4OCsKtFrkOCf2irqeQ1UmB8sDp Y+tHaLyY/Tnkv90UmChUv+UJ3c7+plHUS4HhN8XUT6M0Rg8PeTAGhf199aSk ftDo1vPdQXeIgl3yEke1hYYXw2Ym3ynYO/Bl7KzQAyWj8o4jFFQOzY2bFdra f6I0apyCidZ96YwxGhluk8lJExR8DL2QsVXoiQNTV/MnKQjJcgy7JnSG8U+n +mkKtq1ferxA6D+oma2vflJQ8oGzsVlo+xWz1KcZCgbUbCRGhNZc8EtxeJaC 93drqxXGaRT5f6yGfwGH3QRL "]], LineBox[CompressedData[" 1:eJwd0nk41XsTAHBb8SYqQnW1nK/tWH5ZSlowQ0WWVKobyamUFgoR8nYtJVSX 0iURyb6riGQ5JyHHcX6ytadsdSrXRcga3fO+8zzzzPP5a+aZGYaLp72rmIiI SIgw/1dPJAe697APwDXfM7/JiBA8dLc5Vz8jGFQ8ubazQo9LG41+lQ+HxyeW Bw2KElyat1uy4ttVsHXxud8lRvBOVGUG59c16HbidbWKEyz7nqCvuP0G+O1d KVcrQdAkIyB19cBfMG+H7+aSOQTP5fVIprXdhLXmjKw4SYJt/SO8x4xbwNvk /zpCimDBV/3gi6x4YBk2SQX8h2CX5cqBTfm3IYIZ4O4kTXBstZxZPCcZ3sm2 6q1aQFCjb/7ejsK74Cml4bJoIUE3kzP9YjYpICEWGCO2iGA0cl+kaaYC9YM5 9kmO4DGB30Z+fRqEvA+pzFUkqBnx+z9HmOmg8PJV/20lghLzPupNR6RD3nOd FZFLCCqrvQ2JM8uA9qdvQjyWEfRtDWxfnJoJ6jl6FmtWEKypc/S2/ZEJlanh /qorCb71/LBbd1sW7EzsyFFYRTAh6tgFvb4sCLh2WXqCQTA3yN88eFUO0Ge7 WqrUCHImfGJGWHngbRbtZEER/LMtql0yPQ8kNwkijVYTHHCYE+gsyIOktcYc pi5Bg4gykV63fHim8XWVtD7B7slWVo97ASyRRUHzWoK9NR2OLrvuAefdoJej MUH1TrvcqOh7IPJ29G+WCcFlmf6zqs33wOz15LGjpgR9bPqzMq3vQ127uLMn Ejyv0hScsfwBNNJKVmFbhPcRt1V/JlYErzjAKLIV7sO3NT4uqxgG0663SjkT pJsNRZ2fFINeaqytLIvgQzvL6OnXxeB9N4Erf5Agq+BYbK3UQxhLTGevOEyw 2TLR5/qJh/Aztix3rStBm3mxXZGMEpCK6Lxw6DTByS7W1g1/lMIqd12Dx4EE Rz0m/7x1vRTEv29xLAgiKP7Al9mZVgoCv/0hKcEECx9aOGrzSqHwYtjzyxcI ttRaLuEsfgQbb793cwwj6D7XIXcm+xHs4UWkT0US/PQzjGlcXQYRGl2LTZII 7kkX7zatLoeB3ujxpxUE+xf4zZ3XXA5+XnF7iioJnlBY96jhQzn8+plYlFJF cKb9ngxjuhwWKma7B3MIVk8YzIBhBazZxu40riGom/S7nFV2BZwr+MYt4xE0 fXH/jUxoJYj6mscXviGYVTLVNKzMhsVzR9cnjBGs2+lbsU6LDda3cjqTxoX/ 2SNa5WXEhmCmc3jKBMGGoKD13F1s6LOub8+eIuh62SXrVxgbnlyP93g0K5xv WdzBvH42uC01yWifq4JJU6flzR5yoFonfIGskgpO+Jh6j8pXw6ndSwQXjVRw JMh3utj6KeheYd1SOquCRkx35UDPGlDtcy3hlKrgIGupprd7LZwZ9di+ZkwF r6Qefu5jXAeaXxL67A1UkbGMrLCUfAbyc8JHLvmoIsUhHSFFz+CkdKyIywNV vM11YXdsqwelyvQr8/tVUb3Q0abnQz2M3zwbxNNRQ6JM1Tkc4IK543F//ZNq aOrectjqLReeWP7WkZ+nhin3xveLWjVAbGdL1UifGsZv8Lvkm9MALw7mpArU 1TE5P1bqlCQPLKTNhv8+ro5GlY9GeA48UL07bZGUoY4Wj2Wi+bk8WMPylzwo UMdJ2mn26TAPEutHNw+qa+DgjqRXgfqN4KEUe0nriAZedBXYGno1gk/MqN65 DA3c+7n38rqsRugd9+v26tZAfW5HCbxuhPw50zJGy5n45ZThxGkpPmSaYtYC FhP1le4bdRjwQfpQtnnMbSaW926/eNiZD2kFzdaaHUxcZJc8IAjlw420yeeR ypr44Xvk7OpMPvSHbN2X6KCJSdyvgXfq+RBw1d6mKkET09LM7C718uHMHxc2 X36liTNhTsvfzfDhqVJxGUNOCw97hSw6sISGzR/TbzXZa6GHIMzXRpcGvaiy 86rXtXDjBo6EowUNO45H8qNatHBklO6z3U/DO83QlWky2ridPzMUdIoG9s3z g6FW2qg99bGgJYiGNh1D7XNXtdFuZk5L4TUa7AsWuitxtTFcIZJKSaZBYl+h Ik9KB/dZy1YsL6RBNt/GdJuVDp7vbTLPL6ch9Iu0m3eYDhpE/bXWrp4GrR1R ovfrdbDytHsnttJgclfvTpw4hZYGS3XhPQ058S9LbIDC8aSMsV2fadjK3rRe PoRC73C5xPkDNGxvrH0SVkXhS6eNugZCq1bW5cSwKXQ+fbJsn9BT+c9upHIo zEjuT08TOieKe4RdTeHiE8P/GA0K593Fl/xRR6FT306rQ0M0VLxu23G0iULX hbVGOcM0qH/u7jT/SKHEPq09tNAzL3sadnZSGGG1yHVI6Bf1vUWsLgqVB04d XT9Cw4Wcz6H/7aHQRKHmLVfoDvdvGsUCCg2/KaZ9GqUhZnjIkzEo7O+nJyX1 gwa33u8OukMU7pSXOKItNL4YNjP5TuGegS9jZ4QeKB2VdxyhsGpobvys0NYB E2XR4xROtO3NYIzRwHCbTEmeoPBj2PnMLUJP7J+6UjBJYWi2Y/hVoTONfzo1 TFO4df3SY4VC/0HNbHn1k8LSD+yNLULbr5ilPs1QOKBmIzEitOaCX4rDsxS+ v1NXozBOg8j/YzX+CzjdxDw= "]]}, Annotation[#, "Charting`Private`Tag$6924#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0gk01esWAHAhV0jGhEqsz0H8lSGVwi6ankLFbcDLlKGUlClDt3pXOomk i55QkdJx5YQoyT7OOf+bOXriuI8GRIdbHFPyivd/b6+117d+61t7rb2/b+v7 he07Ki0lJRXL5P9OHmv9ZkGzB6ZGhusuliLAF9leZy+MwqmeKu1Oxg9tB5Ql D86hl9Oc1u0FBAoCJ1eeKL6I/GKnpcHSBJbqOCS8PZeIJurJGhYyBNwHRd/1 fyRhWmy72izjr+tulrHtr+D0By1VgSyB0uTqpG8OqSjk3lvsIUfAcY0/asmn oemyEcWVPxHYZGtnntafhum/WCgMMd42wzrEjkvHIy61cmcXEdBcANmDLhk4 O9I1n6NEwJwXVy2azEDf/Svnji4m0Ln1QFB/RibWVwd8N1cmcH69z/uWxizM YEtmeEuYfv2fef0sn41rjRTHB9QI7IES5d5r2ZiVunesRJ3AzcpouK1xC+em sr5EaRCY3r8y+PTSHGwWkhH5pQRGPX2TBuZyMcjPfsBMm4DAuY01fSYPWxt+ 7ZtiPMob/mgxlIfWFk3va3UIOCU1BUTX30ZpqYO9bssJqDrWxy2puYN5ueGd EXoEamvXTn1yzscO0b36GkMCr5xe9u2Ly8dNMPJHIovA1tYTmRs5+Zj/wIJ2 MSJgcP1rzFW5AgyLqq17b0yAJWpjFz0rQAUNUbWsGVN/9V3MNqVCBFfFkt2W BLoknziHNxSi39sjN1hWzP+cf7pcIaAQfz1RcVbKmkCQf5XnlupCbEj23l6x jkCw1trjrn73cV996TvdjQSOPl8mk53/AP23uKuNOBDYfPlcTOCXh3jJKjea vYeZH3SV9FU5WMSXePu7EDAas5i+Z8XBxr3bnexcmffo3GemFMPBJadGVSRu BCy1b108OcfBm79v4Rx0J3DIesMbQ+nfkWM42GPkSeCFquKlQnEJtmit2fpH MAG7iR7VYdlHaD4srroeQuC3xFeZS1Y9wtSae5T3MQI/JePbOY9H6Oaroz15 nIByC9c9mvcIX3MWjumHMfssQ5WrpZVil11PbkIkAe0+XtDHFC5+8Gd/s75I wGpzY2D8zGOcKu3nFtwi8Lkob9l36TLUCBoyPp5D4Onwi51nFpeh5cqRO5a5 BGxOfPLZaVCGJ6+Op9XlERjmL1W75lyGg8ELwt/dJXCxvWUsO6cMO/X1LHSL CKjI5tjLbyzHyhuHH6dXEDjdkzb90LsCo6PbH19oIRA3/8rZNaUSO6hdlf+U MQTNltCHxa5Psal872+aNoYQzuNlPvnPM8w1HohsCjWEUo4wNDDsOTY0l4ov 5BuC1ka5X8Lu12AaKK3P6TCE1oD8ronOF2hZMJ40psAC0ls63iGqxZNvQsqK 7FgQ71myRY+HuHC9TphvGAtSHivVjO/jYVSS+xr3QhY4BN1N+PkJDy8+0Gvg dLGgaFtSU7hWHYZURgRuUjYCnWOyRPZUHXImpTObHY2grkTSfbSmDi9JG9yu izQC9/eKbjqL+Lh5vrF4rNgIBKrXPCKc+ZjSJJv+j7fMfYxhOSuVj88u1ce5 aRrDbeJ8oKORjw7h9NcVzsagZSgUX5jno4/p/j2uCcZgFaupz7UWoGfHsfvV 5cawuyXkx6ifACW71bvZg8Yg/6080iNFgH2Tk7mHlplAy1CB3Y6nAixJ9gn0 dzGBDynrWst7Bag+7iXffp7xG/pmpowQ9+/oL4mpMgETga/NdpYQvzTlf1z1 2QTu/O3akatOQiSrJqbN9FaDSNfy39v8hWjt36J4xmM1uO94W738nBDfRW6Y XX55NZSFDES2ZQrxY1VP7Mtnq8E3NlZ2rFSI9CeF+eLR1SBn8TV/iBYiiBu8 JvVNoUI34eqGHiFmiNRqow6awp8nSVXtqBATs/6a8Uo2BX8Zf+2aBTS2Jc7T ji9M4cTIy24FDRqn/HIyAyZMQexVzVclND5Z0ghiQzNQazp8x9OaRtfiC18e eJkB926QirsjjU5Rp82D0s3ga1Hf/VNuNHaoTO64IjSDO/wEywZvGu2z5wOG Zs0gp7YzOTaERseJW55FFAV3NauinCJoLIgLHwg5QsGf8X0cx19o7B1vO3U0 g4LnkTbdg5dpLNtY1yl8ScE3al26CpvGJutAQWE9Bc1VEgdbxgNrFLmXGijQ 4nDPpjDWYnmwdzZR8PeanECrKzTGq4k3NbdSsAreGyck07h9ROXuv95QAD5x AfKpNHbn+Bzv66fgLLKer2U8nrXwoGCAgtcpErlDjJVucJzufWR8SpLwkLE9 e3JF4BAFel8+i3ddozE/8nKbeJgCdv+ZmstpNIa6cNdJJBSIs+ICuYwTd3kY vB6n4OCm1wtFjPOcZpXLJyg4pxpDjK7T2G7r9CliigJlnZkPQsY2RqLsmRkK lEIbbP5i7GqQkNT9jYKdugsuqKfTGLzCIKJ6loKUDaVTvoxvqYfuif9OgVyM 6So24wplVVvvHxTkVmkDl3HrokqW/RwFE73xHl2Mh2Q91fXmKWhvO+Azx1jq /2EO/wV+VsJw "]], LineBox[CompressedData[" 1:eJwd0gk01esWAHAhV0jGhEqs7xzEXxlSKfYup+kpVNwG3EwZSkmZMjS9K51E 0kVPqEjpuHJClKTDOf+bOboy3EcDosMtjil5xfu/t9fa61u/9a291t7ft/W9 g/cclpaSkopi8n+ngL12o7DRFZLCQnQXShGs6bS5xp0fDpPd5drtjB/Y9CtL 7p8Bd86s1q15BHP9JpYfK7gANQWcxQHSBBfrQOzbM3FgrJ6gYS5D0GWg87v+ j3hIjmpVm2H8dc2NYq7dZZj6oKUqlCVYlFAR/w2SQMS/u9BVjqD9Kp8XWvLJ YLJkWHH5TwQ32NiaJfclQ8pZc4VBxlum2Qe40SlwyLFK7vQCgprzMGPAMRVm hjvmMpUImgmiKzonUsFr7/LZwwsJtm/e59+Xmga1Fb7fzZQJnlvr+b6pPh1S uZJpwSKmX5+n7j/LZ8BqQ8WxfjWCu7BQuedqBqQn7R4tVCd4oywCb2nchNnJ 9C/hGgSn9i4POLk4ExpFZFh+McERN6/4/tks8Pe26zfVJih0aGFPncqG5rpf eycZjwiGPpoPZoOVecP7Kh2CnPgG34jaWyAttb/HeSlBVfva6EWVtyE7K6Q9 VI9gVdXqyU8OOdDWebe2kkXwFedl757oHNiAw3/EsQlubj6Wtp6XAzn3zWlH Q4IG175GXpHLheDwqur3RgTZnS3c/Ke5oKDRWSFrytRfeRe5RSkP0EmxcKcF wQ7JJ97BdXng/fbQdbYl8z/nnixV8M2DX4+VnpayIujvU+62qSIP6hI8tpau IRigtfqok/c92FNb9E53PcHDz5bIZOTcB59NLmrDQHDjpTORfl8ewEXLrAju LmZ+1FXSV+VBfo3Ew8eRoOGo+dRdSx7U797KsXVi3qN9j6lSJA8WnRhRkTgT tNC+eeH4LA9u/L6Jt9+F4AGrdW9Y0r8DjzXQbehG8Lmq4sU8cSE0aa3a/EcA QdvxbtUh2YdgNiQuvxZI8Le4V2mLVjyEpMq7lMcRgj8lvHg76/oQnL10tCeO ElRu4rtECB7Ca978Uf1gZp9lqBK15CLosO3Oig0jqN0r8P+YyIcPPtxvVhcI Wm6s94uZfgSTRX383JsEP+dnL/kuXQwa/oNGRzMJPhl6vv3UwmKwWD582yKL oPWxT57bDYrh+JWx5OpsgkM1i9WuOhTDQMC8kHd3CF5obRrNyCyGdn09c918 giqymXby60ug7PrBRymlBE92J0898CiFiIjWR+ebCEbPvXJwSiyDNmpH2b9k WKjZFPSgwOkJNJTs/k3TmoUhAkHa4/88hSyj/rCGIBYW8URBfsHPoK6xSHw+ h4Va6+XOBt+rhGRUWpvZxsJm35yO8fbnYJE7Fj+qwEbSUzTW1lkFx98EFufb sjHGrXCTnuAFzF+rE+wVzMbER0qVY3sEEB7vssolj43gfyf258cCuHBfr47X wcb8LfENIVrVEFgW6rdB2RB1jsgS2RPVwJuQTmu0N8TqQknX4cpquChtcKs6 zBBd3is66yyogY1z9QWjBYYoVL3qGupQA4kNsin/fMvcR7JK2Ek18PRibbSz phHeIg772uprAELor8scjFCLJRKfn6sBT5O9u5xijdAySlOfbyUEt7Yj9ypK jHBnU+CPEW8hSHaqd3EHjFD+W0mYa6IQeicmsg4sMcamwVzbbU+EUJjg6efj aIwfEtc0l/QIQX3MXb71HOM39I00GRHs3dZXGFlujMZCL+utbBF8acj5uOKz Md7+x9VDVzgiICvGp0z1VmKnrsW/t/iIwMqnSfGU60p02fa2YukZEbwLWzez 9NJKLA7sD2tJE8HH8u6ol09XoldUlOxokQjoTwpzBSMrUc78a84gLQIU17lP 6JtgqW7slXXdIkjtVKsK32+Cfx0n5VUjIohL/3vaPcEEfWR8tCvn0dASN0fb PzfBY8MvuxQ0aJj0zkzzHTdBsXtFjSqh4fGiehSzTFGt4eBtNysanArOf7nv bor8O/4qLvY0cMJPmvmnmOLX/N57J5xpaFOZ2HZZZIq3a2It6jxosMuY8x2c McXMqvaEqEAa7MdvuuVTFN7RLA/nhNKQGx3SH3iIwr9ienn2Z2noGWs5cTiV wmdh1l0Dl2goXl/dLnpJ4TdqTYoKl4YGKz9hXi2FjeUSsGHcv0qRf7GOQi0e /3QiYy22K3d7A4W/VGb6WV6mIUZNvKGxmcIV+N4oNoGGrcMqd/58QyF6RvvK J9HQlel5tLePwtMv2M9WMx5Ln79f2E/h60SJ3AHGStd5nLsfGZ+QxD5gbMed WOY3SKHel8/iHVdpyAm71CIeopDbd6ryUjINQY78NRIJheL0aD8+47gdrgav xyjcv+H1/E7G2ZwZ5ZJxCs+oRhLDazS02nA+hU5SqKwz/UHE2NqwM2N6mkKl oDrrvxk7GcTGd32jcLvuvPPqKTQELDMIrZihMHFd0aQX45vqQbtivlMoF2my gsu4VFnVxuMHhVnl2shn3LygjG03S+F4T4xrB+NBWTd1vTkKW1v2ec4ylvp/ mOF/AaOvhXA= "]]}, Annotation[#, "Charting`Private`Tag$6954#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd1Hs41HkXAPDJ1KqkG4lIRN8ZzC/FkssuB7lb2wWJ0m1dkkxKpFRuUZGs EN4p0dBgQ8hlmDmFpKmlVndMN2VTjM2tlXh/73ue5zzf5/Oc5zl/fM9zjvZu 7iZ/OQaDEUnn/96kyIV2ew9swNTDYeqKDAJGfpu81GX78a6L4MN12p1l+QkZ TeHI0Hp1w30GgfXRjpSxTRSajS45LqOtMT9b4rTgOIZJ3JzS5AistGu1vmQS gyV58UprmQQuQ8T9ZmEsvg0XSh/RdmnUW7wuNAE9VrAPK80iYKzhMeh77RSe G/GDatraQcXmiR2J2HovU8HzBwJZD5xFlmOn0SycWZAlT0DTRSfE+G4Kqt+T tqvNJeB55R5337Vz6HF5Sa6Q9kAo55VCbCqmHHLz91Wg629UP7stSsOp5cJv vHkEbDuc3VQyf8e3BzPZWgsIpNgpR/DtMlCg4RZHlAlsaZ4e/5iegW/+ifvl Lm2JWZf8yOsMXHa3XjVoCYGOWXd2JUdlYnIYq7xYhYBX97nBeZezMLRVrpuj RiC3XvHZnsZsNDlQb2KsSeBPs2xz0WQ2htoPMR7TtteYKg34KQeLlrEehK8g cD/mgo64PgdV72TsrtEi0NM3e5RxPRcn1Q6cN9ch4Fi0zdY2iodNzeSjNZtA bUR6s+lNHt55J7EYpN2Zsnje1SEetjG5KTw9Aju5tj0y/0vYbldr+K8+gTNN 7+TKXC7ji2bHiEqK/s+owyozpvNwqDmIucqYgLmJoDYlLR81W0qWz7UiYBMd pOwgyEftXnduHW37409GXmI+6s4cvhVgTcBDMSQ+ZzAf9ddb/tYMBNYadXUd cSlAk5b7JdF2BKYeZf9JTRagW8vndTInAmHZ9UnuLnyMalm96fFmAtMFY00z t/PR+12qSqQHgZiQXzyLuHw0lZO9VPOk+x/S2P1HBh+/WJfv2eFFgEomSyU9 fAxuMDzc701g9faAyiMhhehTuSab4UfPx699ozS6CC2uGEk5QQS2iwye5ocJ cOKYafCpaAKmazLm6McIsGy72Xfd4wQi5+V+KUoV4C5ri7QW2rmfJkxPlgqw Tc6qhnmSwMej0pulvQLMOmMvFxdLYHP1orWzPIvR6KJH7olEAqqxWz1+XF2C wZUHJZFpBLauDGK13CnFF3+X6QfzCcRVmhn6PC1Dy9lHEys66H34NvdSeXEF BkrX/670lcCJl9qpOl03UCVw97rnOixwpQKNpR8qcWXh0KmH7ixQu65WNNhW hV9zTsS/j2ABGeZGOgqqcaPNDo1tBSyoeOEwbBB4E8PzrH+TSVhw1e3Yhz6l GhypTPOo+cICBe/k00tv1+D4kR9fS5ezIcJ0q84Dr1psGX22TNeBDZJbM58e G6hF5VXtQ5IwNiwpHPHsjqjDpjkm3EIeG5yTzqYfGqxDi8L/8HgtbLDcoEUq A+vRZNjDf1TGhqQxkevFR/U4Ma7YE6yqB2oO+eNKPwvRtlxtyGa9Hnwaymjt yhNin3pWqRtXD/ol4avCx4ToZb1YJfyiHkTOXsQUuTeg05I36t+b9MDH6NGg E68BZxaUPyz4pAe+jx72KPY2oGbvIBWtpA9XOjjCKKoRhc9jSK2VPmyJfVK7 LLQRtRMWt88P1AfXvthEo4pGVHg7trAtXR+cFC2+ew804qZR18lqkT4YPqNc 7XREuAevZInf60PE/tuvz/qIcNzS6YHeIgNIMhEneyaL0JMrq7hhbgD/6qX6 VtSJcKG3vNX+XQZAHiz1de0ToftwWMDZFAPY+/RKz5GFYvSy7/65pdoAKqd9 p8UWYnzjnFOx47UBxJRNxGrtFOO6WV5/LZ3DAbsz/JzPcWLsPxzPY67lgHbx tYyaIjFq5TDlNm7jQNWlg/m7WmkfildpSOCAJ8c9uf+DGK9Oe7YmVnDAWMdM yJqFGG+To5nYxQHDNn+LgRWIlEX3qgImBQo9IQeiLBF93oe1rTCkIFNiFfV6 M+JGR/llwi0ULBSmV+UHIxb6KSqfPklBeqNSpnIcYjQ7oLi2hALVr97dXVmI msXiAWYnBftexP1qehHxaJm8tJb2zpassjTaT6o2tO97TMGHfefX2Gcjpojf lnU+oWBtucP66zmIE50/HLj6nIKGFGkZfa7w6ZT7F1spBTb1M24wCxDPe7wa i/1Igfzf/iW+tPu3svtM+ik4neCYVkXbYUfYs4+0ZbqZ2nuuIk7tZdZt/EyB S9Zzn9t8xJCTrChtGQUD8/8xOHoN0amE++3WCAXdts6yh7T55XWfwkcp2Pw8 II8lQJyuntHNHqOgd5LZ+ph2DV5oTBunIP+WLUWvL+o+qT2+c4KCNp7tlgTa MS8ZocrfKDAKNAh9SbvrlbNfG+2OyHu7E0sR0/u7rNZ8p+DGhSTopj0o0zXs pW3qDApGfyA6j+5fkT1FQTDja1MSbf5EzQK3aQp+0qoK7KHN+H+shv8CH/Cb Qg== "]], LineBox[CompressedData[" 1:eJwd03s41HkXAPDJ1KqkG4mSiL4zmF+KJbHrHORubRckSrd1STIpkVK5RUWy QninCw0NNoRchplfIWlqqe0eppuyKcaWS6vi/b3veZ7znOfznOc5f5zzHL3t /HUBSiwWK4rJ/9XkqNn2O/esgbT94QtVWQRN/dd5L1TshluuondXGD8oy0/M bIoAlu6Lqx6TCK6OcaLMbKPBcnjeYQVj7Zk5MudZhyFc5u6crkRwiX0rnDOP hZILCWor2ATPY+SdZnEcvI4Qy+8zdm00nLsyLBE8F3P3q00haKbtOeB3+Ric GvLHasZ6wcWrkjqSoPV2lorXDwSz77pIrEeOg2UEuyBbmaCOq36o2a1UWHhb 3q41naDXxdv8XZdPgef5eXlixv1hvBcqcWmQus89wE+F6b/S/Og+Jx3GF4m/ CmYQtOtwcdfI+h1e783i6s4imGqvHim0zwSRtns8USe4oXli9H1GJrz6J/6X W4xllp3KQy8zYcGtes3geQQ7ptzclhKdBSnhnPJiDYLeXacGZpzPhrBWpS6e FsG8etUnOxpzwHxPvbmZDsE/LXNWSb7lQJjDIOshYwft8dLAn3KhaAHnbsRi gndiz+hL63NB82bm9hpdgt29U4dZV/Lgm9ae06v0CToVbbKzixZAUzN5D1yC tZEZzRbXBHDzjcxqgPGD1LkzLg0KoI3NTxUYEtzKt+tWBJyDdvtak3+NCJ5o eqNU5noenjU7RVZSzD6j92tMmrgAg83B7KVmBFeZi2pT0/NBp6Vk0XQbgrYx weqOonzQ6/Hg1zF2OPxo6DmdDwaTP18PBIKeqqEJuQP5YLTa+rdmJLjCtLPz gGsBmLfcKYmxJzh+P+dP6lsBuLd8XKlwJhieU5/s4SqE6JZl6x6uJzhRMNI0 ebMQfN6kaUR5EowN/cWriC8ECyXFcy0vZv4+7e1/ZArhE5Tv2OJNkEoh82Xd QghpMNnf50Nw2ebAygOhheBbuTyH5c/cx799rTymCKwumsp5wQQ3S4wf54eL YOyQRcixGIIWyzOnGcWKoGyz5XeDwwSjZuR9KkoTwTawSm9hnPdhzOJoqQja lGxq2EcJvj8ov1baI4LsEw5K8XEE11fPWTHFqxhMz3rmHUkiqBm30fPHZSUQ UrlXFpVOcOOSYE7LzVJ49neZUYiQYHylpYnv4zKwnnowqaKD+Yev08+VF1dA kHz172pfCB55rpem33kVNIK2r3yqz0E3KshM/q4SlhQOHrvnwUGtK1pFA21V 8CX3SMLbSA6Sz/woJ1E1rLXdor2pgIMVzxw/Gwddg4gL8JtCxsFL7ofe9arV wFBlumfNJw6q+KQcn3+jBkYP/PhSvoiLkRYb9e9610LL8JMFBo5clF2f/PhQ fy2oL20flIVzcV7hkFdXZB00TTPnFwq46JJ8MmPfQB1YFf5HIGjhovUaXVIZ VA/mnz0DhhVcTB6RuJ29Xw9jo6rdIZqGqOWYP6r2sxjsyrUGbVcb4ofBzNbO C2LoXZhd6s43xD5ZxNKIETF4w1yNiLOGGDV1Dlvi0QDO814t/N5kiL6m9wec BQ0wuaD8XsEHQ/S7f69btacBdHoGqBg1I7zYwRNHU40gfhpLam2McEPco9oF YY2glzi3fWaQEbr1xiWZVjSCyuuR2W0ZRuisavXdp78R1g27fauWGKHJE8rN Xl8CO+iL2dK3Rhi5+8bLk74SGLV2vms4xxiTzaUpXikS8OIrKq6uMsZ/DdP8 KuokMNtH2Wb3NmMkd+f7ufVKwONzeODJVGPc+fhi94HZUvB26Pq5pdoYKyf8 JqRWUnjlklux5aUxxpaNxelulcLKKd5/zZ/GQ/sTwtyP8VLo258gYK/goV7x 5cyaIino5rKV1m7iYdW5vfnbWhnvS9BoSOShF88jpe+dFC5NeLUmVfDQTN9S zJlCQ4Jtrk5SJw9N2gKs+hfTQFl1LS1gU6jSHbon2poG37fhbYtNKMyS2US/ XE/DWiflBeINFM4WZ1Tlh9BQ6K+qfvwohRmNalnq8TTEcAOLa0so1Pzi09WZ TYNOsbSf/YDCXc/if7U4S8PBMmV5LeOtLdll6YwfVa1p3/WQwne7Ti93yKEh Vfq67MEjCleUO66+kkvD2IMf9lx6SmFDqrwsWkDD43GPT3ZyCm3rJ11lF9Bw 2vPFSNx7CpX/DijxY9y3kdtr3kfh8USn9CrGjlvCn7xnrDDI0ttxiYbxney6 tR8pdM1+6ntDSEPoUU60noLC/pn/GB+8TINzCf/r9SEKu+xcFPcYC8vrPkQM U7j+aeAFjoiGiepJXdwRCnu+sVsfMq6hzzSmj1KYf92OWlZCg8Gj2sNbxyhs E9htSGQc+5wVpv6VQtMg47DnjDtfuPi3Me6Iur09qZSGjL5Om+XfKbx6Jhm7 GA8oDEx6GFu4oIrpHzS4DO9enDNOYQjrS1MyY+FYzSz3CQp/0q0K6mbM+n8s w/8Ck25fwg== "]]}, Annotation[#, "Charting`Private`Tag$6984#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwdzHk81PkfB/BxhVKuIiok2s8cX5QtbQdvyhGJlRyb1DoiHYh0KhMdJqxM DTuFcaScYWa+tdK+t6ZbSyPZNhaLTSc6bEqx39/v9Xi8Hq/H85/X3LBYv0hV Fou1h+n/Ntj7rKt1tQdm7Y6fNZVFoPdJ21ZPaTj+fCVPepSxhcnJLH/ONiwd Q69xxpdfHeP6JsfhJceBviQVApfegNL/wy5s4E87OMSYBL689n7ubrx1c9H0 aFUCosbmHaOme/Ch5saqHsa7zPZPeXNuP/6TWdmpVCOgMeE1R2l/EIcftiZ6 qhPAdMWdG7Jk/Gz4WUfBOKHEfHArpKCe2GOFTINA26JA1perR3B52T/5Ik0C h57Uurz2TkX3FzqLdbUIhDexi/I6UtGP923zccaFG27cS36VhtH1R8b3ahMo KLFmK/qPofBX800bphCQOibXzIsQ4Mv2YAsLXQKxPrqNuU0CHDHhX8ljnBWS +yJhwUlkbbzoq69HoCOuUqNi9CQa9f2boqpPwCtAfZ80KROdh4R/9xsQcOAL MpVzsjFPs7m43IiA/r1ktwH3bCzxHFlqaUzgKN805mR8NtZkzn4kZpz4dKV1 hiIbFYbb1DJmEsiMXRugCDuFg+ZaETtNCVxUbhxyys5B1yUu1vZmBJa5rLHN uJyD5MWiXjnjt6nmkpSuHNQRswuXmBMQRp+Pi+EKsW1Mz8TRgkBo8/yne64L MQy7dVZbEpCbaBe97T6Nh9ySP4TOJyAocD97aEiEtP8VhcCGgK+DpP3atFwU a1SlTLUl4BwUYNNM5WIyXbgim/HLDZ/NIrfl4qqZxy+fsSNQPcdn5+H+XGzt WF8pWUggyOey7vvmPBwKe59DLybw0fL3MMEJMZJ4m7BeR+YvhHLwLhJjWqf9 7hAnAt++ok+N/CLGbvfvTrQzNi1THf/4Uowis1U194EAy0dlW5PXWVR/EPy5 3oWAXkN84DOtc9g9/2hOqhuBOfrdWam78lHU2XHDai2BeRffXW2YJEF1j/R5 URsJ/JXn8HCHngS9/dOVXYxjC8NrTUwlKNqcfjgglMBUwR9aIZQEyb70DtdN jJ8tSMlYJ8E1FelCqx8J2Gs+WHahQIJCHYFabwSBuqfrYg3sitBSKegL2U7g z8rvj7c7FyP8kFHid4BAubi/ZYd/KV7orQi4c5aA7QfDyTzNMtTSXpKl30Bg LDBfOlx5Ac+c7xntf0pgfqlioZtFOfKTF1iajxG4NatE+dPGCox6P9xiY8KG Z48evnr3cyXu7W6qvfMdG9w69L2eV1Rh6tYZRouD2DCD/7xvbmk1DtpoLp2S xIbhiLA3QZIaTIuZfmqriA2yqEk1Ow9ewumrsrfny9iwSXTztrZNLbYIvznw w2M2pN2bHTV+uhZfmkV5HBphg7JU9cd9Q7U47j5DvMeQA4Wf1hw1WlOHjgNd Zp/tOWDPSahR5NfhXitj4ufHAY3NicIDb+vwrz9iIuwTOFDeqTpo71SPxbe3 bDog5MCp1hl1rLR63LxO2ZVXxwHHZddj2+/Xo2dA4CmnVg5Uq85uqNaWos1H r7tXhzkQYmXrFLlKivGPnl8rmMaFZEP/RF2+FHusi55NtuXC+aJBqwlaih5G d4VrvLkg8jlRQw9KsfPg5ETjnVyQl+doNlvKsMVsxGB1FhccqDKXhd/LsDF0 7WLfKi6MVE396siX4ePpioyeB1yobzt8z7hKhgPRZVFur7hgtnCB2LdNhsGj C1QMtXkQrjeQrj8uw3+/Pvk9ms2DvudhzoHz5JhZNGh22p0H6v1GpiqecvS5 al7iEc0Di0WCzMztcpySgJWtx3hQr5E3pJ0px2+2aCYoSnngt2Vvx4MaOe5s idmx4hYPdj+Rp319IMdL7ctfZ/TxICk6LjLgtRxn+XMKItUpOOQ7M6JJm8YB nd+mnbeiYPab4pPzrWisDr+p1uBCgcuJgPKfnGgssOvnBoVTYO/i2mUaRGP6 2V1PmvgUsNSO5i+NpfGRc/nKskIKNvuaRPsep3F16Njf2r9RcGtiy/q+czRe mdmovrKLguHOCXTOp3E9KR+9x7jaTstUwvidg+i1bzcFRD3xXEgBjbzAuLbQ HgqSqvQ72gppLDpjVbq/lwI7LuVyo5hGgUHmyvpnFLR4s5qzL9IYohN6ZO4Q BQVBlbw3jD/N8kq6yJjfyDmwupxGEXdJjO0wBcZf6gdUKmh86Gngt+ItBZZc mIivpNE1/fbc4PcU1PJVuD41NNpMsr2e/ZGCXeGRJyoYN82YLTcepSB8ovmx xiUao621ywsY3zqP0Mi4eFVfdtUnCgJctweSOhqNU3M33x2jwF20blEqY1lO mr/PFwoCdYPVuhj7Fcd7tDOWl9yPFdbTmHHdy67/KwXOrcunDTJmK5dYbRun YIvPn+c8pDTe7rGe+Y7x1Hkls0oYhw8b6OyboCDOP1/wlTHr/7GB/wCthYYQ "]], LineBox[CompressedData[" 1:eJwdzHk81PkfB/BxhVKuIiok2s8cX5QtbYf3m3JEYiXHJrWOSAcincpEhwkr U8NOYRwpZ5iZb620tqZbSyPZNhaLTSc6bEqx39/v9Xi8Hq/H85/X3NAY3whV Fou1h+n/NsjrrIt1lTtk7o6bNZVFsPdJ21YPaRj8fCVXepSxhcnJTD/ONigZ a/QcZ3z51TGuT1IsXHIc6EtUIXjpDSr9PuyCev60g0OMScDLa+/n7oZbNxdN j1IlKGpo3jFqugceam6s7GG8y2z/lDfn9sM/GRWdSjWCGhOec5T2B2H4YWuC hzrBxjTFnRuyJPhs+FlHwTi+2HxwKyaDnth9hUyDYNuiANaXq0dgeek/eSJN goee1Di/9koBtxc6i3W1CIY1sQtzO1LAl/dt83HGBRtu3Et6lQpRdUfG92oT zC+2Ziv6j4HwV/NNG6YQlDomVc8LF8DL9iALC12CMd66DTlNAhgx4V/JZZwZ nPMifsFJYG286KOvR7AjtkKjfPQkGPX9m6yqT9DTX32fNDEDnIaEf/cbEHTg CzKUc7IgV7O5qMyIoP69JNcBtywo9hhZamlM8CjfNPpkXBZUZ8x+JGac8HSl dboiCxSG29TSZxLMiFnrrwg9BYPmWuE7TQleVG4cgqxscFnibG1vRnCZ8xrb 9MvZQF4s6pUzfptiLknuygYdMbtgiTlBYdT52GiuENrG9EwcLQiGNM9/uue6 EEIbu3VWWxKUm2gXvu0+DYdckz6EzCcoyHc7e2hIBLTfFYXAhqCPg6T92rQc EGtUJk+1JegU6G/TTOVAEl2wIovxyw2fzSK25cCqmccvn7EjWDXHe+fh/hxo 7VhfIVlIMND7su775lwYCn2fTS8m+NHy91DBCTGQOJvQXkfmL5hy8CoUQ2qn /e5gIPjtK/rUyC9i6Hb77kQ7Y9NS1fGPL8UgMltVfR8JsrxVtjV5ngX1B0Gf 65wJ6tXHBTzTOgfd849mp7gSnKPfnZmyKw9EnR03rNYSnHfx3dX6SRJQd0+b F7mR4F+5Dg936EnAyy9N2cU4piCsxsRUAqLNaYf9QwhOFfyhFUxJgOxL63DZ xPjZguT0dRJYU54mtPqRoL3mg2UX8iUg1BGo9YYTrH26LsbArhAslYK+4O0E /6z4/ni7UxHgD+nFvgcIlon7W3b4lcCF3nL/O2cJ2n4wnMzTLAUt7SWZ+vUE xwLypMMVF+DM+Z7R/qcE55coFrpalAE/aYGl+RjBW7OKlT9tLIfI98MtNiZs fPbo4at3P1fA3u6mmjvfsdG1Q9/zeXklpGydYbQ4kI0z+M/75pZUwaCN5tIp iWwcDg99EyiphtTo6ae2itgoi5xUvfPgJZi+Kmt7noyNm0Q3b2vb1ECL8JsD PzxmY+q92ZHjp2vgpVmk+6ERNipLVH/cN1QD424zxHsMOVjwac1RozW14DjQ ZfbZnoP2nPhqRV4t7LUyJr6+HNTYnCA88LYW/vojOtw+noNlnaqD9lAHRbe3 bDog5OCp1hm1rNQ62LxO2ZVby0HHZddj2u/XgYd/wClo5WCV6uz6Km0p2Hz0 vHt1mIPBVrYQsUoKcY+eX8ufxsUkQ78EXb4UeqwLn0225eL5wkGrCVoK7kZ3 hWu8uCjyPlFND0qh8+DkBOOdXJSXZWs2W8qgxWzEYHUmFx2oUueF38ugIWTt Yp9KLo5UTv3qyJfB4+mK9J4HXKxrO3zPuFIGA1Glka6vuGi2cIHYp00GQaML VAy1eRimN5CmPy6Df78++T2KzcO+56FOAfPkkFE4aHbajYfq/UamKh5y8L5q XuwexUOLRYKMjO1ymBLfWNF6jId1GrlD2hly+GaLZryihIe+W/Z2PKiWw86W 6B0rbvFw9xN56tcHcrjUvvx1eh8PE6NiI/xfy2GWHyc/Qp3CQz4zw5u0aRjQ +W3aeSsKZ78pOjnfioaqsJtq9c4UOp/wL/sJaMi36+cGhlFo7+zSZRpIQ9rZ XU+a+BSy1I7mLY2h4ZFT2crSAgo3+5hE+RynYXXI2N/av1F4a2LL+r5zNFyZ 2aC+sovC4c6JRqc8GtaTstF7jKvstEwljN85iF77dFNI1BPOBefTwAuIbQvp oTCxUr+jrYCGwjNWJft7KbTjUs43imgQGGSsrHtGYYsXqznrIg3BOiFH5g5R mB9YwXvD+NMsz8SLjPkNnAOry2gQcZdE2w5TaPylbkClnIaHHga+K95SaMnF ibgKGlzSbs8Nek9hDV+F611Ng80k2+tZHyncFRZxopxx04zZcuNRCsMmmh9r XKIhylq7LJ/xrfON2MC4aFVfVuUnCv1dtgeQWhqMU3I23x2j0E20blEKY1l2 qp/3FwoDdIPUuhj7FsW5tzOWF9+PEdbRkH7d067/K4VOrcunDTJmK5dYbRun cIv3n+fcpTTc7rGe+Y7x1HnFs4oZhw0b6OyboDDWL0/wlTHr/7HB/wAhEkqQ "]]}, Annotation[#, "Charting`Private`Tag$7014#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0ntUzAkbB/Ax3UY3uiBJFyX6zfzSDeHFowvFiKxctrSMenMpVEKmUiKV LpOpaSKkdDE1P7t2z2YneRSZJb1vuWR0UxTTdWJZUY39ve9zznOe8/nve77n seEd3hLKZDAY0fT+70axqlukUR6YFRM5x4BBQOQHNte3eAcetE9L3EW7dpPj jt8ad6PPy6I+KW0nD9+L434hOD/19no17WtG+kLlhjBkLmu+6TeFAGej8Faj D/vxdf9706u0Z8+LWTVjezjeufg9VkVbVXtWaux3BGMmHL0ETALSrdTuH70j cYt07Y1u2klpJRNZTlHoGBxs6KxBgH5jZMKKvmhUYqaihXbvX46hFsPHMCh5 KNxEiwCqUmTDu3ocl7lpPt1Le1m6rVsc9wTO7Juz9DfaI/GrlU3iWGxeu2FK gDYBFiJP4xpmHHrqSvJEOgT4r2v48ej8RCRywu7O1iXgYtex3Ochiajjccr2 AO2NO5cnryxJxN6PolQZ7UM1sis/zE3CK1sfbgnUI6Cj8OWcHJ3TaGQ2/32h PgFjcQX5xbJkHLvyZpr1NAIedmg5tt1JQXnVrj32pgQ4eFW4rRhOwYyRorR4 2lM1VSyXuedws1PvL89pN4xmrxnkn0PFrweYyTNon3XNb3JLRaXseMnrmQT0 5Lk4m4vSUPdRTp94NgGjm7rW9dpkoF9fw349KwJavT9wM3wy0HjB1As82oUH uE3jhzKwdR9X9gft2dKYRreaDPxp6KnuPmu6X4NSX3v/TDzy1+vKBzYExORL qm5FZ2HOlG/D8XYEhA3Hen3ZIMDncx2jRh0I6D8zsDAwUIDSF4pnawgCnuwQ zb95QIApmcmLhbTjbFVmC9ME6D6pGFvMJiDod7NcXoMAL3Ukn+JzCOAFsV5Y rMhB3qVXGdqLCOBq1A8WWlxAldnZcgs3AoY1wm69rxWirmlHh88qAjIbvBYb Pxaicn1bqZg233O1hVurEOVJikNK2sYezQHBI0I8o3rOSF1NgIa0aIGfZS5O Pm6ykwMBnlv3OFXE5eJoEoZ7exKgM/d8wXXXPGxVFU+s8SFg32VJumemCIsb 91us2ELA2uz6flxUgIa17fZdYQQwv7Mazu+6hCWu7PPT4giod5rPik24jAa9 wbIPOQTIAkz0AkOv4quAqLsR5fQ/iyIPTD9ThP/h7rU4UUOAWfLjky3brmF+ vLu3awsBln1emj8ZFmOa66A8ro/uz7shL766GDsl8Va7vxJQ5SvfBSElqBX0 ac0nQzZYRTSLj0yU4LYLPndn2rKhbexV2wXxdeQzk7QG3Nkw9WB0dp1DKTLd Cmy2+7Gho+hwoUBSircGsvK38Nhwylypli4qwyXt+xTq42xYaR5LLi0rw7eb raOXZbDBRc5UvLcuxxDGHYVdMRvMfn03+llYjj6RS00k1WxICRnPa/pWjlvD BOW1jWy4+IG9XhZagYvzm7RP97DBN4L1NqWhAldzlfj8Mxve7dkz/tbqBlbW v9lYN5UDAf1PHrITbuBgVF1ZsBUHTO55Kp89vYFbK+J3prtywKc7sH0BW4I5 syxf/tuXAwV1/Mz8BAk6+Vxx6AzmQGL7dGHJIwmOTY6/6IniQETZBj17s0rM HV65MT+VA2d+Xj7cGVyJO3m7LNsLOWAXsem/fdcqMVEc9OD2zxzQa1+y1FFZ iXwWLF73kAPPymZkZy2owquTDEZIG53vd/mVsf1VKOaU5TmPcmCT5X67kdIq lHUvPJupSUJ5qtysq6sKV20775tsRsKAX21iqbkURVpPFQ6OJBw8wheXb5bi rOV/1wV7kGB6ecDNP02K4RXqGK8dJFwKCplli1K0VbxT348gQR1aRj5WSVEj s6qnJYmERWxBzcA8Cqv527IF+STkdOk/If0pzFV1ijorSTCpV+52i6fwmZ13 9AMk4YR23khaJYXvhALzoBck5Onwq0++oHBe6h9zTveT0K/0cndtpZBZvN6k g/bKpqnXBmn31LTrLhkg4c0DIRGkoLBINfm1n7bmRmPLf7VTaLndQ+E/REK4 gXb6l24Kze0bc21UJDj/MEUQNESh0YMOg7pPJGzWjJ5lPEzhaGeE1pzPdP6w 7efktJu/qCeO0q7XOGftoqIwi20ztPBvEl7dVrprf6RQXxj6WPCFBJFwSFPy hUIWbyRl9zcSHvI9ZgSPUajkn0qQ0T5339vQ+CuF8rzpx0zH6f6Ye2Wx3yhM eeQS+ift67rB4+smKdR0Pu7pNEnCjntn/Mdp965nrUinfettjIBSU3g/pMCl l7bdUMOfpoybeFpcYyNWk3BPj1Mvp827xZ39kTbL8OD1k1Nu4ponndO530ng ZaUcJpk30frdIVYZ7aMLTtt202b8fxzhH701bsg= "]], LineBox[CompressedData[" 1:eJwd0ns01AkbB3DGpXEtlwrJJaJ+Mz+5luqt53ErJMV2XZetiVcXKqTSUERC aDQMSiVyCfNr1+5Z7UiimI28L4UmtyhqXEdtbUq0v/d9znnOcz7/fc/3PKac Y77BDDk5uUh6/3cjmNXtwghnyIgKX6IhR2D4e5aXR+EeOGKREhdAu3ab1Z7f WvaB+4uCYSFta2ePqzPeQbA8+Z7nHO1bWup86ZYQYKxtu+stT6CNVmiX1vtD 8Grkne5N2vrLojYu3B0K969+j5bRltVeEGp7H4eob1auPAaBqcZzjh/cwsFX uOnOAO34lKJvGdYRYBUYqGmjQKB6S/jZ9cORIK1Ll7TTHvrLKthw4iT4J4yH 6igRSFUITDk3T8Fae8VnB2ivTTWzj/E6DYuGl6z5jfZkLEhbc6OhbdMW+Z3K BBoKXLRrGDHgolqeLZhHoM/mxh9PLI8DIjPkgb4qgVf7T2Z1BMXBPOdzZodp b927LmFDURwMfRAki2gfrRHd+GFpPNzY0eTrp0Zgb/6LJZnzzoOW3vJ3+eoE Tsfk5RSKEmD6xuv5JvMJbOpVsuq+nwTiyoD9FroErnQts18/kQRpkwUpsbRV FGVM26UXYbv10C8dtBunLjuNcS+C5NfDjISFtC/Y5bTaJ4NUdKro1SICB7Nt bQwEKaD6JHM4V5/AqW39m4dM08B7uPGQmjGBXW7vvdLc00DbUuUKh3b+Ya/W maNp0HXQS/QHbX1hVIt9TRr8NP5M9aAJ3a9GsYeFTzoc/+tVxWNTAqNyyiur IjMgU/7rRKw5gSET0a6ft/CgY6lVxNRKAkcSR1f4+fFA2Cl57kQQ+HSPYPnd wzxISk9w4NOOMZPprUjhgeOsZNqBRaD/73pZnEYeXOtNOMdlE8jxZ3Yars8E zrWXacqrCPRSaBjLN7wCMr0LpYb2BE4ohFS9q+WDqm5vr/tGAtMbXR20m/kg 9ewuzqXNdQFD+y4+iOMlR6W0tZ3bdgZO8iFR1iGXDAQqCAssvY2yYLa51VyM BLrs2G9dFpMFU/F1oW4uBM5beinvtl02dMkKvzm5E3jwenmqS7oAClsOGa73 JXDT5YaRulV5oFnbY9EfQiDjO7PxUsA1KLJjXZofQ2CD9XJm9NnroDEUKHqf SaBop46aX/BNeLkz4kFYKf3PgvDDCxIL4D9eBwxP1xCol9B8pn3XLciJdXSz ayfQaNhV8SfNQkixGxPHDNP9uTVmx1YXQl95rPG+LwRWeogDMKgIlPw/On3U ZKFxWFvu8W9FsOuK+4NFZizsnn7ZfSX3NnAZ8UqjjixUORJ5uX5lMTDs80x3 e7Owt+BYPq+8GKpGM3J8OSw8ZyCdE64qgdU9ByVzp1i4wSCaXFNSAm+2m0Su TWOhrZgheWdSCkFy9yXmhSzU+/Xt1Cd+KbiHr9Epr2ZhUtBMduvXUtgRwiut bWHh1fcsT1FwGTjktCqfH2ShRxjzTVJjGYCXtK7jEwvf7t8/88b4DlQ0vN5a r8LGnSNPm1hn78BYRH1JoDEbdR66SJ8/uwM7ymL3ptqx0X3Ar8eSVQ6Zi41e /NuDjXn13PScs+Vg7X5jZV8gG+N6FvCLnpTD9OxM52AEG8NKtqhZ6FVA1sSG rTnJbEz8ed1EX2AF7OUEGPXks9E8bNt/h29VQFyu/+N7P7NRrWf1GitpBXCZ 6LC5iY3PSxZezrCshJuzcnJB3XS+38U3pg9VQi67JNtmio3bjA6ZTxZXgmhg xYV0RRJLk8V6/f2VsHHXJY8EPRJHvWvjig2EIFB6JllpReKR49zc0u1CWLzu 7/pAZxJ1r4/a+6QIIbRsLsp1D4nX/IMWm9UJwUzydu5RGIlzwSVks0wICumV g+3xJK5i8WpGl1FQzd11mZdDYma/+lPSh4IsWZ+gr4JEnQbpPvtYCp6bu0U+ riPxtHL2ZEoFBW/5PAP/ThKz53Grz3RSsCz5jyXnR0gckbo62nVRwCj01Oml vaFV5dYY7cGaHtXVoyS+fswn/CUUFMhmv4zQVtyqbfSvHgqMdjtLfMZJDNVQ Tv08QIGBRUuWqYxEmx/kef7jFGg97tWo/0jidsXIxdoTFEz1hSkt+UTnD9l9 UUy77fPctxO0GxQumtjKKMhgmY6v+JvEl/ekjsofKFDnBzfzPpMo4I8rln+m gMmZTNr3lcQmrvPCwGkKpNxzZ0W0Lz5y09T+QoE4e8FJ3Rm6P8YBUfRXCpKe 2Ab/Sfu2auDM5lkKFG1OuVjPkrjnYaLPDO0hT+b6VNpVb6J41BwFj4LybIdo m483/qkrdxfO59aY5s6R+FCN3SCmzany0v9Am6l55PYZ+bvg9LRvgdd3EjkZ ScdIxl0weXuUWUL7hOV5swHacv8fK/wH05Q1SA== "]]}, Annotation[#, "Charting`Private`Tag$7044#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd0nk4lXkbB/DTIOnthCxZsm9neR4T5bSp51YzDKmRSkh1mmQqWdKqEiOq FzElWyEhQ6KDdMjyS05IMuqo7JOS5YRsT+mU4/3Ne1/X97qvz3/f675uo98C XPf/wGAwknH+3Ye2jFYG1OxFd/jbXC0yyqkk8XLjbUdj0bfuZpusZw+pzSHT Qo+wBOS801Hb4EsFNbVTPF3jfR2lttV+v25cRRWGWs1PjE9HI9vXvdXcXE3x OL9GM1m30DpxWe3VYEQNpy928u3JRA65KVsvuj6iOkQZn19P30bJZuor5M7V UPklsgjzA38h8H7BqlF7TPUO3tXxachFg5mxOqF5j6lsrdkui/35aJWhkkza WkvZ31MjW5cIUIeOTDTBraN29cf5Pb4nQOEeFQ8ENXUUS+7SExcoQtzkU7n+ O+qpCEkr035nMTqrMRktCW+gnKs62++H3Ed6KoOu79obqUzbuUeexpYhvsLL ty8u/k09V41bH80sR/KZDkP1C1soVtXiibLocuRuZ/4ux6OFitD7YfLchYdo Tth7sfenFurWmt9yr5+oRK4zu4RvdV5SI7zhi4TJIzT5xfVc25FWqlQxJdy+ pxbxRmwXNBi0UwKrUy2b9UUod3R87WRgO6Vg2Bf2824R0hnLCdB/3E7xYw9u ZvSIkGxCRXzMu4Ma8FT0K+96guqm+1KM8jqp4h3z7OLe1KMd8pctzlj3UDfC tq/2ET1DlZf9jZIye6li7xReNHqBurKrbZ1K+6kfGiyqDCrbkLE01OqXxWPU 9+WaR/9Y8w8KZ2bVGlVOUQvFJeMmg+8QWk+8r37ylRouZoQFVn5AcfMuSDcG y6gLSoVp/RcGkf505q/NDXNgaCy9XfJdgp4ZRfSqOsoDP/hEb+n8EVQTvylg U/pcOD1dFPZN/hPK0WyslZgpwblNr+OHXcfQq15L9bDw/8Chjq32mxXHUfs7 9eylYiYMdNk9FRaPIx+pW4gRVwU0VQ5vI9ZNoMi/knLMd6hC9dDKB+dqJpBu t1WJV+oiMLZt+Fy4dBKlFsTsyehUA5nKWuWTUZNofWanEl9BA+T6ri643DOJ 9hhEJLn8ogkNzkqK+sZT6NYjQ5Oq44shOyWySsafQp4SzauelVpwPumG/Z2E KTRb+DxDYUYbfNcFKT9HU6gh6VQBwdKF6QH9eR/6p5CSUkhaxOEl4LZ7iLVg Lo0C0o9Hu9/QgyAahBsMafSo2VJ7tUgfWm2kdZdW0khUa/izuZwhCK85KbRs pNFq6+yzfimGYCeYF/vnLhoNe7eabbI1god2K17aH6aR2oe+9GVdRjC29PTs yEkaOZ/8pOl+xBhynPnx2eE0qnmew9BQMwHTBcI27WgaOfLch5TvmED4ptTn rKs0sh8euqW6zhTsX80xzk6mUagPqym/xxRsY9p2oTQaNU7w6fPHzECZfKp2 KJNGWzbY/zmlaQ4WPz08rZ5DI8ltM05WoTkUL+28b5BHo6/bP8S7b7AA31n6 4EA+jTY0bgnI6bOA61es345he3lXpDMGLKB1SMNFin1CZtrsOWQBzIu9S5h3 aZRrPU0oj1rAtiUMX2vshTfSJSe/WICjz6euM9gdvh/3O85ngfaJ0mXzC2gU xIz0Gv6RBTG78yM1CmmU4VLmaH2GBUSa8Ed97Ma0wY7qEBaw8gPF5ti0ROvw xjAWjK/6prgS2ykyONY7kgUqiZ/MPLEny1eLE+NYMNLAW5WGbW9S5fUtiwWN zLud+vfw/emaAFETCyY6p7+qCGi08sazBDd9NkTtWa6shZ18cM36N4Zs0Kx3 MzDAnl6RP7rDhA1uybuXktjlrVEOHiw2VGj2aDhir17o9HWnNRs4nJLxUGzb Pxq89tqzYZ9wRF6CTf3+xOSwPxtGDrVsFRThPstQ0R/VbChy+PamFHt0iOP2 5hEbHun6u1dgJ2UkSolaNuw6ZbO5DnuQ6b+hrZ4NDNc4Zhd21OCSV5Yv2KDT E9M9t5hGzWmnpzvfs+Hzfx3FHthu83gUT4kDlRPCBBrbp/tuk2QrB0Yj0jOl 2IYO/7wMcuMAUdaSP4vdLlBtl7pz4Nxt4xKlEvx/ESc+zN/NgQMFdQl62NZc kHEOcODeF4+Cn7BnTol/9D3LgeCYzBV/Yl9Tl179mM2B5R+z1uvdp9HjjQ4e wzQH9qiPWxphi9KO73Cc5sDg22gtM+y6T1nbc6QcWJRb9J7AfhrPcOXPcmDJ pTEPW+yWznKn1nlcmD3VVO+J3eNL2FbqcqHWzaE0AftrtKpBjB0XrnT328iX 0mhpU2cf9zIX0v1SghSxD9x0lJ2N40JroW7BfOybQcLFzVe4MLooQVcVe6F2 vFNgIheSWs736GEP73cS3L/JBa2oKzM87LzZsjNri7lgstjuzu/YxssSF/36 hguml9KVarHVr7tAkBEBZTP+jDpsL8PICtqEgLVmqnQD9u2ccl6wOQEdr1ve NGPzSozJMC4BzjcPnu/Adm+a0o61IcCb4XVsHDtVljyZ50hA/YIP9XoPaGS6 rzen9wgBqmpGFwOxlxNBzC2PCUhkfhYHYT+5nhmWJyKg57CNwXFsNyXx5Jx6 AlKzvgiCsU/2L+sofkbAlr//qgnHfphB56i/IoBXlZV8DRs0gqFtgICmC06m QuxNstCje5gk9JaYSr5g+7RcbvdzJ4GyMlCT/tsnxcJ4wU4SbF0CVn/Hfr+3 5tCdXSQ8CdWIYAhpxJ+c+tb/GwlXn6bKKWF7aHrp8/1IYBoV3NfGdvbi7HMN J+F2y/aBVdjLBuuGeXdJOOi8v3sN9oSAb/OqkISdi8ZfrMUWBEtDjhaREKsZ /sAOm/iPpbLgAQlt8nf8HLHNLROs2DUklLxemOCOrXNs3wnd1yTMrvQ96ond ZjtTXd5GQpRku4sXdpJCkqJ7JwkhNzsU+NjqSY3J196SMP4P2vM7NvOhVQXz IwlaWwqsD2I3hT+TuztCwhWRlbwvdtTG/c5OYyQUfJfL8see253cfYEm4UDf 1sBAbNFta3OzaRLy1CnbIOzz/k3+tVISZKl1c49hr1/hI9w7QwIR8/Hv49iM /48l/A+kv/OF "]], LineBox[CompressedData[" 1:eJwd0nk41fkXB/DbIOnXDVmyZN/u9jVRbps6R80wpEYqIdVtkqlkSatKjKh+ iCnZCgkZElnSJVsiJBl1VfZJyRayfet2C7/P/M7zvJ/zvP57P+c5er/5OO7/ gcFgxJP8uw9tGS3zqdoLdwTbHE1SSiBOtFx/29FI+NbVZJH27CFsDhALXYJi wH6nrbrOl1KY2ikSV7lfh8TW6u/X9cshN9Bsfmx0MoxsX/dWdXMF8Dm/hjNZ t2CdqLj6qn8lDCcvtvPsTgWbzIStFx0fQXtNyufX4tsQb6S8QupcFWQXzoQY H/gL0P0Fq0rpMfQM3NXwqM+EgdRIjcCsx5CuNttpsj8bVunKzUhaqsH6nhLV siQP2jVmaia4tbCrL8rr8b08CHYpfZBXVQssqUtPHDAfuPGnMr131EHIUAvT emcBnFWZDB8Krgf78o62+wH3QUthwPFdWwOkWs498jSyGAQyL9++uPg3PFeM Wh/OLAHpVJvBuoXNwCpfPFEcXgLOVsbvMlyaIUTrh8lzFx7CnKD3IvdPzXBr zW+Z10+UgeP0LuFbjZcwwh++yDN4BJNfHM+1HmmBItmEYOvuauCPWC6o12mD PLNTzZu1ayBzdHztpG8byOj2Bv28uwY0xjJ8tB+3gSDy4GZGdw3MTCiIjrm3 Q7+rrFdJ5xOoFfcm6GV1QMGOeVZRb+pgh/RlkzPm3XAjaPtqj5pnUHbZWy8u tQcK3BP44ZUvoDO9wtKuqA9+qDcp1ylrBX1JoNkvi8fg+3LVo3+s+QeCmWnV emVTsFBUOG4w8A4q1/PeVzz5CsMFjCDfsg8QNe+CZKP/DFyQy03quzAA2uLU X5vq5+DgWHLb0PcheKYX0qNoK40C/xM9RfNHoCp6k8+m5Ll4Wpwf9E36E2So NlQPGcnhuU2vo4cdx+BVj6lyUPB/8FD7VuvNsuPQ9k45famIif2dVk+FBePg IXEK0OMqoKrC4W28dRMQ+ldchvEORawYXPngXNUEaHaZFbolLkJ9y/rPuUsn ITEnYk9KhxLOKKyVPxk2CetTO+QEMioo1Xt1weXuSdijExLn8Isq1tvLyWrr T8GtR7oG5ccXY3pCaPmMYApch1Svupap4fm4G9Z3YqZgNvd5isy0Onqu85N/ XjkF9XGncngsTRT3a8/70DcFcnIBSSGHl6DT7kHWgrk0+CQfD3e+oYV+NAo3 6NLwqMlUfXWNNrZYSGovraShplr3Z2MpXRRes5Np3kjDavP0s14JumiVNy/y z100DLu3GG2y1MOHViteWh+mQelDb/KyTj0cW3p6duQkDfYnP6k6H9HHDHtB dHowDVXPMxgqSgZouEDYqh5Ogy3feVD+jgEGb0p8zrpKg/Xw4C3FdYZo/WqO fno8DYEerMbsbkO0jGjdVZlEQ8OEgD5/zAjlqadKh1Jp2LLB+s8pVWM0+enh aeUMGoZuG3HSco2xYGnHfZ0sGr5u/xDtvMEEPWfpg/3ZNGxo2OKT0WuC16+Y vx0jdnMvTWb0m2DLoIqDhPjEjGGT66AJMi/2LGHepSHTXMyTHzXBbUsYnubE C28kD538YoK2Hp86zxC3e37cbzufheonipbNz6HBjxnqNvwjCyN2Z4eq5NKQ 4lBsa36Ghbwk4Y/axA1JA+0VASxkZfuKjInpIbXDG4NYOL7qm+xKYrtQ/0j3 UBYqxH4yciWeLFktio1i4Ug9f1USsbVBudu3NBY2MO92aN8j96erfGoaWTjR If6qkEfDyhvPYpy02Ri2Z7m8GnH8wTXr3+iyUbXOSUeHWLwie3SHARud4ncv pYhLWsJsXFhsLFXtVrElXr3Q7utOczZyOIXjgcSWf9S77bVm4z7hiPQQMfz+ xOCwNxtHDjVvzcsnfZZV5v9RwcZ8m29viohHBzlObx6x8ZGmt3MpcVxKrIRX zcZdpyw21xIPML03tNaxkeEYxewkDhtY8sr0BRs1uiO65hbQ0JR0Wtzxno2f /2srciF2mscHvhwHyyaEMTSxR9fdxqGtHBwNSU6VEOva/PPSz4mDvOLm7Fni tjzFNokzB8/d1i+UKyT/F3Liw/zdHDyQUxujRWzOxRnOAQ7e++KS8xPx9CnR j55nOegfkbriT+JrypKrH9M5uPxj2nqt+zQ83mjjMkxzcI/yuKkecU3S8R22 Yg4OvA1XMyKu/ZS2PUPCwUWZ+e95xE+jGY6CWQ4uuTTmYknc3FFi1zKPi7On Gutcibs9eZZlmlysdrIpiiH+Gq6oE2HFxStdfRbSRTQsbezo5V7mYrJXgp8s 8YGbtjNno7jYkquZM5/4pp9wcdMVLo4uitFUJF6oHm3nG8vFuObz3VrEw/vt 8u7f5KJa2JVpPnHWbPGZtQVcNFhsded3Yv1lsYt+fcNFw0vJctXEytcd0E+P h8XT3oxaYjfd0FLagIdrjRTpeuLbGSV8f2Metr9uftNEzC/Up4K4PLS/efB8 O7Fz45R6pAUP3Rlux8aJE2fiJ7NseVi34EOd1gMaDPf1ZPQc4aGikt5FX+Ll PD/mlsc8jGV+FvkRP7meGpRVw8PuwxY6x4md5ESTc+p4mJj2Jc+f+GTfsvaC Zzzc8vdfVcHED1PoDOVXPOSXp8VfI0YVf2zt52HjBTtDIfGmmcCje5gU9hQa Dn0h9mi+3OblTCGY6ShJ/u2TYKK/YCeFlg4+q78Tv99bdejOLgqfBKqEMIQ0 CCanvvX9RuHVp4lScsQuqm7aAi8KmXo599WJ7d04+xyDKbzdvL1/FfGygdph /l0KD9rv71pDPJEnsHiVS+HOReMv1hLn+UsCjuZTGKka/MCKmPcfU/m8BxS2 St/xsiU2No0xY1dRWPh6YYwzscaxfSc0X1M4u9LzqCtxq+V0RUkrhWFD2x3c iONk4mSdOygMuNkuIyBWjmuIv/aWwvF/Kvf8Tsx8aFbK/Eih2pYc84PEjcHP pO6OUHilxkzakzhs4357uzEKc75LpXkTz+2K77pAU3igd6uvL3HNbXNjIzGF Wcpg6Ud83rvRu1pC4Uxi7dxjxOtXeAj3TlPIi/j493Fixv/HFP8HQ5inhQ== "]]}, Annotation[#, "Charting`Private`Tag$7074#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0Hk01VsbB3AlDYYirlmcDMeZCukoZG/DJRVJCpldY2lQMpSEMtxK3JTM IakoFTLUZeOIzsEhQ8bKlGSefkrIu+/7rLXXsz5r//H9rofketbSfS0PD08J fv/tbQHMB0lJbMQwlB0bYEoDNyNXfg52wLqE1Gp4AUjL6xlYJ7PRTD36aCV4 DTyCbkb6KWyUc0/TaX/gLVAV1CMYncpG+S/a5uRm7wCSpEQCLZ2NosW2lEo8 uQ+KqhY6aRls9FeQabCIYyrgMa5tiM5iI/kp/Qy+Gxkg332fp8EjNrpFcgpf +zULFMddTbV5wkaLR4PdVsEjkJwi41Sfx0YekUnGy8mPgaiPQEbyCzZqKy1W XSSegsa0QvPaQjbSH2vlX7B4BpD8oI15Ke4jNzM+m5cPqjgtuRrlbLRZNepb wLWXYHRyiLvlPRtdPpHN9vtcAPJyIn03ctmoYK5Ae06gCLzcPLxs38ZGI7eq 8nz3vgb7xY46SA2w0XH0OebM3RLg4im7EPod97WZ+D1eVQq+fpBaNZxhI9bM 0tlTU2XAvS26o2cNB6kpSVl6HfgXVF4fcHjJz0Ge5WTWcEA5UIoB1V9EOSj9 OFPT/VEFaHGVDzMnc1BkDUVAPbQSxBv2rPG05KC5BeMJRk812N2/+FzIkYNu G3KVJ3xZIEzxeK3QSQ6ixh1zfLaxBrisp7pJXeMgZ4pbE5X5DqyctxCzKeMg rl3YK/I/daDw1LsJVh0HeT/ZODpMfg9+OaidiPrIQeuI2O05Fe+Bcl9KnyjB QTq30+OVxtlAA37/pcOsR08q314kmTQA4cBgrr1JPTISMszv+9QA1k71zrfY 1KMvtpzhB36NYHCweak8uB6Jz3Vab8vigq/b0beI9/WoeutSakxIM3ihEdQT e7YB7fxT8uqNrhZguxRhUhXVgNKFd6vo01pBx54eU4uMBrS590jjj+BWYNQW vSaipQFNnr8p467QBhIGDdy1dRpRfsbvEuDZDvqqLL1t5LiIvjw0PT/fAWYT DLNJOlyUWrcmMc+4EyxJ6J8EtlwkGL8NuCZ2gjXGGnL+CVw0TrGJadLpAi5S ElcqxJpQnnU9JTe8G5j2vxP9Q7gZUQtfuToJfwLn3vGmBJCaUXIId5O46yeg 0nhj56pGM+I/MPayofATKONdJAUfb0ajfUqre60/A2n1fRGKD5rR082JKWLp X4DaQhjoZn5AYrvB6NAf/WD/ycrnvldaUHycsmLyw0Hg08G35PBPC9IdCbeu ZA8CpZP6n5wftaAh0HdzeGoQjGvPGDxtbEGaU8nzGrpDYNR/qVlXvhW1mQnX 1rcNgYndDI56bSsSF1jyWuEbBvHsmOZLpHaUGNGc7+w1AsS7zvaI8nSi1EuX tcmMCXDtlaHwrtFPyO2QDdvTcA7oDCou3SQPoDQG38Nnx36COqWg1pcrQ+jT obgEM5EVsKxvYRvX/g0pfPmYslNqDdQqy5Q1cxhF3W5puiiNF1ozyR1ZwePo /qajo8sLfLBA+7S3+9+TyKPjw+Rs+Ea45YZWs5LcNNpTA3juD/JDz/SStpzO aSQa8rVff48Q9Fp9+GryxgxadbaSfoS2QJWopWYe2VkUoN61s0dIBJYnC55O zp5FP2rHV8CxrTDEIqtJW3IOLRnIaj5JEIXnLEgDty/OoTBz1jnPajEYoewh M94wh+ImuZ3hG8ThXIrEbzHReUTaZmlCMCWgv49mmZXVPNIe2NvPuioJr3xw Sp+9MY86b+0bvFctBTcGkrpTiudxXulYxZQ0DAkyFhD/Mo8e3EuUN2LKwhqF 7cUWq/OIPTdlq+ApB6WPKcaclCZQwJ6/llf/2QYj6rbcv7yLQPkiOhydj/Kw vOTKUWcTAu3a9+dhz3AFuEldP/G5LYHadOSbHFVIsInd+LbNi0AljA28NnUk qJ4f5d7iRyC7b9Q3wQ7bYYJdWkX7VQIZjvFEHeZRhGMRf3tERBNovHhrh1mi Igw1ljBhxRKo46JGjxlDCQbXVS94JhBo/dV1xBJXCdbZZ7hkpRBo4fDWO+3u yjCU1+ugVwaBaKdajBw2qUCZrL/4yNkEIplzLwlnqcCjCtOmBo8JZKvU6fZO iwwDt8NuiVwCtRvddVPtJkPVOEoICdtfKSM9spcM+cLiZGjY4uuedQ59JkPv zSMGetg2LNahzEEyNN+x28gNu1d/TlN6ggzHbBbFXmAP6VnyCfKowvcmdEGY R6D5PcI5U8qq8FxYp5rFMwJtZdz6VuyrCp/NGq21xe5tn+wy8VOFP1uZjS7Y OSFHGjr9VWFNUPnhC9jazeKvfl1WhbNZHRsSsF0vZF7Si1SFVwPA/m7sgrJi odpkVfgjbg/F8TmBLI37d7WzVGFCywt7q3wCxTsxQ+f+oEBuwVisHTYVegcF SlKgtOF0uSt2tULq+RVpCjTWcuX3xZ7uX+O+QYECS7Us3GOwD7k1mspQKTA4 N1zlHfY6bzdRQz0KNNJQm1J7QSC/83dy7nhQ4ImHB2x/YR+PmGxQL6HA05qK c6vYgsd2+N0so8DC5h1/873EeUpnZL6+pUCm/venwtg7aia8EyspcNhQvUIF ez3vxPpVNgXuu6utaYldEjoGG3pxPvlPzxxsyeCRIo+1VGj/u8rH6BWBus8P pKaYUeHnM0K3TLHLBIKWyRZUqF8U99gcOzF7i32RJRUefWbaaoN9/KOuTKM1 FXJ9Pqz4YLfuvZ/024UKtdh3Mu9iN/AcSnDxp8KTvoeZ/dgVt1/Hkh9QYYal 5fZzBQR6mBsdXjhNhXcnnsv4YWdp0OPE5qhQ8r7p1kDsjDdNaRcJKuy4sf/H VexUjniZ1i8q9BpMzIjFvjuaPfWWlwY92NvO52NHUqvsa8Rp0LzNTm4U2yt3 kdmuS4OxTnmEbSGBGLknxxaiadD36E5dB+yf3p9XD96kQeN7gaHO2DUUS7HM GBq8suC81hP7xNO9+w7eocGBrIKxC9iRTzbGPkihwafSWcdisPtycjT259Og WQIrrgI7/uFAUFIrDYpGpc9IFxFoMfXERt1tdGhuFzsthz2prNzOUqBDkur+ CQXsgfypzIOKdGggL9mngs2pvK5jp0qH/Kcd8zSwU4byz1zSoMNl6ZEuU+x9 dN72UmM67G35kOmPHfY2L3P3WTqMGL+uxsHe1L2svbOSDq3MJsIbsGUt217f rKZD37CyVi62GidPbaSGDp/Xhp1rxT7+5oRKJpsOB45MJ/RiZyeXioi20mHe Oa3ESWw9O7+Rha/4P7bzgshrAp3vHbtXIcCACkKB7y2xuz93T5tZM+AOOf4F K2zHCxJl07YMyHAfI1ljD26wCou3Z8DBdxl+dtjjao0iXS4MGFXwi88NezUc abj5MGDAiaguP2wlcrbfpTAG5K0sPHQP+/TZ0z9z8hjQrzrZ+D72LG9upWk+ Ax6+9FMvCds/cTh6/CUDLv8rS0vDDq1yktIoZsCtkDKTjX1H1FK7vJIBf09b 7S7CLi5hBre2M6DHaQ2JYmztQxeM/DsZ8Ahf0o8SbNT3QlCqhwH1eNcXvcV+ v4mS5tjHgGe8Q2RY2D12MhXfRxmwcZE1U4PtPG0deWuCAUWiUmprsYeu3zXf Oc2AaovrfDjYk8+FvvgRuL9gkm7Df/czOPBY4icD+gSxBLjYPz5Gnn3ziwGN jkV0NWEHn2JpOazgPkVfHn3A5vn/7ID/Az1G/zs= "]], LineBox[CompressedData[" 1:eJwd0Hk01WsXB3AlDYYirlmcDMeZColC9mO4pCJJIbNrLA1KhpJQhluJm5I5 JBWlQoa6xiM6B4cMGStTknn6KSHvc9+91rP2+qznj+93bZLLWQu3tVxcXMX4 /be3+Ws8SExkAcNAemxAQxJcDV142dj+6+JTqtEFkJTV1bdKYsFMfcVHS/5r 8Ai5GuolsyD7nrrj/oBbUBXYwx+VwoK8F21zMrN3gCQuFk9LY0GUyJYSsSf3 obBqoZOWzoK/Ak2ChBxSgMuotiEqkwWyU3rpPDfSIc9tn4f+IxbcIjmGrf2a CUWxV1Osn7Bg8WiQ6yo8gqRkKcf6XBa4RyQaLSc9BmFvvvSkFyxoKylSXiSe QmNqgVltAQv0xlp5F8yfQYXsoLVZCe4jMzM+m5sHVeyWHLUyFmxWjvzmf+0l jE4Ocba8Z8HlE1ks38/5kJsd4bORw4L8uXytOb5CeLl5eNmujQUjt6pyffa+ hv0iR+0lBlhwvOJz9Jm7xeDsIb0Q8h33tZ74PV5VAl8/SKwazLCAObN09tRU Kbi1RXX0rGGDioKEheeBf6Hy+oD9S142eJSRmcP+ZaAQDdVfhNmQdlxD3e1R ObS4yIaakdkQUUPhUw2phDiDnjUeFmyYWzCaYPRUw+7+xecCDmy4bcBRnPBh Qqj88VqBk2ygxh5zeLaxBpzXU10lrrHBieLaRNV4ByvnzUWsS9nAsQ19Rf6n DgpOvZtg1rHB68nG0WHye/hlr3Ii8iMb1hEx27PL34NiX3KfMMEG7dtpcQrj LFBD339pa9TDk8q3F0nGDSAYEMSxM64HQwGDvL5PDbB2qne+xboevtiwhx/4 NsLgYPNSWVA9iM51Wm3L5MDX7RXfwt/XQ/XWpZTo4GZ4oRbYE3O2AXb+KX71 RlcL2CyFG1dFNkCa4G4lPVordOzpMTFPb4DNvUcafwS1gmFb1JrwlgaYPH9T yk2uDeIH9d20tBshL/13MXi0Q1+VhZe1DAfoy0PT8/MdMBtvkEXS5kBK3ZqE XKNOWBLTOwk2HOCP2wYuCZ2wxkhNxi+eA+MU6+gm7S5wlhC7Ui7SBLlW9ZSc sG4w6X8n/IdgM1ALXrk4Cn6Cc++4k/1JzZAUzNkk6vIJlBpv7FxVawbeA2Mv Gwo+QSn3IinoeDOM9ims7rX6DJKq+8LlHzTD080JySJpX0BlIRS6NT6AyG4Y HfqjH/afrHzuc6UF4mIV5ZMeDoJ3B8+S/T8toDMSZlXJGgSFk3qfnB61wBD0 3RyeGoRxrRn9p40toD6VNK+mMwSjfkvNOrKt0GYqWFvfNgQTuxls1dpWEOVb 8lzhGYY4VnTzJVI7JIQ35zl5joBo19keYa5OSLl0WYvMmIBrrwwEd41+AtdD 1iwPgznQHpRfukkegFQGz8Nnx35CnUJg68uVIfh0KDbeVGgFlvXMbWLbv4Hc l4/JOyXWIM3SDGlT+1Hodk3VqUjlRlYa5I7MoHG4v+no6PICD8rXOu3l9vck uHd8mJwN24i23NBsVpCZhj01wHV/kBd5pBW3ZXdOg3Dw1369PQLIc/Xhq8kb M7DqZCn5qGILUopcauaSngV/1a6dPQJCqCyJ/3RS1iz8qB1fgWNbUbB5ZpOW +Bws6UurP4kXRufMSQO3L85BqBnznEe1CApXdJcab5iD2ElOZ9gGUTSXLPZb RHgeSNssjAkNMeTnrV5qaTkPWgN7+5lXxdGVD45pszfmofPWvsF71RJoYwCp O7loHueVjJVPSaLgQCM+0S/z8OBegqyhhjSqkdteZL46D6y5KRs5DxkkeUw+ +qQkAf57/lpe/WcbCq/bcv/yLgLyhLTZ2h9lUVnxlaNOxgTs2vfnYY8wObRJ VS/huQ0BbdqyTQ5KJNTEanzb5klAMWMDt3UdCanmRbq1+BJg+436Jsh+O4q3 TS1vv0qAwRhX5GEueTQW/rd7eBQB40VbO0wT5FGIkZgxM4aAjotqPaYMBRRU V73gEU/A+qvriCWOAqqzS3fOTCZg4fDWO+1uiiiE2/OgZzoBtFMthvablJBU 5l885CwCSGacS4KZSuio3LSJ/mMCbBQ6Xd9pklHAdtQtlkNAu+FdV+VuMlKO pQSTsP0U0tMiesmIJzRWioYtuu5Z59BnMvLaPKKvi23NZB7KGCQjsx27DV2x e/Xm1CUnyGjMelHkBfaQrgUPP5cyem9M50e5BMzvEcyeUlRG50I7VcyfEbCV cetbkY8yejZruNYGu7d9ssvYVxn9bNVodMbODj7S0OmnjGoCyw5fwNZqFn31 67Iyms3s2BCP7XIh45JuhDK66g/7u7HzS4sEapOU0Y/YPRSH5wRYGPXvamcq o/iWF3aWeQTEOWqEzP1BQZz8sRhbbCryCgwQpyBJg+kyF+xquZTzK5IUZKTp wuuDPd2/xm2DHAWVaJq7RWMfcm00kaJSUFBOmNI77HVersIGuhRkqKYypfKC AN/zd7LvuFPQiYcHbH5hHw+fbFAtpqDT6vJzq9j8x3b43iyloILmHX/zvMR5 Cmekvr6lIA29708FsXfUTHglVFLQsIFquRL2eu6J9assCtp3V0vdArs4ZAw1 9OJ88p8e2djiQSOF7mupyO53lbfhKwK6zw+kJJtS0eczArdMsEv5ApfJ5lSk Vxj72Aw7IWuLXaEFFR19ZtJqjX38o45UoxUVcbw/rHhjt+69n/jbmYo0WXcy 7mI3cB2Kd/ajopM+hzX6sctvv44hP6CidAuL7efyCXiYExVWME1FdyeeS/li Z6rRY0XmqEj8vsnWAOz0N02pFwkq6rix/8dV7BS2aKnmLyryHExIj8G+O5o1 9ZabhtxZ287nYUdQq+xqRGnIrM1WZhTbM2dRo12HhmIccwmbAgIYOSfHFqJo yOfoTh177J9en1cP3qQho3sBIU7YNRQLkYxoGrqy4LTWA/vE0737Dt6hoYHM /LEL2BFPNsY8SKahp5KZx6Kx+7Kz1fbn0ZBpPDO2HDvu4UBgYisNCUemzUgW ErCYcmKjzjY6MrONmZbBnlRUbGfK0RFJef+EHPZA3lTGQXk60pcV71PCZlde 17ZVpiPe0w65atjJQ3lnLqnR0bLkSJcJ9j46d3uJER31tnzI8MMOfZubsfss HYWPX1dhY2/qXtbaWUlHlqYTYQ3Y0hZtr29W05FPaGkrB1uFnasyUkNHz2tD z7ViH39zQimDRUcDR6bje7GzkkqEhFvpKPecZsIktq6t78jCV/wf03lB6DUB 53vH7pXzMZCcQMB7C+zuz93TplYMtEOGd8ES2+GCWOm0DQMx3MZIVtiDGyxD 4+wYaPBduq8t9rhKo1CXMwNF5v/iccVeDatQc/VmIP8TkV2+2ArkLN9LoQzE XVlw6B726bOnf2bnMpBvdZLRfexZ7pxKkzwGOnzpp24itl/CcNT4SwZa/lea loodUuUooVbEQFsRZSYL+46whVZZJQP9nrbcXYhdVKwR1NrOQO6n1cSKsLUO XTD062SgIzyJP4qxK/pe8Ev0MJAu9/rCt9jvN1FSHfoY6IxXsBQTu8dWqvz7 KAM1LjJnarCdpq0ibk0wkFBkcm0t9tD1u2Y7pxlIZXGdNxt78rnAF18C9+dP 1Gn47376Bx6L/WQg70AmHwf7x8eIs29+MZDhsfCuJuygU0xN+xXcp/DLow/Y XP+fHeh/fxKjuw== "]]}, Annotation[#, "Charting`Private`Tag$7104#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwdznk41Ov/BnBrQpEsWcoWjRnzSTlFRM/jSKWUoqxRZEkphRQpIXJCSWUn e4uixVonj9BCkkL5zAyGUMdYhjGTrN/n97uv633d1+uv963lGWDnLSIkJPQa 3//1bJtQZno6iQjL1Zx+I1WQktdaUYR9Xiwlqx4GgfDCMdEm7ImP6NvBZdEg xpcSI5pBouK7m47supAALKtVTA5hl5Z18NZMJgNUADVqseMUZKtXPUgFkiET RtsySXQs1Dpczj0LVNe4RnRia4xb5IpfzwUWxv/8js4iUYLWkSiRwXxgPuWW Y51Noj/24V6LoAhcN0wLXJdDIp/Y9B1zGfeBe0BboOo9EnVUV+r94T8EBp6h 2bq5JLLgtEsJ9j8GSbO93J15eM+aiZHJklIwfkz/ZGQ+iWT0rv08H/0UpNjt bzEpItFFl8Km4J7n4MamV6XVxSR6zntuypMuB1/TibJ9D0j0K+FNyVmTCrDs bckiKiGRA+pJPH2nCtj4qe7OfIL3Oo0ujLypBixrh/uJZSRqmJgNODleA4Rt XROrXpBog46K3fHd/4LMTCfZ8QoS+b6mNAydfw2qzsSnmFeTKMfBaJN3US0I jnYu0nhNothGqvTGK3UgJbjxwO/3JOIJdowSzHqga1wYP9RMohuWrbqjZxvA 0EjAg5FPJKIlHXJ/vLQRhCt9CzHvINFRqtdnmtFbkKvW/ZXbR6JW18hnlFvv QVCx7q2UQRL5PVg6PET5AD543V1i/x+JxPg3tYtrPwDab6MF2QkSbb2Rc1tn pAmY1O85mS7MQA/qXp3T2tkCxmZy10+JM9D25Zal7O4W0LWTGeQtxUC9zs1D 94I/gcK2BJ94eQZS4nU5que3gpetIUoD6xiofuVsVuLlNiCen33mzQEGMrBS jrhOfgV+N3fazjsyUM6Kzess9NvB4E8XEXt3BpJhHfj0O7wdXCqWKd9zkoHG AuPVvDU7gK5HVM+ZWAYqzV2oAr6doJAf7X/5DQPR5wa4U1PfQYfqvP2BJgbK ei+cVrKjC+x2r9ho/oWBlt1WB55pXSBwqcOtI30MNEJ1Svy8lQSnck9ofhJh ohLHj9RHUQzQZ9j/xWw3E9FePPM8sqIbSEdUHk21Z6KMy62SSp7dwCntZ4ek GxNJ7eY8bXnRDQbzTmkbnWGiYbbOooljD+iaHDZ9lMpED2XSMhVyesGNsrbl 48NMpLAZDA8o9oEV51b87ZjPQreTdNdmFPwAHzeJe1Y9YSGzX1GOdU0/wPfN LiK0GhYaAOz4ofEf4PXpQ+d2tLHQpvGMKUOzAeBTmSRwXmShjr0r3n3sGAA7 kw9nkEe7kZL07PF58SFQJl1Rfn9DD0qLaSs9evwXyPcfjM1Y6EVZYRdNKcQo iB9TLfqyhI0UbVnMRLtRoLyix+SwDBvdWGt+aer8KODkS3+OXsNGES0L6E39 KCB+MX3VzNjIUz3K6rDTGJAmVGw8w9iIUh+3/1b0OFC9WRGxMMNGpNieF/Mj XCAUsF5rUrIfedk4Nfla8sD0Oyt52csDKJsQL3h8aBo4vsuTku4aQt02SSl7 5eYBb8HZR/rgf0iz91umgYowpEvKXBvN4SCGV7YZyhaFrHunTL+ljKJUSfvh OYE4dMtzuuYWM458vn8Zm4xaCofEtMdnkrhoSyMQSv0hBcdAlJWi1QSSvzzY Z7FlOdRTXnfObmICLR49qFqEZCFxdlZx1eVJdH4jacBcLgdVLTia8qI89Pvd yDw4tBJePW1fPRbEQ7N/r970IEUeXneJ8P/rMw9F7ms441uvAJ3sHnIadKZQ 0lhrV5SEEozfoq2Q5DeFtNTtdvKNVsHMu4X7Mh9OIdN+k76GCGW4ZebsrEXv FOpKMP9xt14Fhmk/8adL8fG/ak7tuCocT2/gzGzko3t30zS2G62GS0ItbZ8e 4KMm3rizpu8aWMiNcTnsz0fntxybW7ylDnVidQskY/ioVG5r89ZvGtD7RLtv bhof/WVuZesbpQlNgwdYxY/4qGOrxmf3dVpw3wZNiTs1fFRFSIg6vdeCZdEu pl5v+cj1J+1luJs2LIqwWbutjY8sOULXbIXWQmJbo92nLj4aqVz5fW/aWnjJ O9iK28tH388ZMvcSOrBgX5Vb+BAfLYkQ48+26sCK0dORBRw+EtiuTO701oV6 BzzYjlw+0j/5dbub5DooUMxkL53iI619rWEr8tfBk5oLH5R/85GzTpfXW2MK nMglhAf+8FHn9jteegwKvGLKjRzFDtHJzYllUaC+za45AbaS2OOugR4KfFbT 1C05w0dODQ02eT8oMOTgtYMG2CwL3ibVUQpkxNxSCMUe2GYnvkxID65WuzAr MctHU1tWFI/r6sHunEGoMMdHK4mEn5Vn9aBikdHkamxW5xi5M1gPuvTpZOti F18+0NIVogebrTm9RtimbUrPZi7qQRHreyrO2J5BeWHbYvVgic5djyzs5zWV y99l6EFZXo6n+jwf2e3o+6uzQQ+WeVxXklvgo9tHjK7wFKkw+1WqgTI2DfqF XlCmwjjWFUsN7HrNrMB5VSrkLE65EtjcPmFvCU0qTFRptrXGtvH6ZK1Go8It bOsdV7DF/LzkLbdRoYax4bVh7ODA5OJkHypkvbmk+GyRjxxixlo2VlGhg9RC RiX2skPrg+NrqFAFoNX/YtfrnFYbfEWFBe4yiu+x1zeO+qXVUaFRuQ7Jwl4i OrpksYkKS0McnkkICVDVFQ5sYVFhsnb+cxds5fBf5T4iNHhO81KYAJsR2J+V uZcG0wM2XpvFrpEOnaPsp0ELN/0kIWEBSiuUPVxuR4OJjJkUKWyHb2Zqnxxp 0Oyo/QV17HaT1PQFDxqM/McswQq7RcgmxSOEBn2E1aVvYdfeqLhJuUeDRTOV 3DUiAlTwKC7qBZcG52QfMrWw8w3pSQo8GtxvNNigi5378nP2OT4NZspaJhDY Wc1KNcYzNBih82HODPvOcOH4K1F9aH0s0d0VO5b25nCjkj5c5R24MQX7+KM/ Rp1m+vCQnX2wmKgAEY9OcARx+tBBd7pUAnvar2dxT7w+NPQ48VMKu5Fqp5CX qA+PT/x7QA7b5aGJ+Z5kfThka7lMHTv2wdKb9zL1YWGzsqoxNru42HBXqT7c M9me74t9u6A/NL1dHxbtny+vx/6T5bLUTJ0OD7bIP3yLPaar29mgSYcfbGcy PmD3l47n7VlLh6ubzS+0YjfXXd3qqkeHyl+blRnYmQOlp8MM6TDkmSuPi21O F+2s3kGHQUvkVdaICVDkq5K8zQF02BlNhAZgSzLmTA3q6FA+jmg4i73arqMi vp4O3YxTpYOxNzSXbPjVSIcGwyWpF7AdXrqsy2uiQ2rtdFYkdmFGtZx8Ox22 PJdxu429zTX4l2CQDrXjLr6swA5kce7WShOQVZ2hLcBm9DC4ex0JWBG9e9c0 tnvQqhquMwGH79v6z2D/kDgYefswAf9ZeaRsAXtkwyc50oOAO75VaEmIC9Bi FDL08iegh4Fr9SpsHUphcFgkAaV9FSuNsU8FnJouLiFgaFjnAxPsSdFHddal BFzWKZexFTskbShu5CkBtwuLXQDYV94cUTGsJCD/zJjWTuxkeTvT13UEtCxn rHfArqwyCm/vJKD9sV+STtimNkHbQ7oIWBV+9YczNmKXLVNhEvC1s3+yG/YH SWq2O5uADpdUer2wma5qtf8NE9DHqqbUB/so1zE2YZSA/Vu44cexB67e2WfA JaAmj6Lojz32ZHlvMJ+Armxa7ynswL933181TcBpq6b7Adi/v8UGvJwhILFZ LOAsdvjJBmO3eQL61bI2BWEL/X/Ww/8BalkTnw== "]], LineBox[CompressedData[" 1:eJwdznk41Pv7BnBrQpEs2bJlmzGflFO26Hk7kpRSlDWKLCmlkCIlRE4oqexk b1G02epEoYUkhfIZY19yjGUYM8n6ff9+93U91329/npuVQ9/Wy8+Hh6eN/j+ r+dbeDLS0kggzBWZ/frykJzbXFaIfV4gObMWBUJYwQR/A/bU55ofB1dFQbSP VjR/OglFd7cc2XUhHswr5YwOYZeUtrHXTydBTT5SrsaOlRKvXPcgBYSDp/S3 Z5BwLMQqTMItEyqrXMLbsZUnzXIEr+eAmcE/v6MySYhXPRLJN5QHpjOu2VZZ JPyxC/NchkK4rpcaoJlNgndM2s6F9Pvg5t8SIH+PhLbKcu0/nIeg6xGSpZFD ghmzVYS7/zEkzvewLHPxnvVTY9PFJTB5TOdkRB4JYtrXfp2PegrJtvubjApJ uOhc0BDU/RxubHldUllEwnP2c2O26Ev4nkaU7ntAwkj8u+KzRmWw6n3xck0x CfY13Qmn71SAta/87owneK/j+NLYu0pgWNnfTygloW5q3v/kZBXw2rgkVLwg YZO6nO3x3f9CRoaj+GQZCT5vtOqGz7+BijNxyaaVJGTb62/xKqyGoCinQuU3 JMTUU0Q3X3kLyUH1B35/JIHN3TlOdNaChkFB3HAjCTfMmzXGz9bB8Jj/g7Ev JFATD7k9XlkPYTI/gk3bSDhK8fxK1X8POQpd31l9JDS7RDzTuvURAos0biUP keD7YOXosNYn+OR5d4XdfyQIcG6qFVV/Aupv/SXxKRK23ci+rT7WAEa1e06m 8dLhwdvX51Qtm2BiLmfjjCAddqw2L+ntaoIOy85ALxE69Dg1Dt8L+gIFLfHe cZJ0kGF3OCjlNcOr5mCZQU061K6dz0y43AKCeVln3h2gg66FbPh18jv43rS0 WXSgQ/aarZpmOq0w9MuZz86NDmKMA19+h7XCpSKxl3tO0mEiIE7BS6UNNNwj u8/E0KEkZ6kCfNqhgBPld/kdHWgLg6yZmZ/QJr9od6CBDpkfeVOLd3bAbrey zabf6LDqthJ4pHZAwEr7W0f66DBGcUz4uo2EUzknVL7wdUKxw2fKo0g69On1 fzPZ3QnUF888jqzpAtHw8qMpdp2QfrlZWMajCxxTf7UJu3aCyG7m06YXXTCU e0pN/0wnjPaqLxs5dEPH9Kjxo5ROeCiWmiGV3QM3SltWT452gtRWGB2U7oM1 59b87ZDHgNuJGhvS8wfg8xZBj4onDDAZiXR42zAAP7c681GrGDAIvXHDkwPw 5vShcztbGLBlMn1Gz2QQvMsTuU7LDGjbu+bD57ZBsEw6nE4e7QIZ0fnji4LD UCpa9vL+pm5IjW4pOXp8BPL8hmLSl3ogM/SisRYxDnET8oXfVvSCtA2jM8F2 HGTXdBsdFuuFGxtML82cHwdmnujXqPW9EN60VPOudhyIkU4fBZNe8FCKtDjs OAGihJy1R2gvaNXG7r8VNQnyN8vCl+Z6gRTY82JxjAU8/htVp4X7wdPascHH nA2zHywkxS8PQhYhmP/40Cw4fMgVEe0Yhi7rxOS9EovAXnLyFj34H6j0/MjQ leNFNGGxa+PZTKB7ZpnUZPEjxr1Txj+SxyFF2G50gSuIXHMdr7lGT4L3z28T 05Er0bCA2uRcIgsM64EnZUAETUCkhbTFFEheHuozM1yNtGU1z9lOTcHy0YPy hTXiiDg7L73u8jSc30zqdq6WQPJmTBVJfjb8/jC2CIfWoqun7SonAtkw/7fi lgfJkui6c7jfX1/ZELGv7oxPrRRytH3IrFOfgcSJ5o5IIRkUZ6gmleg7A6pK tpYc/XUo427BvoyHM2Dcb9RXFy6LDOfOzpv1zEBHvOnA3Vo5FKr2xI8mwsH/ KpnVk/JoMq2OObeZA/fupirv0FdEK0LMbZ4e4EADe9JJxWc9KmBFOx/248B5 w2MLy7eUkHqMRr5wNAdKJLY1bvuhjLxOtPrkpHLgL1MLG59IFWQcNMgoesSB tm3KX900VdG+TSpCd6o4UEEI8Tt+VEWlUc7Gnu854PKL+irMVQ0Vhltv2N7C AXMmzzUbng2I2F5v+6WDA2Pla3/uTd2ALnkFWbB6OPDznF7nXkId5e+rcA0b 5sCKcAHOfLM6Khs/HZHP5ADXZm1Su5cG0j7g3uvA4oDOye87XIU1EVc6o3fl DAdU9zWHrsnTRCdVlj7J/uaAk3qH53sDLTSVQ/AO/uFA+447ntp0LXTFmBUx jh2snpMdw9BCOta7FrjYMgKPOwa7tdCzqoYu4TkOONbVWecOaKHgg9cO6mIz zNhb5Me1ED36llQI9uB2W8FVPNpIUeHCvNA8B2YM1xRNamijruwhJLXAgbVE /K/ys9pIulB/WhGb0T5BWgZpI+c+9SwN7KLLB5o6grVRoxWzRx/buEXm2dxF bcRndU/OCdsjMDd0e4w2Kla/656J/byqfPWHdG0kzs72UFrkgO3Ovr/a67RR qft1GYklDtw+on+FLU1BWa9TdGWxqcg35IIsBcUyrpgrY9eqZAYsylMQc3nG hcBm9fF6CalQUIJco40VtrXnFysFKgUZ9lrtvIIt4Ospab6dgpQN9K6NYgcF JBUleVMQ490l6WfLHLCPnmjaXEFB9iJL6eXYqw5tDIqroiA5qFH8F7tW/bTC 0GsKyncTk/6IvbF+3Df1LQXpv1QnGdgr+MdXLDdQUEmw/TMhHi5UXGGiJgYF JanlPXfGlg0beenNR0XnVC6FcrHpAf2ZGXupKM1/87V57CrRkAWt/VRk5qqT yMPLhdQC8cMvbakogT6XLIJt/8NE4YsDFZkctbughN1qlJK25E5FEf+YxFtg N/FYJ7sHU5E3r5LoLezqG2U3te5RUeFcOWs9HxfyH8VGvmBR0YL4w05V7Dw9 WqIUm4r26w/VaWDnvPqadY5DRRni5vEEdmajTJXBHBWFq39aMMG+M1ow+Zpf B1kdS3BzwY6hvjtcL6OD1nkFbE7GPv7oj367iQ46ZGsXJMDPBeLRCSY3VgfZ a8yWCGHP+nYv74nTQXruJ36JYNdTbKVyE3TQ8al/D0hgOz80Mt2TpIOGbcxX KWHHPFh5816GDipolJU3wO4tKtLbVaKD9ky35vlg387vD0lr1UGF+xdf1mL/ yXReaaJEQwebJB++x57Q0GivU6GhTzZz6Z+w+0smc/dsoCHFRtMLzdiNb69u c9GmIdnvjbJ07IzBktOhejQU/MyFzcI2pfG3V+6kocAVknLrBbgQ8bo4d6s/ DbVHESH+2ML0BWPdtzQkGUvUncVWtG0ri6ulIVeDFNEg7E2NxZtG6mlId7Q4 5QK2/StnzdwGGqJUz2ZGYBekV0pIttJQ03Mx19vY212CRrhDNKQWe/FVGXYA g3m3WpRAjMp0NS42vZvO2utAoLKo3btmsd0C11WxnAg0et/Gbw57QOhgxO3D BPpn7ZHSJeyxTV8kSHcC7fxRpiokyIXlyBo9Tz8Cueu6VK7DVtcqCAqNIJCo j3S5AfYp/1OzRcUECgltf2CEPc3/6K1VCYFWtUukb8MOTh2OHXtKoB28AhcA +8q7I3J65QTinJlQtcROkrQ1fvOWQOYv6Rvtscsr9MNa2wlkd2xE2BHb2Dpw R3AHgSrCrg44Ydf0lq6S6yTQGye/JFfsT8KULLdeAtlfkuvxxO50Uaj+b5RA 3hZVJd7YR1kOMfHjBOo3ZIUdxx68emefLotAKmwtaT/siSere4I4BHLppfac wg74e/f9dbMEmrVouO+P/ftHjP+rOQIRWwX8z2KHnawzcF0kkG81Y0sgNs// ZyP6H8cYtRA= "]]}, Annotation[#, "Charting`Private`Tag$7148#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0Xc41v/3B3ChqKREMiIKt3u805DK6PWyySrZlJFZn5RRVFoqH5UtIykp UUgblbzMys7Hvq143yTzznhHyPf1+53rOte5Hn+d65ynvNspSw9eHh6eT7j/ b1pxs3ft2kUiQnfTSL+aFJA7lqK5BzuIPzG1DAYAUR3LZbrYv2pQq5XQNbDS qvKqDXZmgqqzUXAEcHvR/ckPO+9F85TMZBxY+SHk3R3scLG1hRufJoEg+gVv hH3snHGIyNFUUMX7rPUX9uYJ7YfLbz0EtSl1S0xVEkXIO4fyDjwC6xKzyJPY c4dD3JfAEyDwc/RqAbZn2F2DhZQsINJ+gC24m0TNhfnKczPPQMZvj1FXbO2R plXUwVxwnMUuKMPOk/k1OpmTB9xy1DWZaiQSVv73R9C1l+DmeN9J0T0kuuCQ URXY8xp0vdgqFY/9euq1+tTqt4Av3/Ci1F4SDUWU5vjtewdMBeo84D4S2aCe SN87BSCyg/zZgx1hN/Z3tLQQHFky3HJDnUTlv+ZPnZh4Dy6x+Z4PaZBou4Kk pfeBIlD6tGbxiSaJvD7RygeDPgGJxZKl41okemCjpurxpBjcX3wrKgRIFFZB X73jSgkIV3FzzdYh0RRlMEZ0lgHRj/7yT3RJFKVbrzjmVw7Gud9uZemRiBFj fTRXsAK41/ZZlRuQyIXu3sBQqwTSsS4ZNiYkqne8+ooW+wX0uylFRpmSyOep 4PAg7SvgFqtsqDcjEf9M9JbM4q9gsODY4rGDJNKIehCvMFoF9INr+EesSfS0 5OMZecNaYDTqXuxsSyK9Nbp537trwcwH4dVddiTqta8eTAusA70zLTYjjiQS n2q3lX1UD4qzt/zr7kaisvXzqZGXvgHllKUn6DSJVPQlLt/q+A8oezReb/XH 96/braTNbAJnphSVqECcT9ehut8hTcBo9VKGxTkSjfvflvaQawYWhQHaJ0Jx ng//FgCvFiDm9nu/TiKJWAsc7vR0G1j77kAHmUyi1C/LknMM2kHNsC9f1D0S CcXLArfkdrDNcmB2/iGJRul2kQ0aHaA0X553fy6Jcmxr6NmhbJD8sFHVtgL/ 880rN+d13SBtxkTwyhcSpVyqXynu1g0i2s2JV9UkWnVg5GXtm27w62SdA6uR RMPfFZb22fYACYZl1Y0eEj0TTr4n9qAXSAz9WSj5QyKx3WCYs6EPdBjOlart 46D4GMWtKY9JsOdcUZWkFgdpDoXallSRIDipOJxPm4M44PvtwQkSjIWwpEaM OEh1ImV6pyYHnKYVCq6y56Bms3Wfa5o5AKY3joSe5yDx1fPei8sHAd1o1ZJW GQcl3/iW5+I9BLo4jea5xwZQ6vkL6jRiDAyddrKf8x5AGyy6OiMtx4BtztFb Jr4DKGqr1sXpoDEQZ+5rtBQ8gC7X/kWlZWPALwHEPI4aQG6yofpOduNg3Jrc xP4wgGhl4Qdjr02AMl2JhmbxQdTBb/JmcZQL/nGuMn/cOYjcTe2qvHSngOZX Y8n5N0PoPrH8ca71LCgP/nY4IXIYdZvGJJqJLAIdwse8K3EUyfW23lORXAbJ u8vyZW6OI7b7fU10nw/20yWETeW4KGnl4eEFajm8UDqUF77ARZ5tjeOToYIw befiIeuCX2hvBeBJIldBdo3S+uNOk0j00kCf9t41MMwJzrbOT6IlFyupJ2gt LOpMGFG8PIWCdnSodK4RgbzpD8Sm56fQ78+ji8B6PfQ7pPLHw3MazetsUn2a KAqzlKQEGoqm0VXz8tNeZWJQ77a7mYjwDIoZr28PFRCHnf33PGItZpC8rKXh jNpGqJSwkZsdMYPU+/f1lV+WgBtPF8xy0Qxqj9AiE8okYYDM4Z+8P2fwvsKR 4gkpOCtjwFRaS6G0hOTNemqb4OHTdmlRBIWqpibs5bxk4OZlarE0QwoF7T22 sBQrC5W8fhiyj1IoT0SjWqN1M5RfJGtz/Si0S0vfwitUDrqkU4U81yjUrLG5 4aiSPMzsV7/mGEuhAkKAz+6LPDzzPK+2MJVCjj8YH0KObIGeXXzf6VkU0h3h +deCZyusTF7s8HxBodH89W1myVuhikfoHf18CrWd2dlpRijAIPTWLr6IQisu 88/M1yvAuo91KTdLKURZrI9r8VCEjrqt50U+U4h54j+9IyuVYNOaiay0KgrJ m9efX/dICSpxVxfF1VLIXqHdvXIPDb57EP9at4FCLXp33JXZNBibJ8U2xT6r 8PBBWBcN8s0FzFtji/PntnN6aHAg5DnTG9uuvNw0naTBT8ef60Rgd2lPqUqN 0aBWrat5EzZnv+VyIR5laFy9edbpG4Wm967LnFBUhjXuvD7OjRRaT0T8yPdT hmIXG756YXe1jHcYBipDJ+mzW05jZ146VNt+VhnCcNfyK9jq38Rf/bmgDNfX MYvSsd0C0s/vD1OGlu72kf3Yr9/nr/mcogx/pbTVOP9HIUuDvl0t5cpQcaDv vnETheKd1a5MbaDDJMfAwIPYDOhzLliCDlVWiRrYYpfJpfovStFhjsg1tjs2 t2+Zh4AcHUYcjP56GdvUvc5YmkGHKyinorfY/D7uorr76VBf84yUdDOFAv3j MuM86VCTfcKTjW1zY7x2RwEdPhLSKezFFrLeFnj7PR1me4SsGMAuU/CVHvhI h7aytOQJ7G0VYz7JJXQ4bZMUw9+C8+UbW7FURYeSRlNtBHbBlRFY20WH5Rp1 3y5iS4QMvfXkZUDzwZ4foq0UYvv3p94zY0CLSqdKCez3q88t0A4yoJiubpoM dnLGWqe3lgxoc8HKiIZt06opXWfLgNnS306pYzftS7r715UBaRu9xV2wa3lM E13PMuCWe/ebnmIXR72LpqUxYI92zJ3tbRR6nB0e+obLgN1ZPxxUsR/tZMWI TTHgu/BHsnuxH35ouH9mhgF3NBg/ANip1eLv9/xhwNGP0ZfMse8MZ0x85GNC xdzLFSewwxilThXiTJhVPeSXge2dPafWosmE2cErXgi3U4jIPj5ChTOhucj1 GhHsWZ+eJZPbTBiURQ6IYVfQLcXSI5mQJ8BcTBrb4dk+LZM4JtzaP2dLww57 Khiddo8J3y30XgDY3zMzdxrlMeEgJxj4Ysc/7j93t4kJc/dfWarEnkt1ENSU ZcGQ6OXtX7HHFRVbyuVY0Mf5VF4Ndn/eRLrJVhb8kUpZNWJXl1zXcFRmwc5d f8O7sO9x8nzP72TB4EDdqElsLRZfS6EBCzqWz2+U6aDQ1Y856btPsaDZpYCg f7BXshfUVUpY8CpdItcXe5Nl87vbZSwYYLO79zT29uqc7UMVLCjs0g3PYNt8 cFBKr2LBNtVlkxexM1IKRUSbWLCx8KJQNPZ+x8AhaoAF0w2s6S+x/btGEopX EzA1/OXecWx2D5trZkvATl/7A1zsowEb33PtCXgTejlMYpMCVlfjnQiYHpF/ hsIe3V4n0uFKwIQ+/bt/sZdC0U73fwj40Wp3gjCbQgq0jMDzVwkY6ZTkTWCf PHVyNjOHgBMOLGMV7Em+7BLjPAK+rDRR3oF9NnkwfPQlAWNttvWrYl8pdZbc mU/AJv90PU3sOFFL9U8lBFQz3F15ADu/QC2kqYWAsyozUabY6qYBemfbCej6 96CtOTb6/kJIspOAK6O+k4ewv66k3z/6nYCakhdH7bA7HaWLfw4T0KVlX44D tgvXNixijID6gyneTtic63fMVbgEHN1m3uuMPf58TW/gDAGXn3uU7Irtr3Mg a+MsAaM10w4ew/7dGnbqwx8CVlzRF/DADjlRvufIIgGlTROLPLF5/r+2wf8B m0VNsg== "]], LineBox[CompressedData[" 1:eJwd0Xk0le3XB3ClojmRDCkKZ7xTkjK1r5IpU8kUytAx1ZMyRaVC5VEhQ4YM SYlCmlHJrBLCYz5E3IdkPBnuFPK73nevtdden7/22vsr53TazHmhgIDAe9z/ N835WTt27CCB0N4w1KsqBbLHEzV3YfstiksuQ94gus9sgTb2z+riFvMVV2Cp eWWQJXZGrIq9vn8YOD39+t4TO/dp04TMeDQsfRvw+jZ2qNjqgvWP4sGPccGt GPv4OYMAkWPJULXwcctP7E1je+8tvnEPahJr51kqJITJ2Qcv7LsPa+IyyVPY vw8HcObhIQj9GA7Kx3YJuaM7m5gJIm0HuMI7SWgqyKP/nnoM6b+chx2x9w41 LqMO5sAJNje/DDtX5ufweHYuOGWra7JUSVhF//e735VncH2055ToLhIu2KRX +XS9gM6nW6RisF9MvFCfWP4KBPP0LkrtJmEgrDTbU+01GAnVOiM1EiyLu8I9 budDeDv5ows7zHrk73BpARyd19t8TZ2E8p8zp0+OvYFLXMEnAxokbJOXNHM7 UAilj6rnHmqS4PqeVt7v9x4k5krmT2iRcNdSVcX5YRGkzL0SXQEkhFQwlm8P LIFQJSfHrH0kTFC6I0RHGYi+85J7qE1ChPYXhRHPchjl19/I3E8CM9LiWI5w BXBqeszLdUlwYHDqmKqVIB3lkG5pSMIX26DntKiP0OukGB5hRIL7I+HBfton 4BcprftiTMKiqVubM4o+QX/+8bnjB0nQiLgbIz9cBTr+1YuGLEh4VPLOV06v BvSHOUX2ViTsX6md++1rDUy9XbW805qE7iOf+1N9aqF7qtlyyJYE8Yk2q433 v0BR1uZ/OU4klK2dSQ6/VA/0xPmHxWdIUNKRuHyj/T+gOzdcbfHC96/ZqbiX 1Qi+EwqKlA/Op/NQ7a+ARtBfPp9ueo6EUa+b0s6yTWBa4L33ZDDO897ffHBt BjGnX3v2xZHAnuXxJydbYfXrA+1kAgnJHxckZOu2QfWgh2BEEgkrYjaCU0Ib bDXrm565R8Iwwzq8TqMdSvPkFu7JISHbqpqRFcyFhHsNKlYV+J8vnzvZr/kK qVOGwoEfSUi89GWpuNNXCGszIZ5/JmHZgaFnNS+/ws9TtTbsBhIGv8nPq1l1 gQTTrOpaFwmPVyUkid3tBomBP7Mlf0gQ2wmDvHU90K73u1RVjQcxkQpbEh+Q sOtcYZWkFg80B4KtSqpI8I8vChXcywMefLvZP0bCSABbakifBypjiZPKmjw4 QysQXnaEB03Gaz5UN/EApTUMBZ/ngfjyGbe5xf3A0F82r1XGg4Rr9bkObgPQ yWswyTneB8nnL6jTiBEYOGN35LdbH6wz7ewINxsBq+xjNww9+iBii9bFSb8R iDbx0J/374PLNX+LS8tGwDMWIh9E9IHTxmAdO+tRGLUgN3Df9gGtLPRg1JUx KNOWqGsS74f2RYYv54b58I99lcmDjn7gGFlXuWpPgOYnA8mZlwOQQix+kGMx DeX+9Ydjwwfhq1FknLHIHOwj3E0644ZBtrslSUlyASLvLMiTuT4KXE6KZnGK IOplSKwykuVD/NLDg7PUYnShdCA3dJYPLq0No+PBwihVee6QRf5P2F0BAvHk MsStVlx7wm4cRC/19ezdvRKF2KHplplxmHcwl3pYvBoVdsQOKVyeAL/t7Uod K0XQwrS7YpMzE/Drw/AcWKxFnoeU/ji7TMLMvg0qj+JEUaailFBd4SQEmZSf cS0TQ/tvcoxFVk1B5OiXtmAhcdTRm+QcZToFchvN9KZU1yPF2PX8rLApUO9V 6ym/LIHWn8mf5hdPQVuYFhlbJom8ZQ7/WPhjCu8rGCoak0LTMrosxdUUpMYm bNqvugEdPmOdGkFQUDUxdkTWVQZtWqAaRdOjwG/38dn5qI1I0fW7HvcYBbki Gp81WjYhuTmyJseTgh1aOqauwbLIIY0qELhCQZPGprpjinIoo1f9im0UBfmE kKD1Rznk+yS3piCZAtvvzLcBRzcjl07Bb4xMCrSHBP41FdiCKhPm2l2eUjCc t7bVOGELUnIOvq2TR0Grr3KHMSGP/IpfWccUUrDk8qKpmS/yqPZdbeL1Ugoo 07XRzc4KyFa75bzIBwpYJ//bf3SpImpcOZaZWkWBnMmX82vuKyJF/vLC6BoK jsi3cSp30dDruzEvtOsoaN5/m0Pn0lBUrhTXCPus/L27IZ00JPjbe8YCW3xR Thuvi4b6Ap6w3LCty8uN0kgaen/iyb4w7M69EypSIzSkVeNo0ojN22O2eIUA HRl83jRtV0/B5O41GWMKdFTNWehu30DBWiLse54nHYldrPvkit3ZPNqu50NH dtJnN5/Bzrh0qKbtLB2hUMfyQGz1evHnfy7Q0dpaVmEatpN32vk9IXRkxjkS 3ov94k3eyg+JdPQzsbXa/j8KzHR7djSX05FCX0+KQSMFMfaqgRPrGCje1sfn IDYTuZ/zl2AgpWWiulbYZbLJXnNSDJQtcoXLweb3LHAWkmWgsIO3Pl3GNuLU GkgzGWgJZVf4CnuRO0dUew8D6Wj6Skk3UeDjFZ0R7cJAmtyTLlxsy2ujNdvz Gej+in0F3dgrLLb63HzDQFnOAUv6sMvkPaT73jGQ1UZawhj21ooR94QSBpq0 jI9c1IzzFRxZMl/FQJL6E60Edn7gEKrpZKByjdr6i9gSAQOvXBYykUl/13fR Fgq4Xr3JScZMZFppVymB/Wb5uVnaQSYS09ZOlcFOSF9t98qMiSwvmOvTsC1b NKVrrZgoS7r+tDp2o1r8nb+OTERb7ybugF0jYBTneJaJNielND7CLop4fYuW ykRdeyNvb2ul4EFWaPBLPhN9zfxuo4J9X5kdKTbBRK9D72/cjX3vbV2K7xQT ba8zuAvYyZ/F3+z6w0TD725dMsG+PZg+9k6QhRRyLlecxA5hltpViLNQ5ucB z3Rst6zfqs2aLJTlv+TpqjYKiKwTQ1QoC5mIXK0WwZ5275o3vMlCfplknxh2 BcNMLC2chQS8TcSksW0eq2kZRrPQlt7fVjTskEfCt1KTWOj1bPcFwP6WkaGs n8tC/Tx/8MCOedB77k4jC+XsCZyvxP6dbCOsuZGNAm4tbvuEPaqg0Fwuy0bu 9qdzq7F7c8fSDLew0fdkyrwB+3PJVQ1bOht17Pgb2omdxMv1OK/MRv4+2hHj 2FpsweYCXTayLZ9ZL9NOQdC77LSdp9nI+JK33z/YS7mz6kolbBTEkMjxwN5g 1vT6ZhkbeVvu7D6Dve1z9raBCjZa5fAV+WJbvrVRTKtio1aVBeMXsdMTC0RE G9mooeDiilvYe2x9Bqg+NkrTtWA8w/bqHIotWk6g5NBnu0exuV1cvrEVgTo8 jhzgYx/zXv+Gf4RA15GrzTg2KWQeFGNHoLSwPF8Ke3hbrUi7I4Fie3Tu/MWe Dy5W5vxDoHfmO2NXcSmQp6X7nA8iULhdvBuBfer0qemMbAKN2bANlLDHBbNK DHIJ9KzSkL4d+2xCf+jwMwJFWW7tVcEOLLWXVM4jUKNX2n5N7GhRM/X3JQRS 1dtZeQA7L181oLGZQNNKUxFG2OpG3vvPthHI8e9BKxPs4m9PV0h2EGhpxDfy EPanpYyUY98IpCl5cdgau8NWuujHIIEcmtWybbAd+FYhYSME0ulPdLPD5l29 baLEJ9DwVpNue+zRJyu7faYItPjc/QRHbK99BzLXTxPolmbqwePYv1pCTr/9 Q6CKQB0hZ+yAk+W7js4RSNoortAFW+D/ayv6H/gE7yM= "]]}, Annotation[#, "Charting`Private`Tag$7178#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0nk81NsbB3ClhaRLhChLaBbzTSQV6hyXpJCSNUWJkF+5lbiVhLL8oo2S ZbKWZKRClrocW2QsKZEtWYZ8ZwyyzQj5nft7Xq/zOq/3X+c8z+dRc/O18Vgq IiJSic+/93nPyYSEBBIRJht4/fqK4Jz4s1QmdsCyOGYlvAiGE3X8nmL/rEdt tqtvgF3olmwBduZDPVfzv6PB8qQnIR+wc19+mdw4EQMOfvF5148dKftHsXzW I/B3TG3F0kQSnbq8P1DahQk8gxIeULFVxoxTl99KBbcrS7fZYkeruYYuHUwH qyQkUsKwZ48Eui+Cp6A2zKbtH+zT4Qlm84nPQEa/a8cs9pfiQurs9HNw98js M6MkEhnzWlbNHMoB5dHfjcOwczf+HJlg5YLv1Y2ZLdhrqBE/Am68AhKJsc0h TBJdPfqkzq8nD8Tp1jzow86bzDOYlCgA0RWFm/Y9JtFwdAXr/K43gHS1SFRP JpE96rl97kERWBWpfCMRO9qR/3ukohhkt0vqyaeQqOrnnK/PWAk43e42opZK oq0a6228DvwDbtbWT7zE9iylVA0FlAKuqwMySSNRsr2+nsfTMhDUnJoVmE6i 8GqahE5wOWjStGFte0qiyRkzPtFVCX7SLT+PYd8xadLkn68Cbwnft68zSUS/ Z+eSI1YN0sMs6s2ySHSC5v6Rrv8eSPvzOt6wSNTkHPKacr8WyDL7plJySOSd JcYdonwA1NfP2XdfkGjZ9N1NmWUfQBJrQ0bwSxIZ3kmO1RipA09fOPIz80mU Vf7uktq+BtCi87G6rIBEppImub3fGoB+oLt19xsSfXdiD6X4NYKyhuzL1GIS yU22OyinN4Hcs/miy0tJVLl2jnk7qBlccvbmNNaSSHuvwvVbHZ+BxJn8Jtc6 3L/U9s3GWi3gSuyQrZCN8+k+3CgIbAEFl/qJ3U0kGr0QpeSh+gX88IzqWdeK 80z9XQQ8W8HxR65hSzgkYsxzxqemvoJND+PM5wdJxKxdEs8yawf/tW6IWPhB otWxysAtvh3MMwzOy4yQaITmePujYQcQO1L4MnqKRCyHelp2aCcQqFmX563g Inr+azdXqW9Anm9KkRXnosSgJnE5t29AkyI9cFWCi1Yd4L1qyP8GpvO9D7pI cRG3V2Nxl0MPMFMxfHZOkYuer4lPkk3+DgIH/AbeanOR7HbA5azrAx33/iJG XLgo9p6memLGAEjuNG/vPslFRsOhDuV1A0B5//Trz+5cxAG9UUNjA6CFbTbU eIaL9MYSp3SNOKCzUnnJ0gAu+mIlVVP/hQMe9Bi7udzjIjmJOa+F5UMgfC6e /6mGi+LDmnNPeA0Dc02nm25sLoLfiIHwO8NgK7OUI2jkomG9KPkXBcOA1ZI0 tbWVi3Zy9gbPipAg3LhttGuAizr+fHc4JoEE+gEJW9cu5SFFkcypKjYXrEoL ZwwZ8xDzylUDCsEHX9+Kak7t5aF11t1dt234gKfwdO+KAzx0R333takAPpCZ OzOub8ND1xt+o4pKPhhcQ4bWufGQm3Lo3mOOo4B50Mf81U0eolRGHrp/YwyM lXVv8K7noY5lFvkLI+PgSsAJ56enRpC7pWOdp8kkqIkc73Vv46PHxPKMHDsh 8MpZYGrbjKFvlvfirKQXQPIF1l8/gsaR6ve2JO31S+CO+IzBUeufqNP9sRF6 LApp1NaGCYkJ9Ej8CHd+Zjk8b6p7PK1+Ap3++ml0IlQM0j5cM3701yTaWQ1E Hg2sgr+dLihJL5tCMkGDfcY7JaHJmh1hg7FTaPGEreJT9AdUSY7bYysxjQJ0 OrS7JKWhVMmpHUnXppGgZmQB2K2FW5IavVK+T6O5PzfoZcXJwJpvPMMo7RkU crDqL89KWRgho1Ywe2UG3Rttag9dKQePluhwZ4pmkJqyzb5pfXn46vE6SZGf M8igf1df1XUF+IkR90igKkDt0bsHHlauh44vb4T47RPg94p5ZWOK8KhzMg34 CFDKw3gVU/0N8L7J3VefIgSobnLMSdVzI3RLPL1+MEWAAnaeml+8rwx9i3at 0isUoFxpQ7ZhmwpUK1QzG6sVoG2791p7hqpCTQ+vdNN2AfpiqPLRZbMaXOtk caJpUICKiJWijrVqkOloYRcxLkDOP+hvA49vgp9lVW3dfgmQCU8kwlpEHR4y 6QihLRWikcK1X63i1WFD93nvTDEh+npJt8uK0IDBOuyyxDVCtOL6sum5Jg0o kdvVckBGiGas18a0emjCBm+7+hh5IdLy+Wx6XHwzdK74OTqqKERqB5uuSKVv hrX5L2KLNwqRk0a7+/sdFCjLJ9kmqkLUavrAndpJgcY0jQuW2P4aqcnh3RQ4 3RshY4cttyynndNDgerru0xPYztWVVmmDVDg6mAlt0jsbuNJPUU+BWp029yq x+bssVm+WoQK97MfsKzUhGhqp1TmmCYVWvszZ403CdFaIvpH4XkqFA3U5uzH 7m4d7djnR4X9ORMfDmNnBh1uaPenwuXbFENOYhs0y73+dZUK5Z6czAnGdruY dmVPOBW+cPScKMXOKymUrEmkwkPv3B311IXIxqxvW2sVFW48MHFKWkOIYl31 gyfX0eC2l4Od8th06H35bwUadOPSrZSxK1WZFxYUabB7Y7G6FvZ43xKPlao0 aBS3K8EU29K9cb8SnQaDHPOy/LGXebvLmOyhwVUPW3y/YvtdiMmMOU2DsXGx B6I1hcg+bLRBp4gG97vK29zHXm23xS+qhAabJ3Ts47ArNc4pDb6jQb8wPdtU 7C3VfO/4chocsculFGCvEOWvWKyjwa4mzy1d2EXBPLwLNCg7DNmbNwuRQuBw wemldGjAufq6ALvzQj8zyYoOS7pWW5Rgl0hcnqccosM773f2lWLHP/njWIEN HW7a4yNai23fZqTU6ECH4suuq3Rgt+x6lPD7JB3K2wYVz2M3iFjGnfSnw0O3 PYOMKUJUdufNXUoKHUr+w2+vwM7IjgzNH6fDqTWJZ95jp+sy7slO0qGSd9Ps B+zUtx8fX5rG/xlolWrGZrLlSnb8osNrkXfUerAfcJ+MvRPVghMs+Y+z2OH0 imPVclrwUn6HhzZViLyyZ/VbjbTgtUTdjlhsIvsMbyZSCwr9Ldlx2ELvnkWL KC14kOdRkoBdTbORTbutBasmmPdTsI8+37XbIkYLDuZCOgs7PEvsbkqSFnRL CFuowO7NzNQ1z9WCGalrto9ix2b0X05o0YLyC28IY5oQzTKPihkpM6BCwt0e E+xRTc3WKlUGdNL0uW2G3Z87lmahzoBz7cSgBTa7/KahM5UBWXPi1+yxkzi5 567oMuDFQ8esfbB3M0Rbi80Y8FkVERmLHfKOlbbdlwEbIq8+7MEW75w30C5n wKn+U6xe7A02X95EVTIgQ6ET9WNvZbO2DlczICnqxxnCtn97dHNaHQN+sry8 YQz7SWKxtEwLAyZz0s0Xsfc4+w3PDDJgerJivDJdiC508x6WSRCw2f6rmRN2 Z0/nuJUDAWujXxg6Y7tclC8ZdyLg43WLW45jD6y0DYk9RsDSCgXpk9gjWxul O04S8Hy5WZUX9mIo0nX/DwE/n43uDcDWoDzxuxJCwBq5qBUPsc/6nhVmsgjY Jv6rIQ57QjS7fH8uAeeqVsbEY/vHD0WOvCKgy3tRBSZ2cIXret1CAho4JMlk YMfI2BiUlhPw1/xW9ivswiL9wJZWAmZYiV/NwzawvGjq305Ac+49egE26n25 en0XAfsk88KKsD+I0x679BIwSsSRUYbd5axURnIJmF1c8xlhnxh3CI/mE3Dy zUhABTbn5oOD2uO4v3NuZdXYoy8kv/tNE3ClSoFrzb/z+/PAM3khASMWyxdr sQVt4b5vfxGwUexWch12oE/VjuMLBBToShnVY4v8v7bA/wHm7V2v "]], LineBox[CompressedData[" 1:eJwd1Hk41FsfAHAlFdIlQioRmsX8UpKy1Pe4pAUpyZKipCRvuUncSkKRN9ps WcYeyZQK2bp2kTVlyZYsQ34zBtlmhLznvud5znOezz/nnO9yjrKjm8W5pUJC QuV4/rtecZ6Mjo4mgTDcwO3XVoDLos8TmdheyyKZ5egqDMds90jF/llX0ma5 6g7olNyXycFOi9ByOPB3CIjEPvP7iJ35umVy40QoHG5xfd+PHSTzR75c+lP4 O7S6bGkMCWevH/SWsmeCs090OBV705hBosj9RHhQXrTDEjtE2cF/6WAyiImL JwRgzx7zdlqEVKgOsGj7B/t8YLTxfMxzSOl36JjFbsnPpc5Ov4BHx2af68eS YMBtFps58hJKQ74bBGBnbvw5MsHKhO+VDWnN2Kup93543XkD4jFhTX5MEm6e eFbj0ZMFkZpV4X3YWZNZupPiORBSlrt5fxwJwyFlrCs674B0MIlRiSfBqqTn weXwPBALUrwTgx1iw/s9UpYPGe0SWnIJJFT8nHNzHSuA8+2OI8qJJGxTXWdx 4dA/cLe6buI1tnMRpWLIqwg4DtYlhkkkxFtpa51LLQafpsR072QSAitp4tt9 S6FRzYK1I5WEyRljHtFVDj/ppl/GsB8aNqrxrlRAIeFW+DaNBPrj4/YvV1ZC coBJnXE6CadpTp/o2h9AypPb8Y5FQqOd31vKk2qQYfZNJbwkwSV9JWeI8hGo b1/UPnpFwrLpR5vTij9CLGtDiu9rEvQexoepjtRA6isbXlo2Ceml768p76+H 5u2fKotzSDCSMMzs/VYP2t5O5t3vSPhuWzuU4NEAxfUZ16n5JMhOtlsrJjdC 5qVsYZEiEsrXzDEf+DTBNTsXdkM1CRr75G/f7/gC4hezGx1qcPySO7cYqDfD jbAhS0Etrk/30Qa+dzPkXOsn9jSSMOoevP6cUgv8cA7uWduK65n4Ow+cW+HU U4eAJWwSGPPs8ampr7A5IvLA/CAJzOolUSzjdvivef29hR8krApTBMeodphn 6F6RHiFhhGbz4JNeB6w8lvs6ZIoElnUdLcO/E/jK5qVZyzlAz37r6CD5DeR4 RhQZUQ7E+DSKyjp+AzWK1MBNcQ6IHeK+qc/+BtPZLoftJTnA6VVd1LHuAeNN es8vK3DgxeqoWJn47+A94DFQqMEBmZ3AYa/tg47HfxEj9hwIe6ymEpMyAPGd B9q7z3BAf9jfurRmABQPTr/94sQBNvQGD40NQHOt8VDDRQ5ojcVMaeqzobNc cclSLw60mElW1bWwIbzHwNH+MQdkxecuLIgMQeBcFO9zFQeiApoyT18YhgNq tncdazmAvhEDgQ+HYRuziM1v4MCwVrDcq5xhYDXHTm1r5cBu9j7fWSHcdwZt o10DHOj48/3RUPxutb2it61ZygUFobSpCryPWFIgY8iAC8wbN3UpBA++Fgqr Te3jwlrz7q4HFjzgyqfuW36ICw9V9tya8uKB9NzFcW0LLtyu/11SVs6DwdWk f40jFxwV/fedtBkF5mHXA2/ucoFSHnTkyZ0xGCvu3uBSx4WOZSbZCyPjcMPr tF3q2RFwMrWpcTachKqg8V6nNh7EESIpL48L4MLLBaaGxRh8M30caSa1APHu rL9++IyD0ve2WI11S9CuqJTBUfOf0OkUp18SJ4xo1Nb6CfEJeCp6jDM/I4Ku GGmeSqqbgPNfP49O+K9EtI+3DJ7+NQm7K0Ho6YAY+m3rvl5q2RRI+wz2GeyW QIardwUMhk3B4mlLhdSSP9Cm+Mi9luLT4LW9Q6NLQgpJFpzdFXtrGvhVIwtw fA3aGttwIeH7NMz9uUErPVIaVX3j6gVrzIDf4Yq/nMtl0D1p5ZzZGzPweLSx 3X+FLDpRsJ0zkzcDyooW+6e15dCbuLUSQj9nQLdfp6/itjz6zIh8ylfiQ3vI noGI8nXI5vUdP4/9fHxePrd4TAGdsIungSsfEiKiNhlpb0BPDB+9+XyPDzWT Y7ZKzhuRY8z5dYMJfPDafXZ+8YkicsvTEdPK5UOmlF6tXtsmpJyrbDxWzYcd e/aZO/srIbVzF5KN2vnQorfpk/0WZbTG1uR04yAf8ogVwjbVyohpY3L83jgf 7H7QC71PbUZfZJQsHX/xwZArdM9cSAUdMezwoy0VwEjumq9mUSqovvuKS9pK AXy9ptllRqgi3+21xTGrBbD89rLpuUZVJJ7Z1XxIWgAz5mtCW8+poXqX43Wh cgJQd/1idEp0C7Ir+zk6qiAA5cONNySTt6Dq7Fdh+RsFYKva7vRhFwXJ8Mha QyUBtBqFO1E7KciApupuiu2pmhgf2E1B0733pI9jyy572c7uoSCVdV1G57Ft KipMkwYoaJXvescg7G6DSS0FHgWpdlvcr8Nm77UQWSVERQdrw1lmygKY2i2Z NqZGReaezFmDzQJYQ4T8yL1CRcLeGuyD2N2tox37Paio/+XEx6PYaT5H69s9 qUhkh4LfGWzdJtm3v25SkeyzMy99sR2vJt3YG0hFr2ycJ4qwswpyJapiqOjI eycbLRUBWBj37WitoKKNhybOSqkKIMxB23dyLQ3teD3YKYdNRy7X/5anIUcO 3UwRu1yJ6b6gQEPdG/NV1LHH+5acW6FEQ/qROtFG2KZODQfX02nIxyYr3RN7 mYuTtOFeGhKLaHb7iu3hHpoWep6GwiLDDoWoCcAqYLR+ex4NHXSQs3iCver4 Vo/gAhpqmthuFYldrnp5/eB7GvII0LJMxN5ayXOJKqWhkeOZlBzs5cK85Ys1 NNTV6Ly1CzvPl4t7gYZkhlHtli0CkPcezjm/lI502Tff5mB3uvczY83oqKBr lUkBdoH49XnKETp6+GF3XxF21LM/TuZY0NHmva7C1dhWbfrrG6zpSHTZ7U0d 2M06T6N/n6EjOUuf/HnseiHTyDOedHTkgbOPAUUAxQ/fPaIk0JHEP7z2MuyU jCD/7HE6mlodc/EDdrIm47HMJB2td2mc/YidWPgp7to0vs9Aq2QTNrNWtmDX Lzq6FfRQuQc7nPNs7L2wOppgyX2axQ6kl52slFVH17I7zmlQ8T+VMavdqq+O bsVodoRhExkXuTNB6kjgaVobiS1w6Vk0CVZHh7nnCqKxK2kWMkkP1FHFBPNJ AvaJFzp7TELV0WAmorOwA9NXPkqIVUeO0QELZdi9aWmaBzLVUUri6p2j2GEp /dejm9WR3MI7woAmgFnmiZX6igwkH/2oxxB7VE2ttUKJgWzVXB8YY/dnjiWZ qDDQXDsxaIJdW3pXz47KQKw50VtW2LHszMs3NBno6pGT5q7YexjCrfnGDPS8 gggKw/Z7z0ra6cZA9UE3I3qwRTvndTVKGWiq/yyrF3uDRcu74HIGYsh3lvRj b6tlbRuuZCBS2IM9hG1VeGJLUg0DfTa9vmEM+1lMvpR0MwPFs5MPLGLvtfMY nhlkoOR4hShFugDcu7kRxeIEarL6amyL3dnTOW5mTaDqkFd6dtj2V+UKxm0J FLd2cesp7IEVln5hJwlUVCYvdQZ7ZFuDVMcZAl0pNa64gL3oX6Lp9B8CfbkU 0uuFrUp55nHDj0BVssHLI7AvuV0SpLEI1Cb6qz4Se0I4o/RgJoHmKlaERmF7 Rg0FjbwhkP0HYXkmtm+ZwzrNXALpWsdKp2CHSlvoFpUS6Nf8tto32Ll52t7N rQRKMRO9mYWta3rVyLOdQAc4j+k52CW9r1et6yJQn0RWQB72R1FanH0vgYKF bBjF2F1264tJDoEy8qu+lGCfHrcODOERaPLdiFcZNvtu+GGNcRzfZcfiSuzR VxLfPaYJtGJTjkPVv/n789BzOQGB7i2WLlZj89sC3Qp/Eahh5f34Gmxv14pd pxYIxNeU1K/DFvr/2Ir+B1N5/KA= "]]}, Annotation[#, "Charting`Private`Tag$7208#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0nk4lU0bAPBjJ5QkSlFCZ3GeRJJ9RllKWVJCJUtKKvUmpc2SCm8kWSJb lGQppcWSNDgihZQlx74lu0fWJ+Kb95vrmpnr98dc9zK3gstZ62O8NBqtFO// bnJI8b8TETvWDnVrygIFFwFNHmxv/vsJpfA8eBLcWMSPPf4FNe4XuwHGraJi lmCnRWs47rwUCkCmNkcSO/tF/YTc7wgQeR1BOexgqWX5MukxgFOyVoKFffTy rmvLjyQAn30matrY68YMkwVuJwNrOdVUM+xQBccA3p+PQDnfpxNHsKl911wX wRNwaGDR1wv7eOADk/m4pyAlm9MXil2fn8ugpjLALvWFh0+xDYfqlkxbPQM6 e2Mzy/7LR258+HdWNkjvuyTYi72UEfTL+8ZL8I2blMPkIdHVg6mVXu2vwJ6+ pzQr7FcTr3QmRN8AWoVv8iXs/tCSrHPab8HUfqHvtdgHUPudM1F54P3T00dp vDhfu5GF4ZJ8ICorZKyOzRmfO3tqrABwktmzCdiblVZbnzB7DwQPHKpswHYr onP6vItA52nBQQk+EiUd0NQ49uQDIGl8q8OwA8uYomr+xaAnw5eeyk+iiWmT EaKlFDD3B50Zww7bUaM8co4DPk7r8OkLkIgVbnPkmXAZUL8dJdWB7cR0/crS /Ag0NHS/GgiRqObQ9Rz6vQoQ2Fl3NQHbPV14sI/+Cay+X35+Hpt/6u6GtA+f wLdfp4w4wiTSDUuKVBquBPQiRcfTS0iUXlx4QcG0CnzbLOzQim0kviO7s60K rPt88bGFKIk67D/3PfSqBr6kq7COGImkJ5ps5R/VAFErLTp7KYlKJecS7vjW AmNWj62PJIlUjVf53eZ+B2ZO0lB+Ba5fYutGQ5U6EHTlV00J9tLWvdUz1+qA Hapok1hJolHPkDXH1teDObWM5zUy+D+TF/KAWwPg/+J58ZMcidjzveTk5A9w gkRekfIkSqjgic0yaQIVbKGlzutIJBYpD1xim4DmboOl/AokGmba3fmqywV+ s/WEuxKJsmy/MDMDmoG2n5HyCxXcz9c5Lo4SbSDnxaNTj9kkivOtEZF2aQPa drkGcQSJlpgNvax63QbcEiSD7qqSaLBTaVHbth2ADck3Y7eQKGNpbLxUUgd4 +ueLmaIeiaS2gsHelV3gXpGTgZQliSLDlRXjHvcA5jYx3+1WJNLrD7AtruwB da2OPzz3kqgXdIb0jfWAC+e+fufuI5HGWNykul4vuGcn+7XYDs+7uUT5l/pe UPhmYGDcBfdbdO7EX4E+8DFxMafpEolib9VmO53oBwVJBxdMr5AIthE9gWH9 wEEsHBRcxfOsESLz/E0/WDnnH5/iSyKtXmN/ijYAiJXd0f/eJBF3e+HeiAcD IO91gefbcBLJ0tImOZ8Hwa26BY/zmbi/V67q0IkRkHv4vbP0MxKttGxtuWM9 AlQTj4sXPsfzqajvM+k9AjLklweJ5JDIr2oBlZSOAB+tE23v8kjkIh9gfNhu FLxwvdrh8ZFE9NJgq3s3xkACuGUq2o3j8+9+/XeYBE4dspm168aR6x67Srcd EwAghVzrvHGUSAg8fmYzCxjaW3T09/9GbXvC75sv/wsU2J4cJaEJtL6jMV51 NQ9Ui446eSp/AjW7JuqhRD44GsUK+2U/iWJE9g3OTwtA8xzOE3/aFDr+49vo 7wBhKBxuE+FxbwpplQFaTM8SKKmq7aciNY1W+P7sMtQSh9EZLwVzo6bRotN+ 2SdoGSxUFXVWo80gbzWuaov4cpi1sS4i1W0GzZQP/wU2kvCOgg9fffEMmtu+ ViP9/gr4creDHVdkFl234PzjVioF+wSe9/JYzqLw0ZqmACFpOHdDcE46aBYp yFubTmnKwCNCb8ozC2eRTrd2F8dvFdxn/Jv759csagrV74kuXQ1XLXTPxIpS OF7+0IcxWWgYhArK2BR6GB27zkhzLbytJ7NxpymFKifG7Ne7ycEKXYp44kAh b62j84v35CE54BLj4kmh7OW6n3Ub10Gl563NXQEU2qJvbOkWsB7eGAcp0hEU qtdd9/XIRgVIi+KZeZVEoTxCiM+uQgGWmWwQyUmn0KFfrHfXHDbAY7tqlLty KLRjiBZkSVOE+yo8JTYUUGg4V/KHeawibBEqd1ZFFPpxQb3FnFCCMTLvk4vK KCToxz81V6MEk/J9wuQqKTRtKRnRcEwZzi/+8FlbTSGVU9+NHEQ2QsNuKQ9Q SyEFi5orEo82wqyQ+mzudwrZKzW5ftxGhzdX+ORpN1CowSjKldFMh8m6w18M sS8qJScFttIh925/8y5saf5nTb3tdOgkEtNvj23H4exJ6aHDoJZNnMvYrYYT GrIjdBjs7XgpH7vXwFpAjMaAMafn/6g1UmhSSyJtTJkBLSK5a6R/UEiSCP2V e44BG02N/eWwWxtGuaZeDHhZzahDCTvNd29V00UG1GCI3tmCrVMrnfPnKgMW ZjLTrbBdzqdcMQhkwN9BtM5/sV8V5IqXxzGgbsLOf2axrU26tjRwGHDSKLS1 vIlCkY6a/hMrmTDZUayvCpsF3S9fWsWE1UPE0Hfs0vUJnn9lmdDmpXN/OzbZ xXNMaD0TvuV2ZU9j73Gt3rWGxYTiliNnlLkU4nd3XbHDgAmtakRq/bC9PCPS Io4zIYMek8toptCBW6NVanlM+M1SwJ3AFrPZ5BVSwIT5m41WqWOXKp1Z87OQ CRNC9Dx0sTeVjbjHFjNh0GnrcXNsQb4RwcVKJmSm9x71xM7zH4JVrUwYMTpE K8Beda3/zXFeFvT0jg7Wb6FQs2d3Qrw5C4b1OtUbYheIXp6nW7HgEi5NzgQ7 NnXZ4TfWLBjvW5FqgX2gUW9NtS0Ljp99EeaIXacd82DBGdu6u9ofu4q2577z RRY0NTEWKcH+EPb2Lv0hCwodihjUaqXQ48zggNckCxbZjwE97Efq7HCpCRYM 2bIQAbCT331NvDCF4+dtUzfBTvgsXbDtDwuqXTG22YcdNZg6VsinAlN9lFQ9 sANZJYfLpFWgtLK/3kPsE5mUZoOeCmTYUkv/YhOZJ4emg1XgtlcuNYvYs+7t i7tDVGBG0EgIbxuFypjWUil3VKBc0mkeYeyDGdr6uyNUYKn6lkZJ7MB04bsP 41Wgl9IUnYHdmZamvjNbBbLHCr32Ykc+7r78oE4F9tdaTCZhUwkHhfXk2XCX RYF3CvaosnIDZz0bxv9jSj3G7s4eS9mtyIaSYvXT6difi2/qHmKwYS2sb3mF Hd+bfeaKOhtqxcZZlGPrs/ka8k3w+7cOnUPY1wuzUraeZcOTfEV/1NopJNI8 r6NazIZHbc6NbMFea13/NqSUDWUmv7Rvxd78OWtzfxkb8n70LtLGPvDu4MaU SjYUt+KcNMROjctfvqKODSf7Jm9ZYRsc8uqf/smGgk+oMg9sz9ah6A+iBDxG c4pOxW5ubybNbQk4EKTunoZ95LxMAWlPwAmRON107B6h/dcjDxNw1IrdmoU9 vLl6OdeZgDSBa2KvsRcDkLrraQJq6OSySrCV6KleV64T8J1Zu2srtsdZj9m0 LAK2hduLt2P/5sss3pVNQNWR2286sC/G9gUPvyRgadOKxW5s/xLH1eq5BNz3 k3tzADtihbVOUTEBM94v2z+NnZunea2ugYBBS537Z7B19pw3uthEwLIe76sU Nup8Iba6hYC3m6nEeexPIszEI50EdFBwr+ftoFDLoTUfBgYJuLmQ5siP7UTa BoaOEDDc7Fi/AHbvzSgLVZKAHVOxM8LYo8/FO7ymCCjQ5+6zBNtzu9lTmVkC sr1EecWwZxoDz777Q8D8YN9b4tjXTnG2OfwloItomdAybNr/1yb4P8lnYgA= "]], LineBox[CompressedData[" 1:eJwd0nk4lc0bB/Aje5aEKEUpOovzJEuy36MsbSQSKlnSolJvUkq2VHgjyRIh UZKllBZLkuWIlKQsOfaQ7B5Zn4jfvL+5rpm5Pn/Mdc/c81V0OWN1ZBGNRivD 87+dHFz33wrE1lWDXVpyoOjCr8WD7cV3J7EMnYNHIY1FfNhjn4ob94pehTHL 6NjF2Gkxmo7bLoYBZOpwJLGzn9WPy/+OhKgrxUgeO0R6Sb5seixwSldJsLAP X9rus/RQIvham6rpYK8eNUrmv5EMVvKqqTuwwxQdAxf9fAAVvB+OH8KmrH1c F+ARHOhf8PPEPhp013Qu/jGkZHN6w7Dr83MZ1GQGbFefv/8Y22iwbvGU5RPQ 3ROXWf7ffeTHhn5nZUN670WBHmxxRvAvr6vP4Ss3KYfJQ8Ll/alVnu0vYFfv Y5ol9ovxF7rjIq+AVumXfBG7L6w066zOa5jcK/itFntfcfvN09F58PbxqcO0 Rfi+dsPzQ6X5ICInaKKOzRmbPXNytAA4yeyZROyNSiusju94CwL7DlQ1YB8r onN6vYqg85TAgAQvCUn7tDSPPHoHJI13RTh2UDlTRC2gBLoz/OipfCSMT5kO Ey1lwNwbfHoUO3xrjfLwWQ68n9LlNeAngRVhc+iJUDmo34iW7sB2Yrp+YWm9 B01NvS+GgiTUHLiSQ79dCUGddZcTsd3ShQZ66R9gxZ2Kc3PYfJO31qa9+wBf f5005giRoBeeFKU0VAX0onWOpxaTkF5SeF7RrBq+bhRyaMU2Ftua3dlWDas/ XnhoIUJCh/3H3vuen8GPdBXSFSVBZrzJVuFBDYhYatPZ4iSUSc4m3vSrBRNW t62vJAmqJsv9b3C/wQ4nGaQghd8vsWm9kUodBHv/qinFFm/d83napw7siivb JJaRMOIRuvLImnqYVct4WiOL/zN5Pg+ONQDfJ48LH+RJYM/1kBMT3+E4WewZ pUBCYiVPXJZpE1SyBcWdV5MgGqUALnFNoLXTUJxPkYQhpt3NL3pc8J+pJ9yU SMiy/cTMDGwGHX9j5WcquJ8vc1wcJdog59mDkw/ZJMT71QjLuLSBjl2uYTxB wuIdg8+rX7bBsUTJ4FuqJAx0Ki3o2LYDrE2+FqdBQoZ4XIJ0Ugc8/vNpxzp9 EqQ3wUDPsh9wu8jJUHo3CVERyuviH3YDc7Oo3xZLEvT7Am1LqrqhrtXxu8ce EnqgM7R3tBvOn/3yjWtNguZo/IS6fg/ctpP7UmKH824uUfGpvgcKX/X3j7ng fovMHv/L3wvv7y3kNF0kIe56bbbT8T4oSNo/b+ZNAmojuoPC+8BBNAIKLuM8 a4bKPn3VB8tmAxJS/EjQ7jEJoGj9QCzrivn3GgncLYV7Iu/2Q97LAo/XESTI 0dImOB8H4HrdvPu5TNxf78u6dGIYcg++dZZ5QsKy3a0tN62GQfXeUbHCpzif 6wx8J7yGIUNhabBwDgn+1fPFpWXD4Kt9vO1NHgkuCoEmB+1G4Jnr5Q739yTQ y0Isb18dhUS4bibShevz7Xz5dwjnuEMus3b1GLjusqs6tnUcoFgx1ypvDO4R /A+f2MwAQ0dD12Dvb2jbFXHHfOlfUGR7cJQEx2FNR2OC6goepBYTfeJk/jg0 u97TL77Hi0aiWeG/7CcgVth6YG6KH5nncB4F0Cbh6PevI78DhZBQhE2k++1J 0C4HWmz3YiSpquOvIj0FUn4/fxhpi6GYjOcCudFTsOC0V+5R8RJUqCrirEab Bi81rmqL2FKUtb4uMvXYNExXDP0FG0l0U9GXt75kGma3rNJMvyOFnu90sOMK z8AVC84/x8qkUS//0x6e3TMQMVLTFCgog2avCszKBM+AooKV2aSWLDok+Koi s3AGdLt0fnD8lyNrk9/cP79moCnMoDumbAVaPt81HSdC4Xr5g+9G5ZBRcHFB OZuC+zFxq421VqEb+rLrt5lRUDU+ar/mmDyq1KOIRw4UeGkfnlu4rYDIfpdY Fw8KspfqfdRrXI2UnrY2/wikQMPAZPexwDXo6hikyERSUK+3+suh9YqIFs0z /SKJgjxCkNeuUhGVm64Vzkmn4MAv1hsfh7XoyPYa5R85FGwdpAXvpq1D1pUe EmsLKBjKlfxuHrcOtQhWOKsWU/D9vHqLOaGEYmXfJheVUyDgzzc5W6OEkvJ9 w+WrKJjaLRnZcEQZzS189131mQKVk9+MHYTXI6MuaXeopUDRosZb4sF6lBVa n839RoG9UpPr+810dE3KN0+ngYIG42hXRjMdJesNfTLCvqCUnBTUSkfcW33N 27Fl+J409bTTkZNwbJ89th2Hsyulm46CWzZwLmG3Go1ryg3TUYiX48V87B5D K35RGgPFnpr7o9ZIwYS2RNqoMgNZRHFXynynQJII+5V7loEazUwC5LFbG0a4 Zp4MdEnNuEMJO81vT3XTBQbSZIjc1MDWrZXJ+XOZgQozmemW2C7nUrwNgxjo dzCt81/sFwW5YhXxDKSXuO2fGWwr0x8aDRwGmjAOa61ooiDKUStgfBkTJTuK 9lZjs5DbpYvLmejzIDH4DbtsTaLHXzkmsnnu3NeOTf7gOSK4holec39kT2Hv cv28fSWLicR2D59W5lLA5+YqtdWQiSxrhGv9sT09ItMijzIRgx6by2imYN/1 kWq1PCb6upvfjcAWtdngGVrARPkbjZerY5cpnV75s5CJEkP13fWwN5QPu8WV MFHwKasxc2wB3mGBhSomYqb3HPbAzgsYRNWtTBQ5MkgrwF7u0/fq6CIW8vCK CTFooaDZoysxwZyFwnuc6o2wC0QuzdEtWWgxlyZvih2XuuTgKysWSvCrTLXA 3teov/KzLQuNnXkW7ohdpxN7d94Z26rrcwB2NW3XHecLLGRmaiJciv0u/PUt +n0WEjwQOaDdSsHDzJDAlyQLFdmPgj72A3V2hPQ4C4VqzEcCdvKbL/fOT+L6 eZvVTbETP8oUbP7DQmreJjbW2NEDqaOFvCoo1VdJ1R07iFV6sFxGBckoB+jf xz6eSWk16Ksghi0l/hebyDwxOBWigja/cKlZwJ5xa1/YGaqCMoKHQxe1UVDO tJJOuamC5JNO8Qhh78/QMdgZqYLK1DUaJbGD0oVu3U9QQZ5Kk3QGdmdamvq2 bBXEHi303IMd9bDr0t06FdRXazGRhE0l7hfSV2Cj7RYFXinYI8rKDZw1bJTw jxn1ELsrezRl5zo2khStn0rH/lhyTe8Ag41qUX3LC+yEnuzT3upspB0Xb1GB bcDmbcg3xedfO3QOYl8pzErZdIaNTvAW/VFrp0C4eU5XtYSNDtucHdbAXmVV /zq0jI1kJz61b8Le+DFrY185Gy1671Wkg73vzf71KVVsJGbJOWGEnRqfv1Sq jo0meieuW2IbHvDsm/rJRgKPqHJ3bI/WwZh3IgQ6QnOKScVubm8mzW0J1B+s 7paGfeicbAFpT6Bx4Xi9dOxuwb1Xog4SaMSS3ZqFPbTx81KuM4Fo/D6iL7EX AovVXU8RSFM3l1WKrURP9fS+QqA3O9pdW7Hdz7jPpGURqC3CXqwd+zdvZsn2 bAKpDt941YF9Ia43ZOg5gcqapBa6sANKHVeo5xLI+if3Wj92pJSVblEJgTLe Ltk7hZ2bp+VT10CgYHHnvmls3V3njC80Eai82+syhV3c+Ux0RQuBbjRT9+aw Pwgz7x3qJJCDolv9og4KWg6sfNc/QKCNhTRHPmwn0jYobJhAETuO9PFj91yL tlAlCdQxGTcthD3yVKzDc5JA/L1uvouxPbbseCw7QyC2p8giUezpxqAzb/4Q KD/E77oYts9JzmaHvwRyESkXXIJN+//YgP4HNfMBAA== "]]}, Annotation[#, "Charting`Private`Tag$7238#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0nk41ksbB3BlKWmxhyKyPOsPyb7NLaRCoUIpJJLTdpIWUkmS04NECxIt klJOUaRi7ISopOwpkuz62R/lnfPOdc011+ef+56556vidcjJZ66AgEAl2f+d wSsdV69eTWPKcnnfN30FNCkcpadLfFzoWlIxHEFzPF5pGBCPVONPWxaeQw3F TSKmxGlXdT3WnYhEStpdDWuIM//9SCv+ikXDixvibIkjpJe8WJp+HdVr3wNn 4t2B64Ml3JNQ+TvbVi/iFUMWt4Qv3kIb4wr2HCaOVPEInfv9DgoKH/lylnhq c7D3LLqHJlU+21wh3hOesHYm8T5SsvFMTif++CKHOTX2AI1BcGcBsUVf/YJx h0fIrVRu6ef/7qM40v8rIxMJDasYjRAvZl74cfzcE/S+ZuU6ji6NT25PfRPQ noXOvO3VtSXOorOMabFnKFemcMkB4p7IoozDRs/R4COVSznEzrg96uCVXGSV fHh1O3Gk68Cf/qIXSHa5c9k8PRqXjPAP7RvKQ+vjnZ56EmuryTvt3fAaNVxS EYsh9s1nlHQfz0fnRGjHIuJkZ31dn3sFKERg+h5Ln8bhpSyxVSGFqDCtwkvC gMb0+NoBqqUYbWV+X+FAHG1Zqz5wuATJwtXKGGJ2zFb3R/NLkbTd55alhjT2 ZHnXsfXLkN6pp4JmRjSudTv7lHG5AnHdzZbyiP3S5/d2MyqRpeYF6RZiobFL K9MKKpFwkF11iDGNTaKT49T636ABw0UrO01onF746qiKTQ06KiwYDKY0tlpk mdnRVoNMmk/lpxB/2VbVnRLwFtmHV47tNqOxLN3oonSnFllBqY4gonGxJD8p 6vQ7VD31/nLSGhprWcududj0ARn1Tr1YaUneL66nYcGpR3rtJ2UziBe3Or6d CK5HrWGn/YutaDzoz1vmo/wRyfvfTBGzIf95608u8m1Au+0cHObZ0Zg70zU8 OvoZhZWPJD4hTqqYE5+xthGdd3ktucOexgvjlJBXfCMyjjC4kLeRxv0s16g6 kyY0V9X8cLQjjTNcqlkPQ5vRufKYzBQXMs/sp14e4m2IFy0StM+Vxomna0Vl vdoQp8PL12gbjRds6HtSk92Gyk7kprZsp3Fvh9qskUs7Ev/4Ms7IncYPFsff kE7+gi5qTvC2+9BYWg/1dsl8RRV9H0vZR2kcF6Oumni3E1kbbKIYx2hs2hPq UvimE7F2T7iqH6dxF+rgdQ91ohSXsHGNQBrrDiWO6ph2IY4xYzU6RfJuL15e /bELKbrk/So+T+Ytxt/7W7gbyUWKWkvE0zj+/LtMz709qDFpoadVAo2hjeoM j+5B/VfNVQITSZ51eUsfP+tB1wsNYn8k0diwyzpkSuAnEkoNkGy8TeOmNa8c YxN+omr7/Psij2isIJA2WlLVizbuGC+JLSLzDTppzKAG0DcZ04SRYhrLbGpt iXIaQNuCkzsdS0k+Vc1OjR4fQOts/66XraDxmZo/uKh4APUukJyTVUNjL6VQ 6x2ug0hSKTCF20hjRnGEw+VzQ0jfulKCM0z6C9lm/+4fRmqOWzaJqY1ibzvX N76WNLoh2ObWqT6Kf84WtD5xoVE6t6L8NWMUH8xWH57aR6PIaJunRzij+IQC LRt5hUZV+89ljOiMYl5PlPeT7zRqMmgq564ZxVlhJbOTF0bRb+sPwld2jWKB fE39izVjaGA92lp5dxTfpITvPto6iUK9e//+wRzDbXYx1+wlfqMM477Fb4vG sPKXTze05OfAtmDTnzHbx3Gz901TfFMQeiL8q1q7x/F10c29M+PCMOEum11y YgLv+fx+8FfofNis3Kx6f3ICG5YigeudC2CnouRQ1f5JLHX6+1cLw0Ww/EBF 0uMvk3jWc4vCPbwE8KWKKUuYwsdXNWm1LJKAezZGNRk3p/BEef9vtFUSZvws Qv4ZnML8Nct1069JQaLin/Yp7Wl8dmPJ377F0tD6h+Mn+/c0jhmsbQydJwuc uvFXPnensYqSk82Y/lJQyrKdTKyfxsbfjL6WnJGDdSZvVznMTOPGSLPOq8Xy sCs3N0ZGkU/6vegrGFKAuzYB46kmfJxyNX6Flf5yKOu5ZiW/hY/f0EPblH0V QdPRLLpgLx8fN9w9M3tZCbwr9y/rOcnHmRImVSafVkDKQ6VPTB4frzaz3uQb qgyL9GRXGCfw8UeTFXXuGiogfSHTojuVj3OpeYKuFSqwQMh2RiOTj91+sF8G 71wJvrs1yx7k8LFln8CFTQKqcMhGxsMrn4/7cyQ/28ergvJXj41/ivn481Gd FntKDS7bLitUq+RjkTNCY/xaNZA5VKayuoaPxzdJxjb4qMNINe/ljzo+5uz7 YLVTVAMW6Wj5vfvAxyoba4PE72hAZt81H+MGPt6m1uhdZsCA2HGFgwc/83GD 1RVvZjMDNhiP9B8lPqZ2Kzm8lQEzii/3nCKWFXrU2NXOgEyhVbaRxK4lJXa3 OxkgcG1J4wPiVgtaV2GAAYKr9gl1EXeZOwkvFGBCtv3Cgi2NfDxqKJ42pM4E DQ69i9nEx5JU5I+cw0x4+iPFTIu4tWGwySaACXSmlbQ+cdppx5rGY0wIKwjL siQ2fif7dPokEx78XpPtTux15HaQeTgTfKvfVcYRZ+XlLCpPZMKgUeCOaWKn tV9XN5QwoWc+ryOvmY/jPPRDaBkWzM8PCMLEbPALPCHHgg8TDuJlxMXKSf6/ FVjA8O/Xekc8/HWOzzxlFnSqzJp3E9t5v12/jM2CwS0LUiRa+FjIz1vK0pwF 1uvEgnyIA/xj02L3sEDe0lJ7bisfO58frFmVy4L2r4M8EeKFWzUDeHksUDBP 61pAXKx2cNn3VyzomgNRUsSapQN+8YWkvq7zKzViEcEBkdk3LPiplh+5ljg3 pA9qWlkg9ThbIoJYLrjn2Z65bEBRmxYItvFxs/+3pBv2bGirrRKZR5wnFjjD cGBD89qtAmLE8alLdjxzYoO4861eSWLnT6bL3rqwwUBwQ9JK4nqj6wl/drHB wQkftSCuEbC7tusYG17zzi05RVwQ/fwSI4UNU0xfu37iuw8jQrOH2aAzA95D xHd0uDHSNBue208E/iK+9bLu5tExNqjrzyZPEidVyeYZTLNB/3BqnVA7H1/p TR16JcgBrBBWs5w4nF20o1SWA0ue7za3Jd77cEq/wZQDJi9FN94hph7+1Tce wQGhipLmVOJJv/ZZWx4H7JqLfO4Tl7KcpG9HcUD/WfSxR8TbHxiZ2cZyIOsv 3rmc/+qnz7+UcoMDEQridlXEHWlpOusyOfCtSj5lmDju7rfAhHoOzGoc+cfw Cx9PJW2fb6rEhU/pYe3GxIPq6g0lylyw12xdZUb8LXPotq0qFzptvOotiKsK w0zcmFyoTh6YY0t8oyvzYJAOF9pAZvFOYjOuYMOLtVwok1LqO0N89lXGbb1D XGAVCk0VEos2zxhrFXJBzqCuoph4udPH57xiLlzucb1aSqxdlaHdU8oFP+/H 3Epi55fbNW6/4cK7EH+7OuLUxBcSUvVciDjFcmwjNncL6Bn/zgVjwSVHJ4n9 W/uuFohREJ0uv5nTQfLS3jxs70KBU4SZMEXsfmRp3vA2CiBKPEeTuHPelrNx OyiYFq2U0iHu134r0bSLgoTX8diQeDYU63jvp6BNOLnJmliNkRoQdJaClQNT ih7EBw4dmEzLoOCpXvd9T+Jfgg8L12dS0L79lrYX8bH47oj+JxTc+3bW3Ic4 pMhDXieHglJnKbt9xLFSTsb5hRTIiRtpHSfOydUPrm+goND9UNoJYmO7I1bH GikQbT67PIgYd/y7UL6FArN6c+FTxJWirJvuHaSe9Ko3ocQtbssKfvZS8ERi l0EYseewS3jkAAV1qgGp54m7wq5s1Bqm4OHQ2pMRxIOPF30JGKPgvdv87/8Q +6/ZcH/pJAWCa57Y84gnPoUfejlNQWsgeh5JHLyvxGDnbwrcmnOWRRML/H9p wv8AYTCaVA== "]], LineBox[CompressedData[" 1:eJwd03k41ksbB3BlKWmxFyEKz/pDsm/3LaRCoUIpSiSn7SQSUZLk9CDRIokW SSmnKFLZiVAqKXuKJLt+9kd557xzXXPN9fnnnpl7vqPiccjRa7aAgEAlmf+t wcsdVq1aRQNlodD7TU8eJoSjdXWIA4QuJ5XgEZjl/kJdn3i4uvDT5vmnob6k UcSEOO2SjvvaY1GgpNVZv5o489+PtOKvOBhaWB9vQxwpvejZ4vQrUKd1B52I dweuC5ZwS4JX72xaPIiXDZrfED53AzbEF+w5TByl4h42+/stCIoY/nKKeHJT sOcM3IEJlc/WF4n3RFxdM514F5SsdyanE398lsOcHL0HoxjcUUBs3ls3b8z+ AbiWLVn8+b/zKA73/crIBKEhFcNh4oXMsz8CTj+C9zXL13J0aDi+LfW1X1sW nHzTo2NDnEVnGdFiTyBXpmjRAeLuqOKMw4ZPYeCByvkcYqfCtuiDF3PBMvnw qjbiKJf+P33Fz0BWwal8ji4NpcP8Q/sG82BdguPjncRaqnKOe9e/hPrzKmKx xN75jNKugHw4LUI7FBMnO+npeN0pgFCBqTssPRoiylhiK0OLoCitwkNCnwZ6 bE0/1VwCW5jfl9kTx1i8Ves/XAqyeKkylpgdu8XtwdwykLb93LzYgIadLM9a tl456IY8FjQ1pOGt66nHjAsVwHUzXcwj9kmf29PFqAQLjbPSzcRCo+eXpxVU gnCQbXWoEQ3GMcnxqn2vod9gwfIOYxrSi174q1jXgL+wYDCa0GC5wCKzvbUG jJtC8lOIv2yt6krxewN2EZWju01pkKUbnJVuvQVLLNMWBBpKJPlJ0SfeQfXk +wtJq2nQtFpy8lzjBzDsmXy23ILcX1xX3ZxTB7ptx2UziBe2OLwZD66DlvAT viWWNAz48pZ6KX8EOd/rKWLW5D1v/MkF73rYbWtvP8eWBu5059DIyGcIfzWc +Ig4qWJWQsaaBjjj/FJyux0N8+OVwCOhAYwi9c/mbaChj+USXWvcCLNXmB2O caAhw7madT+sCU6/is1McSb9zH7s4S7eCrwYkaB9LjQknngrKuvRCpx2D2/D rTTMW9/7qCa7FcqP5aY2b6Ohp111xtC5DcQ/Po83dKPh3sKEa9LJX+Ccxjhv mxcN0rrQ0ynzFSp6P5ax/WmIj1VbkXi7A6z0N1KMozSYdIc5F73uANbucRe1 ABo6oZ3XNdgBKc7hY+qBNOgMJo5om3QCx4ixCkJI3u3EX1V/7ARF57xfJWdI v8X4e38Ld8GSKFEriQQaEs68y9y5txsakubvtLxKA7ZSHREx3dB3yUwlMJHk WYe3+OGTbrhSpB/3I4kGg06r0EmBnyCU6ifZcJOGxtUvHOKu/oRqu/y7Ig9o kBdIGymt6oEN28dK44pJf4OOGzGofvgmY3J1uIQGmY0tzdGO/bA1OLnDoYzk c4VpyEhAP6y1+btOtoKGkzV/CotL+qFnnuSsrBoaPJTCrLa7DICkUmAKt4EG Rkmk/YXTg6BnVSnBGSL7C9lk/+4bAlWHzRvFVEfA09bltTfJxTXBVtcOtRH4 OVPQ8oi8Uzq34tVLxggczFYbmtxH/mGM9eMjnBE4Jk/LRl2koWr/6Yxh7RHg dUd7PvpO6uo3vuKuHoGs8NKZibMj8Nvqg/DFXSMgkK+hd65mFPrXwZbK2yNw nRK+/WDLBIR59vz9gzkKrbaxl+0kfkOGUe/CN8WjoPzl0zVNuVm4NdjkZ+y2 MWjyvG5SeF0QuyN9q1q6xuCK6Kae6TFhHHeTzS49Ng57Pr8f+BU2FzcpN624 OzEOBmUgcKVjHu5QlBys2j8BUie+fzU3WIAKByqSHn6ZgJmdm+XvFC7CwvMV kxY4CQErGzWbF0jgHWvDmozrkzD+qu83bJHEaR/z0H8GJoG/WkEn/bIUJir+ aZvUmoJTG0r/9i6RxpY/HB/Zv6cgduBtQ9gcWeTUjr3wuj0FKkqO1qN6i1Ep y2YisW4KjL4Zfi09uQTXGr9ZaT89BQ1Rph2XSuRwV25urIwin+z3rLdgUB5v W/uNpRrzIeVSwjJLPQUs775sKbeZD6/pwa3K3oqo4WAaU7CXDwEGu6dnLiih Z+X+pd3H+ZApYVxl/GkZptxX+sTk8WGVqdVG7zBlXKAru8zoKh8+Gi+rdVNX QemzmeZdqXzIpeYIulSo4Dwhm2n1TD64/mA/D96xHL13a5Tfy+GDRa/A2Y0C K/CQtYy7Rz4f+nIkP9slrEDlr+4b/pTw4bO/drMdpYoXbJYWqVbyQeSk0Cj/ rSrKHCpXWVXDh7GNknH1Xmo4XM17/qOWD5x9Hyx3iKrjAm1Nn3cf+KCy4W2Q +C11zOy97GVUz4etqg2e5foMjBuTP3jwMx/qLS96MpsYuN5ouM+f+KjqjeSI FgZOKz7fE0IsK/SgobONgZlCK22iiF1KS21vdjBQ4PKihnvELea0jnw/AwVX 7hPqJO40cxSeL8DEbLv5BZsb+DBiIJ42qMZEdQ69i9nIB0kq6kfOYSY+/pFi qkncUj/QaO3HRDrTUlqPOO2EQ03DUSaGF4RnWRAbvZN9PHWcifd+r852I/Y4 cjPILIKJ3tXvKuOJs/JyFrxKZOKAYeD2KWLHNV9X1ZcysXsurz2viQ/x7nqh tAwL5+b7BRUSs9En8NgSFn4YtxcvJy5RTvL9Lc9Chm+f5jvioa+zvOYos7BD Zcasi9jW8826pWwWDmyelyLRzAchH08pCzMWWq0VC/Ii9vONS4vbw0I5Cwut 2S18cDozULMyl4VtXwd4IsTzt2j48fJYKG+W1jmPuET14NLvL1jYOQujpYg1 yvp9EopIfR2nF6rEIoL9IjOvWfhTNT9qDXFuaC/WtLBQ6mG2RCTxkuDuJ3tm sxGiN84TbOVDk++3pGt2bGx9WyUyhzhPLHCaYc/GpjVbBMSIE1IXbX/iyEZx pxs9ksROn0yWvnFmo77g+qTlxHWGV67+2cVGe8dCf3PiGgHby7uOsvEl7/Si EOKCmKfnGSlsnGR62/YR374fGZY9xEbtafQcJL6lzY2Vptn41G488Bfxjee1 1/1H2aimN5M8QZxUJZunP8VGvcOptUJtfLjYkzr4QpCDhfLhNQrEEezi7WWy HFz0dLeZDfHe+5N69SYcNH4uuuEWMXX/r96xSA4KVZQ2pRJP+LTN2PA4aNtU 7HWXuIzlKH0zmoN6T2KOPiDeds/Q1CaOg1l/8U7n/Fc/fe75lGscjJQXt60i bk9L016bycFvVXIpQ8Txt78FXq3j4Iz6kX8MvvBhMmnbXBMlLn5KD28zIh5Q U6svVeainUbLSlPib5mDN21WcLHD2qPOnLiqKNzYlcnF6uT+WTbE1zozDwZp c7EVZRbuIDblCtY/W8PFciml3pPEp15k3NQ9xEVWkdBkEbFo07SRZhEXl+jX VpQQKzh+fMor4eKFbpdLZcRaVRla3WVc9PF8yK0kdnq+Tf3may6+C/W1rSVO TXwmIVXHxcgQlkMrsZmrX/fYdy4aCS7ynyD2bem9VCBGYUy63CZOO8lLW9OQ nTOFjpGmwhSx25HFeUNbKcRo8RwN4o45m0/Fb6dwSrRSSpu4T+uNROMuCq++ TCg0IJ4JK9T23E9hq3ByoxWxKiPVL+gUhcv7JxXdiQ8cOjCRlkHhY92uuzuJ fwneL1qXSWHbthtaHsRHE7oi+x5ReOfbKTMv4tBidzntHArLnKRs9xHHSTka 5RdRuETcUDOAOCdXL7iunsIit0Npx4iNbI9YHm2gULTplEIQcWH7v/Plmik0 rTMTDiGuFGVdd2sn9aRXvg4jbnZdWvCzh8JHErv0w4l3DjlHRPVTWLvCL/UM cWf4xQ2aQxTeH1xzPJJ44OGCL36jFL53nfv9H2Lf1evvLp6gUHD1Izse8fin iEPPpyhsCYSnUcTB+0r1d/ym0LUpZ2kMscD/hwb+D9iCNlQ= "]]}, Annotation[#, "Charting`Private`Tag$7268#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd03k41NsfB3CF7JJEaKEwZsw3koZC55SlW7iVW9FGiyxlSRSVbKHFkkhk S0RSqShL4WC4RdJiyZ49+2D4DjEzv3N/53nOc57XX+dz3p/PUT3tYX12qYCA wCe8/zsnpAMdHR1JRJisGe1lKIElnJ8mTtg+Qg+SK6EXMPVwq3HBnvqMmg9K 3gCJl3dw3LCz4vTs//KNACXvd3/xws591cheOx0D9BNCLK5h35JbXqSQHQ+u KLE8Q7DPXNnjt8IuGdQtBMC72OtZO9OE76QB18xNhUnYEar2wUsH0kGo9lTT M+z5f/wc+CATmJ4qSS7Gdgx7aL6Y+BT0v74h8Rm7sahAc372GSgy2bahC3vn aIM4uf8FgBNfuqf/q2ft1Nj081zA0Nu8W8yJRNKaN3/73HgNxqWUJQyxrx19 UuPdlQfmV111Poydx87bzpZ4Cxjptm5e2EMRFc89t70D9h8YbnnYh1FXpPv9 QtC6Tci5ETvCdpw3VlEEGtePi81hM6cWPM6zisHTuNRdps4k0lFTtHbeWwIa 42mtrthOpRTmoE8puDRoKx+PnXqYoXc2swzk9smFTGKHVVElNgeWg3uuktRC FxKxSfNxor0S/JAqmBzDjjKpVx/3ZIKF8W8n1M6RiBZ9yO6FaBW4JvuMkoB9 kurwlcaoBm6h5d6x50lUfyzoDeXeR7DQ1na6GdslW3RkkPIJhPT2zCi5kkho 9u6GrLJPgCbdLvgM2zAqNVZtrAZs9dT72OJGouzyD5dUd9eBNaK+9ZruJDKV Msnt7qwDuvnffK5i/zpSO/jI+wugjJS82uBBInl2i8269HpgBZRehl0gUaXs QnKk/zdg6X49NdmLRNpmqwPutP4AnK/DGcu98ftltmrs1GoAyS8Yd0OwpTsO fOH4NQD9zpJV3pdINHExXPmsSiPoPKvR7OKD+5nGKwROTcAxUbbk1TUS0Rf7 J2dmfoJQtYIh6Eei5I9LEp6bt4CO+GR2A7Zk7DpwOqEFBPhKp/Ovk2iMahv5 1bAV7N9Pt3YLJNFzm8/UnOA28I425f84FOeZ/+a0vUwnkPWXttwfRqJE/3ox +dOd4PtW5QmBmyQS3zv6ui6/E+jt8sp1ukWikW41/jabLuBq3ihlEU6iZ9IJ SXKpv8D815xXzvdIJLcVjPSv6gFiXeZuf1JJFButvjExow9Em12QanhEIqOh YJvymj5wbOfU5pdpJOoH3eGDrD7gUbpD2DGdRHqsxBldo37QlpRdMZyJ591K 5t/Pjf1gSzJv2uAlzltiwZkrPAh6Dq4RmSohUULot9yTzkPAqJleO1dKIthJ 9IVFDYEzzgnzSxCeZ71whZdvh0BUn0Hi6goSGfSbBc4LDAPHOPfPh6tJ1Lrr w4GYh8Mgw7lBR76eREoCWTPM2hHgsjA0ltiN8716bTuFGAcNj26Gfuoh0ap9 He2R1uNgu9OhU5xePJ8bja/P+IwDL4LdZTtAooA6HqqoxG43bKWNkOj0umCz 47YTIKf+Jl9shkSUylv7791gAb8R8fhcUQ5qFbLI545NAh9pUebRrRzkYGlb 42TCBkbvNO5MMThomF/W8dqGDaZvbw65bcBB7vnqk/Pn2eC1+yuJUkMO8lVi y0fcZ4OKvY936e7ioPChSIfXA2xwU5ijcnAfB+WFMPlzN2fAbjP5Za7nOEig dBPjTt0sIG+bqKZmcFAKIZzx4tAcWHiJPDjyc6jTMvqB1Qou2HIj1E8meQ6p /GpO0lZcAt3p/ccrVedRm0OKEUoRhGmqU6ZbU+ZRvNg/I4ukMGyc2uZgse4P cvz5fWI6WBT66scUS0b/QQZVQCC+TxxyL1RLtXH+oJX+Az07DaTgoV3VIgL2 C4h/8qBSJloO+9RPb5QrWEA+m1u126VWwGabG4yH4ouI8+8YFxyShRf21S0I HlxEC7vW6GU/WAkH4/XuBkYvoqC/mRecKuVgo639esXaRRQ9Ud8SLCIPz9zl lQvPLyLVdda7ZxkKUGd9TYqOOhdt793WwwxYDVOmdfLC93JRS4RxX1ylIpyZ m7HNdubi+4pGy1hK8OhtT5HqEC56FJew3pSxBtqKs1z3JHFRDZt1RMVpLVSs ODmwL5eLfAzOLPLvrYOfTzyKW0BclLvCsNaweT2M878XKl3PRVuMzfY5BavA ckoITaKdixoN13+101CFbNeT/B8DXFRIiAjaflSFs8ucw+0nuOjYb9p7vxMb YFvLqL4xyUUmowI39wlshPn7jdu8FrlorED2p1XCRug0/CIpYwkP/byk225F qMEUlvqM4zIeWhYgNLtQrwajDKU9KeI8RO6TjWk6qw69P3/n35fiIa3zP0xP iGnAJl8znpkMD6n+XX9VJl0DPszO+R4ky0NH1FocqvUpMPBYETNcjoeaTO87 aLZRYPGAZ34M9mW1tNSwDgoM4vmnPsSWF3rR0t9FgReU0hyfYtsymZaP+ygw wfwfVIndsZOtpzROgQaBqnFz2P07rIUlBTSh1RLl3ydX8dCMgUwWS10Taoyd r1KT5yFZIuJ3gacmzEqEa7WwO5omWnd7a0KZd26em7Gz/A/UtVzWhLW+XRI7 sLd/k3/z55omnKy5LGaDfdrr8dUdYZrwTKw97RZ2XnGB1L+JmrAnKUTxN7a1 ec+WJqYmTF+adCRBgYdi7RmB7FVUuPLg+1sp2DTocsV3NRX65yu+TceuVEm+ yFWiwkc6GfwX2JM9S86KqFBh2RfauQpsS4cve5RpVLhE6ODdYWwhF4eVJjuo cOD2uJb+ah7yvhiTFeNIheYHUvU/YR8OnajbXEiFm6QBrMOWPLTJO7yYCpkL G82/YVequSsPfKDC4MyKPS3Ym6rGXRLKqdA40V9nCHuZ4Pgyfg0Vil2Nui6i yEOFgaOwroMKw1XNN5hir/Ybeuu4lAZloq7MvMNuu9ibnGRFg9F2opnF2MUS VxYp+2kw6HaXdSl2wpPlx99a06DUJ+esKuzDzUbKX2xo0D1Ci2jAbtgW/5B3 igZPdSt9YGHXCVg+OHWZBnldvwY0lHioLOrdXcojGiQkSzoisTNybgXnT9Kg vmJecTR2ui49Wo5Nw///5f1Y7LT3X1MuzdLg8ePFpg+xk2vli/X/0GDERYvI J9j3R56wPghqwQIQWPEeO4xWcbxKXgu67zFCA9jOOfOMJiMtqHiz/BBDmYeI nHOj5C0tmOrDfmOAPefSxbcI14L5/uGShthVVGu5x5FakKvAKgHYR59tM7aI 0YKEabr4HuywbNG7j5K04NNnT44ew+7OytL9K1cLJpvbNPpjx2b0XnnYoAXZ 2gaOFdjzyUdFjdbRoXHvUBQTe0JdvYmpQod91wUKqrF7c1mPLTbSockqF34N dm15iOExTTq0kIUBP7CT+nPdr+rSYZmYsF4ftjFdsKnInA6NJNEVwTU8FPTh +eOtHnS4hSWWB7DF2ha3a5fToffzC3Y7sddYN74Lr6RDt4BcMRNsndrnOkNV dJjzIO+4Ofbh90c1HtfQIe/69Iwl9pPEohUrG+iw1JY/cQR7xzHvIXKADrUz M6S9sC92jMaVSRDQSoaqno7d1tU2aWVDwO5qicIMbDsvheLJIwQsfFmwOxO7 T+RgUOxxAvJrnc9mY4/pfFnReoqA43K2MbnY/GCk6+BKQBV37fz32GqUJ95X gwhYrrRU4Qe2m4fbXNZzAgp/z7nRgD0tmFO+J5eAmhQDViP25YTBW2OvCTgm J8T8iR1YYa+oW4DrC/Q90Ykds9J6e2k5AQVaIu2GsAsKGX4NTQSMKOovHsbe bullermFgHK+hNwoNup+JanYTkDr+vjqcexPYtQUu24C+lgNKrOx248plw2P EFA8rdd9BvvkpE1YxDgBPRk/y2ex+0Pu/609ScCWQy9OzWFPvJT65T1LwOEL Ua/n/8tv196nCnMEnGaf5/3B5jSHebz/Q8DQLDOLRWy/80z9E1wCJu1bE8/F Fvj/2gT/BxJjiKo= "]], LineBox[CompressedData[" 1:eJwd03k81NsbB3CFsidJoYXCmDHfSBoKPacs3cKt3IpWLbKUJVFUQrKVJZHI loikUlGWsg+3SFos2bNnHwzfIWbmd+7vvF7ndV7vv85zPs9zlM+4Wp5bLCAg 8Anv/85xKT87OzsSCKM1Iz0MBVjE+Wlkj+0p9CCxArmDsatztSP25OfSpoMS tyD+yg6OM3ZGjI7NX15hUPR+9xd37OxXDey1U1GgGxdgdh07RHZZwarMWLiq wHILwD57dY/38pOJUDvvi+5ir2ftTBG+kwJO6ZvyE7DDlG38F/enQqDmZOMz 7Ll/vG35kA7Gp4sSC7Htgh6aLsQ/hb7Xt8Q/YzcU5KnPzTyDAqNtGzqxd47U i5H7XwAa/9I19V89aydHp55nA0Nn825RexKk1IN/e956DWOSiuL62NePPqn2 6MyBuZXXHA5j57BztrPF3wIj1drZHXswrPy527Z3YPOB4ZyDfbi0M9zlfj60 bBNyaMAOsx7jjZYXQMP6MdFZbObkvOsFViE8jUneZexAgpaKvKXD3iJoiKW1 OGHbF1OYA57FcHnAWi4WO/kwQ+dceglk98oGTGAHVVLFN/uVwT0nCWq+Iwls 0nSMaKuAH5J5E6PYEUZ1qmNuTJgf+3ZC5TwJtMhDJ1+IVMJ1mWeUOOxTVNuv NEYVOAeWeURfIKHu2M03lHsfYb619UwTtmOmyPAA5RME9HRPKziRIDRzd0NG ySegSbUJPsPWj0iOVhmthq1uOh+bnUnILPtwWXl3LawR8apTdyHBWNIou6uj FrRzv3lew/51pGbgkccXoAwXvdrgSoIcu9lqXWodWIDCy6CLJFTIzCeG+3wD c5cbyYnuJGiarPa90/IDOF+H0pZ54PdLb1XbqVEPiS8YdwOwpdoPfOF414Nu R9FKj8skjF8KVTyn1AAd59SaHD1xP1N4+WDfCHbxMkWvrpNAX+ibmJ7+CYEq eYPIm4TEj4vinps2Q3tsIrseWyJ6HZyJawZfL6lU/g0SRqnW4V/1W2D/frql sx8Jz60+U7P8W+EdbdLncSDOM/fNGRvpDpDxkTLfH0RCvE+dqNyZDvi+VXFc IJgEsb0jr2tzO0Bnl3u2fQgJw10q/G1WneBk2iBpFkrCM6m4BNnkXzD3NeuV wz0SZLfCcN/KbhDtNHX+k0xCdKTqxvi0Xog0uShZ/4gEg0F/q7LqXji2c3Lz yxQS+qArdIDVC67FO4TtUknQYcVPaxv0QWtCZvlQOp53C+l/Pzf0wZZE3pTe S5y3+LwDV3gAug+uWTpZREJc4LfsUw6DYNBEr5ktJgF1EL1BEYNw1iFublEp nmed0FUv3w5CRK9e/OpyEvT6TPzmBIbALsbl8+EqElp2fTgQ9XAI0hzqteTq SFAQyJhm1gyD4/zgaHwXzvfa9e0UYgzqHwUHfuomYeW+9rZwyzHYbn/oNKcH z+dGwxvTnmPgTrA7rftJ8K3llZZXYLfpt9CGSTizzt/kuPU4ZNUF80WnSaBU hOy/d4sF3sNisdkiHGgRMsvljk6Ap5QI8+hWDtiaW1fbG7HB4J3anUkGB4b4 Je2vrdgwdXtzwG09Drjkqk7MXWDDa5dX4sX6HPBSYMuF3WdD+d7Hu7R3cSB0 MNz2dT8bgoU5Sgf3cSAngMmfDZ6G3SZyS5zOc0CgeBPjTu0MkLeNlJPTOJBE CKe9ODQL8y9LXTlys9BhHvnAYjkXttwK9JZOnAWlX00JmvKLkAu973iF8hy0 2iYZlCYJohTlSeOtSXMQK/rP8AIpjBomt9marfsDdj+/j0/5iyAv3ahCicg/ oFcJArG9Yoh7sUqylfMHVvj0d+/Uk0SHdlUtFbCZB/6pgwrppctQr+qZjbJ5 8+C5uUWzTXI5arK6xXgotgCcf0e5cEgGXdxXOy94cAHmd63RyXywAg3E6tz1 i1yAm38zL9pXyKIGa5v18jULEDle1+y/VA6dvcsrE55bAOV1lrtnGKuQ1vrq JC1VLmzv2dbN9F2Nkqa0ckL3cqE5zLA3pkIeTc9OW2c6cPF9BSMlLAV09Lbb 0qoALjyKiVtvzFiDrMVYTnsSuFDNZh1Rsl+L5MtP9e/L5oKn3tkF/r116POJ RzHzpVzIXq5fo9+0HsX43AuUqsM5Gprss/dXQmWUAJp4Gxca9Nd/PammjNhO p/g/+rmQTywVtP6ojGaWOITajHPh2G/ae+8TG1Br84iuIckFoxGB4H0CG1Hu fsNW9wUujObJ/LSI24jsh14kpC3iwc/L2m0WhApKYqlO2y3hwRJfoZn5OhUU oS/lRhHjAblPJqrxnCry+Pydf1+SBxoXfhifEFVDjV4mPBNpHij/XXdNOlUN PczM+n5ThgdHVJptq3QpyO9YATNUlgeNxvdt1VspqLDfLTcK+4pKSnJQOwXd 5PkkP8SWE3rR3NdJQRcVUuyeYlszmeaPeykozvSf0grs9p1sHYUxCtLzU46Z xe7bYSksIaCOLBYp/j61kgfTetIZLFV1pDZ6oVJFjgcyRNjvPDd1lBGP1mpg tzeOt+z2UEfS75zdNmNn+Byobb6ijmq8OsV3YG//Jvfmz3V1NFF9RdQK+4z7 42s7gtTR2WgbWgh2TmGe5L/x6qg7IUD+N7alafeWRqY6Sl2ccCRuFQ+ibRh+ 7JVUtOLg+5AkbBpyvOq1mop8cuXfpmJXKCVe4ipQ0SOtNP4L7InuReeWKlFR yRfa+XJsc9svexRpVLRI6ODdIWwhR9sVRjuoqP/2mIbuah54XIrKiLKjItMD ybqfsA8HjtduzqeiTVKAarElDm3yCC2kIub8RtNv2BUqLor9H6jIP718TzP2 psoxx7gyKjKM99EaxF4iOLaEX01FotcibiyV50G+3wiqbaeiUGXTDcbYq70H 39otpiHpiKvT77BbL/UkJljQUORJkfRC7ELxqwuU/TR083anZTF23JNlx99a 0pDkJ4eMSuzDTQaKX6xoyCVMg6jHrt8W+5B3moZOdyl8YGHXCpg/OH2Fhnid v/rVFHhQEvHuLuURDRESRe3h2GlZIf65EzSkK59TGImdqk2PlGXT8P9/eT8a O+X916TLMzR0/Hih8UPsxBq5Qt0/NBR2ySz8Cfb94SesD4IaKA/8yt9jB9HK j1fKaSCXPQal/dgOWXOMRgMNJB9cdoihyAMi6/wIGaKBkj3Zb/SwZx07+Wah GijXJ1RCH7uSain7OFwDcVexigD76LNthmZRGogwThXbgx2UKXL3UYIGevrs ydFj2F0ZGdp/ZWugRFOrBh/s6LSeqw/rNRBbU8+uHHsu8aiIwTo6MuwZjGBi j6uqNjKV6Kj3hkBeFXZPNuux2UY6MlrpyK/GrikL0D+mTkdmMsj3B3ZCX7bL NW06KhEV1unFNqQLNhaY0pGBROlVwTU8uPnh+eOtrnS0hSWaA9iirQvbNcvo yOP5xZM7sddYNrwLraAjZ99sUSNsrZrnWoOVdJT1IOe4Kfbh90fVHlfTEe/G 1LQ59pP4guUr6umo2Jo/fgR7xzGPQbKfjjTT06TcsS+1j8SUiBPIQpqqmord 2tk6YWFFoK4q8fw07JPuqwonjhAo/2Xe7nTs3qUHb0YfJxC/xuFcJvao1pfl LacJNCZrHZWNzfcv1bZ1IpCSi2bue2wVyhOPazcJVKaweNUPbGdX59mM5wQS /p51qx57SjCrbE82gdQpeqwG7CtxAyGjrwk0KivE/IntV24jr52H6/PzOtGB HbXCcntxGYEEmsNPDmLn5TO86xsJFFbQVziEvd3c3fhKM4FkvQjZEezSrlcS 8m0EsqyLrRrD/iRKTTrZRSBPiwFFNnbbMcWSoWECiaX0uExjn5qwCgobI5Ab 42fZDHZfwP2/NScI1HzoxelZ7PGXkr88Zgg0dDHi9dx/+e3a+3TVLIGm2Bd4 f7A5TUGu7/8QKDDDxGwB2/sCU/cEl0AJ+9bEcrEF/r82of8BibUkqg== "]]}, Annotation[#, "Charting`Private`Tag$7298#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd1Hk01c0fB/BvUZJI9i1L4S7u1SaPfcaSFkkpS6VIJI/K80S0h6RkqURZ rj0eUQhZY262KClbCC227ORSfa/l/sZvzpkz5/XPZ+Z8Pu8zKs6e1q7LCYKo w3vpFBXOjYmJIRHTVGG0V1sOnPnjcDQW25f/EasSeoFPNeA+C/vnO/Tp0Jqb YGOFrU4SdnqUluOui6EgXDDxYBp2dk4rZ/10BGDnSPRmYd+RWFssnfEYfHic 15ePffLS7qvrjrOA1Z3z9uXYSpPGSSvuJoE9FEtYhx2q4hiwfCAFHOTqxrVi kwevuvBAGrh/apN7L/apoBjz+dj/AMrdkPkTu7W4kErOPgW7FgSOL48lkfFo y+pf+5+B3fubAyWws9f/HJvOygapYV6KVGwR6u0fvjdzAbNw/ulB7CtHntR7 f8kD0XWVcR7YeZw8PY5QAfgtrkDcwh4KfZ31r+5LILxDR/kVti36EnYusggw Dn7s6sQOtR9fHHtdDMxG0wRJ7Kqfc54ekyXgeM5/ZfpxJNqsKmt9es8rILsq CThiu5VTqgZ9y8ENs3PbA7ETbLW1XNMqAM9DxqcZO6iaJrTFjw282nV2+bFI xPllPs7sqgQGwdfscrDDTRvVxv+tAu+FHrZ/xabftzn+bFU10C6Ppu2IJ5ET zeUDXbsG2P16KqqSQKLGo/4vKA/eAB81mZSj2O4Zq0YGKXUgMHl16mNs/tl7 G9Ir6gBc/3paPJFE+uEJD1XH6kGTrVT1+iQSZbDLLqjsbADBQ/sbTmKbCZtm f+tpAOZaV02ysL8efjuY6P0e1G2u9TVKJpEUp8NOMaURBEc18y6kkKhSbI4V dv0jqKsOtqKlkWjTDpkbdzubwUoDMTIMO0F0u7qxRgsQWlywmMEW6T7w/vfV FkC5GzxWk06iifMh8q7KrUBEs1/4WgaeZ9JiEXBrA9nPT1zUe0Yixnz/1MxM O4hy0gsuwWa9WRadZd4BDqROG+g9J9Gah4rAOboD5NswQ2A2icZo9mEf9DvB DrPMl065JMqye0fLDPgM5HX/tE4U4H7mv3B2FO0Byu3fO2+/JFHs9UZBKece oEF/cWlDIYlW7xnNbcjvAbRjH287FJFo5JsqT9fuCxiZONvYV0KipyLRcRIJ X0FfvPdNI0Qiie1gpF/yO/CtzNNWfkeih/fVNsam9oHuguGRHmyDoQA7dn0f KNXu4LAaSNQPvoUMTvYBlk3QMqVGEmlNxs5sNegHgT3Rc1ubcN4tRWvftfaD L2Gc3ph23G+hudMLKwbBlWqTtY4DJIq+9THb6fQQiPKsVDcfJBHsYfYFhQ8B tZ+Xr2v+wHnWCpF+XjAECKJ+dPkwiXT6d/iRxDB4/0Mws3SMRJ0mZQciYoZB +XCDuOsMieSI9JmqtyNAmx7nmsTPRazLV/QozHEgPef0LmMFF0ladXeFWY+D SL0uy7yVXBS+0fDajO84WKM5mFa3iotuNCyi15XjYMCEF7pcmIucFQN2ONhP ADWbfXczJbmIUnln/4Obk0B1MKiohsJFnfwW+QtjU6DGK+Ihdx8Xuey1r3cz 5YAgCf1yx/1cNMyr6M6144CYZp3fNQe46Fy+2hTpwQH7WAmPow5x0UU5jlRo JAeQ27+5Gx/hopChMJfcAQ4wT/u0/60rF+UFVvH+3J4B5QpCnOhrXESUa2rf bZgF62IcAwZzuCieuSL1mc0fIOhV+iFEcg717L3/yHLdAliTb+y8JWQOKX/9 FLdJdhkcVA60eLdsHn12iTdA8XzwiQhnutBzHj0WPDgy/2sF/GHGJy7bN49O tTdNTAesgqccWnrpuxeQTjUgHvetho8v7diWkr6AxK8PfDfWEYaUsa97WvgW Ec/pkFwaWgvPRLcmV1gvIt8tnZu6hNfB3ujM0nuJi+h37dgCsBGDSh/lf1zo XURzJgpaGY/E4eDfr3PyZHnIf1/VP26VEtDj0dlI1308dH+isSNAQApq1XSd d7vEQyqK1jtntaWh/djv3J/JPKTXq/u96oYMVBIT7jav5qGOUMO+qEpZKJB1 2HruKw/fVzxaMSkHW6vj+r6QPJQYFa1kpq0A1+990GUlQLDrOZOHld3Ww+b+ zveSogTbV+fkPO+BIoxOuytsKEOws9fpv9X/pASb3q23fKVIsLcZ7rByC1CG mq2bystUCXarvtKH4+oqUG68qbGQRrCLmAJ89m9UICOjAGQyCfbRH/TSq8c2 wELp4PWWWwi26Shx24rYCBMUTzxiaBHssUKxdsvojVDB/URihDbBbr+wtcuS qQq1jyFWrQ7BXnmDf3auURWOdSVOBOgR7F9WYhFtrmpwU/KNSRkDgq3h0Wx2 TFAdjlgwy+wMCbbKvsbLoinqcJlMko2TEcE+rNrhUvMXBYbzhX09AAh2m1mk C/UzBXLHrCVtsH1UkxKCuinw9qHJXfbYUvzPOvq/UKD+zhdPj2PbV1XtTe6j wJs0/wMe2N3GHC25cQpc8AzWD8TuN7JesYagwre1zQEF2DM6oumTalQoaKVD XQsJthgz9Efhv1Q45bdNRgy7u22ic6c3Fdo6C6yUxE6/fqChw4cKLQ6DLjls vY9SL7hXqNC4X+6MOrazV/JloyAqFHVuoRpi55UUCtfGUuHza1ky7tjW5t+3 tVVRoZFpuUoZ9kNHbT+OJA1KD/++XY5Nh+6XLsrQoJujzxjCrlRmnV+Qo8E1 Kaa51dhT35e5CijToPwD442N2Htd3u+Wp9MgmOgo+obN7+4ibmpEg9TiklR+ Y4LtfT4iPeIUDRK+jTU7sW1vTTRsKaJBn2WvU3djr7HR9A4pocGEAk8/C+xK 1XPyA2U0ODPOr22FrVk97h7NpkHzBbUIW+yVfOMrefU06HRoTsQVu8hvFDZ0 0+BwZLyyP7bM1aGCU8vp0LLx7w8vsT+f72XFWdIh92J8YBF2idClecp+OhSo CNMpwY5+stahwJoOm4ozWa+W3vfJQP69HR2WF0/aVGG36D6OWTxBh5Ii58I+ YjcQex+d8KHDO9MOUiPYFeEv71ES6VDPTxzJmhDs1Mw7AflTdGgoYC8mj52y lXFfgkOH7UJ5LgrYSaUf4i/M0qHHqqcrlbBZb6VK/uLSYb5YAVDFjhx5MlnG pwGp298EaWIH0V87VEtpQB9Z8bMm2KczSe02Aw34yOdOqRs2M/Pv0V93NCC7 Sav5NPYf9y88ixANaLy4Ydgdu5pmLZEcpgEptbUSZ7CPPNU1tIjQgM+7dE/+ s1Q/Y9W9xDgNGH5Sv+ci9rf09K27sjXg/cQVu4OxH6b2Xopp0YDXl9+SzcAm WUdWGSgy4N2uI7JPsSfU1NqqlBlQz8FLJhO7N3sy2WIjA5pfPifxDPstO1D/ KJUBBRVYfLnYcf3Z5y5vZcDZAxaoCNuQwddWbM6ACbPRObXY/mVZyds9GVAl D93rxRb8PK+3ic2AKUoitn3YCtatL0MqGbBJqUW+H3vz26zNQ9UMqL+vMm0A 27b0iHpyPQOm3QP5Q9hPYovXibcwoKzRypcT2EZHvYd+DTDgmTQDWy72+e7R qAohJryXbbVB1BTn5cvnKUs7JmwKte9e8nEv6ZKpw0z8HzVFrcPuEzjk/9CB Cb1GxQTEscc2v1/XeYIJFf0HeiWxeQFoq8sZJpQQUfOTx1alPPG+7I/rx0wf VMc+63n2T3oWE6qZsOeXPM2Xyd6dzYThaHUaBdsnevDOWC4TxtZLz1Cx/V47 ym4tZMIwnkKoBnaEuLVeOZsJ59XpTzZjFxZpX21pY8KkSxyzLdh6e73MfDqY MKoSDCwZfctZI9vFhF0vnVW3YdcJ0uKPf2NCkdvdrO3YXUflK4ZHmPAs542u NrbTlF1Q6DgT5lnoflpyf2Dkvk1TTHhle46wDvbEc+Gv3rNMKOlfkLHk8yZ7 /pP+w4RVDGNTXezfn4I8S7lM2Btp07Pkqx5Vfx1bYMJQyWkfPWzi/0sT/g+D 2CH3 "]], LineBox[CompressedData[" 1:eJwd1Hk01VsbB/BTlCSSecpQdAbnaJJr7HlEGiSlDJUiUbkq90Y0h1wNhkoU kSFxRSFkvIZMqaRMITSYMpND9TuG827vXmuvvT7/PHuv5/murebkbuUyn0aj VZM9d4qLZkRGRlLAMVEa7NRRgBO/7Q88IPYWvBddhh7wsRJuRxP/eFvyce+S q7Cy2EY3jjgpXNth69kgCBGO3ZNInJbeyF0+Hgql6VKdqcTXpZbmySbfh/f3 M7uyiI+c23Zx2aFosLx+2q6IWGXUOG7BzTjYTrfAauIgNQe/+T2PYA9PL6qR mNpz0ZkPiXD76GrXTuKjAZFm0w/+hZKMFSk/iBvzchjU5BPYOiN0aP4DCowH Gxb/3PUUtu2q95ciTlv+Y2g8NQ0Sgj2UGcRijGvfva9mACdn+ske4gv7H7/2 /JwJEdVlUW7EmdxMfa5INvySVKL9Q9wX9DL1b70XILpZV/U/YpuSz8GnwnKB vedDWytxkN3w7NDLPDAdTBSmiMt/TLm7jebDofR/Cw2iKFijLm91fPt/IL8o DhyIjxXRy3u9i+CK6akN/sQxNjraLonFwHeT86onDqhgiqz1KQWPZt2tPtEU cH+aDXPaysDwxiXbdOIQk1qN4b/L4Z3I3eYvxKzb1oeeLqoAnaII5uaHFDgy nd+zdCrB9ucTcbUYCmoP+D6n33kFXhpyjw4QuyYvGuilV4N//OKE+8SCk7dW JBVXAy5/OS4ZS4FBSMxd9aHXUGcjU7E8joLk0sIzaltq4EbfrpojxKaiJmlf O2rATPviplTiL/ve9MZ6voPqNVXeG+MpkOG22Co/qoUb4fX8M48oKJOYig6+ /AGqK25YMhMpWL1Z7srN1npYaChBBRPHiG9YZazZACKzM+YTxGLtu9/9utgA 9Js3hiqTKBg5HajootoIYlrdopeSyTzjZnPhWBOkPTt8Vv8pBezp7rGJiWYI d9S/kU8c/WpeRKpZC+xOGDfUf0bBkrvK4BTRAlnWnEBMo2CIaRf83qAVNpum vHDMoCDV9i0zxe8TKOr9bhzJJv3Meu7kIN4Bqs3fWq+9oODB5VphGacO0GQ9 P7cih4LF2wczarI6gHnwwzX7XAoGvqrz9Ww/w8DIydqufAqeiEVEScV8ga6H nlc3llAgtQEGuqW/gXdZpo7qWwru3tZY+SChC9qz+wc6iA37/GxLX3dBgU4L N7qGgm74Gtg72gXR1gHzVGop0B59MLHOsBv8OyKm1tWRvFuIV71t7IbPwdzO yGbSb5Gp4zMLeuFCxaalDj0URPzzIc3xeB+Eu5etMuulADs4XQEhfaDx4/xl re8kz9qBss+y+4BGez04v58C3e7NPhStH959F04pGKKgdVPh7tDIfijqr5F0 maBAgZY0Uf5mAHRYUS5xgjyIPn9Bn84ZBtkpx7fJC3ggbdneFmw1DGH6bRaZ C3kQstLo0oT3MCzR6k2sXsSDKzWzJS/LhqFnEz9ovigPnJT9NtvbjYCG9c6b KdI8oJdd33Xn6iio9wbkVtJ50CponjUzNAaVHqF3eTt54LzD7vUxEy4ESBkU OeziQT+/uD3DlguR9bq/Knfz4FSWxhjlxoWd0TH3w/fy4KwCVyYojAvUhq+u xvt5ENgX7JzRwwWzxI+73rjwINO/nP/72gQUKYlwIy7xgFakpXOzZhKWRTr4 9abz4CFnQcJT698g7FHwPlB6Cjp23L5nsWwGlmQZO60NnALVLx+jVsvPw15V f/O386bhk/NDw5KHAvhYjDue4z4N94X3DEz/XIDfTQUk5bum4Whz3ci43yI8 at/Qydo2A7oVQLvftRjvn9u8/lHSDEhe7vlmrCuK9KEv2xsEZoHvuFchsWQp nohojC+2mgXvta2r20SXYWdESsGt2Fn4VTU0A9YSqPJB8fuZzlmY2qSknXxP Env/fJmeKc8H353lfx0rk0K3eyfDXHby4fZIbYufkAxqV7adPnaOD2rKVlsm dWTRbuhXxo94Puh36n0rvyKHKhKi7WYVfGgJMuoKL5NHodR9VlNf+OS+vMHi UQVsrIjq+kzxITY8QsVURwmX77jTZilEw9fc0X2qx5ZjfXfrO2lxGnrrHpnm 31HGiMSbokZyNExbZvDG4KMK1r1dbvGfMg3XG222POanilqNq4sK1WnYaKDy /tAqNVQYrqvNYdIwlyMkYPdKDdnJ2ZDCoeGB76yCiwdXYI7sjeUWa2loMki7 ZklbiTHKh++xtWk4lCPRbBGxEpVcD8eG6tCw+cy6NguOOuocLImu0qXhwiuC k1O16jjUFjvip0/Dn5YSoU0uGrg6/sqonCENNd3qTQ8Kr8IBc06hrREN1XbW nhd/tArnycVZO26k4T71FufKP+gYIhD8ZTfQsMk0zJnxiY68IStpa2Iv9biY gHY6Xts7utWOWEbwaUv3ZzoabHn+5BCxXXn5jvguOl5l+u52I2435morDNNx xv2GgT9x90arBUtoDHxTVe+XTTyhK540qsFAYUtdxlKkoQQn6HvO3wwc81kv J0Hc3jTSusWTgTZOQguliZMu765p8WKg+T5oUyDW/yDznHeBgcbdCidWETt5 xJ/fGMBAcacGhhFxZn6OaNUDBj67lCrnSmxl9m19UzkDN5oUqRUS33XQ8eFK M1G2/9e1ImIWup47K8fEYw5eQyXEZarRp2cUmLjkkUlGBfHYt3kuQqpMVLxj vLKWeIfzu22KLCbCSEvuV2JBV2dJk41MZOTlJwga09DzdGhS6FEm0rxrK7cQ 2/wzUrM2l4le814mbCNeYq3lGZjPxJhsdx9z4jL1U4o9hUycGBbUsSTWqhh2 jShlotmMRqgN8UKB4YX810x03Dsl5kKc6zOINe1M7A97qOpLLHexL/vofBZa 1P75/gXxp9Od0VEWLOSdfeifS5wvcm6avouFQsXBuvnEEY+X2mdbsbAuLyX6 v7n3fTRUfGfLwqK8Uety4ga9+5Gzh1koLXYq+ANxDW3HvcNeLLw+bi8zQFwc 8uIWPZaF+j6SJfKbaJiQct0va4yFRkJ2EorEj9axb0txWdgskumsRBxX8P7h mUkWui16slCFOPqNTP4fPBZmSWSDOnHYwOPRQgFNZGx4FaBFHMB6aV8ho4le 8pInNxEfT6F0mgw18Z7X9YJjxJyUPwd/XtfE0jrt+uPEv10/880DNdF4dkW/ K3EF00oqPlgT6VVVUieI9z/RMzIP1cRnbXpH/pqrn7zoVmyUJoYcMeg4S/w1 KWnd1jRNvB27YNsN4rsJneciGzTx8vx/5JOJqej9iwyV2Xizbb/8E+IRDY2m clU26tt7yKUQd6aNxpuvZKPZ+VNST4nflPobHGCwUVgpWiCDOKo77dT5dWyc 3G1ekktsxBZoyjNjY8xkRHoVsW9havwGdzaqZZbc6iQW/jStv7qUjY9UxGy6 iJWsGl8ElrGxTqVBsZt4zZvUNX0VbDTYWZbYQ2xTsH9V/Gs2Jt6CrD7ixw/y lkk2sFF+48IXI8QbD3j2/exh44lEQxse8en2wfBiEQ7eSrNcIW5C8vL505iF LQfrguza53zIQzZ/bB+H/Ed14cuIu4T2+t6156DHoISQJPHQmnfLWg9zUNm3 p1OamO9Xss75BAelxDR8FInV6Y89z/uS+pHje1YRn3Q/+TsplYMam0qn5zwu kFK6LY2DISWLE+nEXhG914cyOPjgtewEg9jnpYP8uhwOBvOVgjSJQyWt9ItK OTi9ivV4DXFOrs7FhiYOxp3jmq4l1t/hYerVwsHwMuiZc8nX9CXybRxse+Gk vp64Wpj58NBXDopda4/eQNx2QLG4f4CDJ7mv9HSIHcdsA4KGOZhprvdxzt3+ YTtXj3HwwoZ0UV3ikWeiXzwnOSjtm50859Obtv8r+5uD5WxjEz3iXx8D3At4 HOwMs+6Y80W38j8OznAwSHrcS5+Y9v+lhf8D+yq96A== "]]}, Annotation[#, "Charting`Private`Tag$7328#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd1nk0Vs8fB/DnhrJmJyryDc/mIkmFmiFEUlGiCPkKbXyTCE9ChUJCRZIW JVGSJFLutUTKUtllSZ5kp2S/D7/xm3PmzHmdM2c+7/OZ+WNUXL1tjiyh0Wgf 0FxcM0q+V1dXUwS+bdXgDz1FwHkuGFCD7M9/M6UUngaX7tO965B/fyKa9ole AAfkDZ9/RU6/oetsfjYaTCVs29yMnP28YXz1n3hQekdfrAM5Uka8QD4jEcQV r2Jzkf8NsOBIOqWA9Avc+CFk5VGjewJX7oGSc1Emk8jRKs5hS34+AKuNhCFW QxEzezluC+ARuHTE/pIYsnv4LTMq+TGwDj8hsxK5oSCfMTPxBHCMDYeZyEaD 9cKTe56CTMO34vrI2at/D/3JygabVn4PskRezoj45X8hB3St69D2QQ46+LDK tzMXtFUlBUQg547n6o+L5AHFpe9EUpH7okuyTm1+BcztZkTqkPcTnTFe11+D 60ODAf3I0fbD80MlBUCUTmkL1FJE2e857+OjhUDqrXIgRNZWVbDx3PEWWLwR EHVB9nhHL+v1fwd0H2X3hiCn7tfTPfKoGHx723OmAjm8nCmyLoQERac6pl3q KGJ80mwY/1YKRNZza64gX91WqzZ8qgycdKkaeIXMumbr9FSwHPgyM+fEP1OE C9OtjqX3HsRODZ2pR651CH1Bj6sEtr6y4cu+UMTRDMGBXvoHoGk/026IzD8R +0968QcQYrvbKQvZ4GpqgupQFahoCs1M/EoRGWTRGZXt1WBYuG2wEdlEbFv2 945qwPGN9pGtp4iuAx977/rWAKExw91JyHLjLXZKD2rBti9G8FkDRZRKzaXE BH8G3pNOX6SbKULLdMX5K61fgQr7yq6TyKkSG9SN2PUgU3TO9APy8nbrmilO Pbic7/4grIUiRnyiVh5Z0wA077AEhdrQfd6bfw08GgFPzHyzYwdFaFDcsb9/ m8GsfcW6GuSUSiwpy6wFZCg1p4JOihBNUAKuSS3AQE+ukdFFEUNM+5g6g1bQ IHQ1XbSbIrLsPjEzw9pAqZ/9OYWfqJ8vX7g6S3QAwa+20feRk4NrheRcO0Cr 16Agu5cihHcM5lS/7ACSchPmxr8oYuC76sJmu06Q/ayhKbSfIp4sT7otk9oF uJdtC0xGKEJmAxjgynaDXbnJlY3TFJFwTW1tcloPyOTohgTPUIRhX5gdWdUD Ck9s9mTMUgQXfI/qHe0BxVsCy8/PUYTuaPJfHUMuiBR0ums4j967lUTFpwYu cJaR9xzh4xFyInOePIFesKe+yU1TgkckXfqc7eLZB/jutvHmkGEH3hN+tQ9s f++U91GSR/TpRsk/y+sDIdgZ/+PSPGIT1zRkhtYPlDiRJm/keESrcZF1/K1+ 8NXN8mT0ah6hSEv/W/ZxAFzue3lsns0jUgKD9On4MJB5OvWuX4NHyO5u/xZj MwwY6gHiTTiPuLp2y7m//sPAXeFa5gstHnG+ep4oKR0GHmqe2b7reYSrUpip o/0ISH9+15ZpwCPopZF74i6MAnk5ZUtzS1Sf3/Ilb2gMwEJrZ10vHuG2077K Y9s4sJ5jJ/t484j+heL2HLtxIFzsWfXiPx7h9VJtbOb4OMg1E8TWn+YRZxXH 5aKvjwO+qoICeJZHRPXFuOX8HAe+UzIekWE8Ivdi2cJ0xF8gJC0cX5LII2jv NPWuVE8A9djI4HvlPOIOLpD21HYaPHS0xo4rzxMdO6/dtJLkgVPe3s2FkfPE mq6m21oKGIz3Gj3EGJ8n2tzuGBJ3+KAOFlwgvn+BSBTaO0BNCsCbk5p27OIF wr35y8ifMEHo2ug8aSxGIzeVA1pijzDkF/CUzNhII6WDf3YbbRKDjtHT3YKu NHLBZZ/iI0Ic1mZFyC0Jp5H+61q1volJwtJmqSCFJzRyqmKIB2ylYDr3YWdB JY2cM16lm3FTGkpvUOkW7aaRobvK/vMolYEWLS22cIZGXhupbQlbJgcnsz1M l4lhpIqSzfYJPXnoE/PY7YUyRur/2Nxddn4FlBhl6FzUwsiW6C09N0oVoNmh gG5LQwzVKxgsHlWEd/wFvIE5Rt69kaRsorcKHlQ6nNVojZFV46MH1nishklX ttb+PoCR/pv+pRbilKBSbyKbcxgjsyUNPho0KUPdP8dFzntg5Potprs9wtbA yeRhtuhJjGwwUK5zUleB1RmCzzNOYeRrfBmffaUK/Ho5wsH6DEY6/GK94Rz6 B+r11N56fhYjtw3SInbT1sJpvl1z9kEYOZQv1WyVtBZeqA39HXcOI5vP6Hyz wlXhrLVtcsp5jFx6nn9irlYV3hAiPDeFYuTkbqn4xiNqUErA6F1OGEayj381 OSSkDqc9OMYtF1B/dtUGSjxQhyrLY2NrLmLkAdUWt/cb6ZBdwgh+dgkjG02u uzHa6DBDTexsDrKf6r3U8HY6NAob836JLMf/tIXbSYcbXAsPFCLbl5XtvN9D hwyTs7LvkduNxnUVh+mwWaFasx2Zu9VGQJTGgP1S2b8FwzHy7yaJ9FE1Bkxb 3UY5Ikvh0b/yTzGgVZBkvjNye+NI63ZfBhypsTjpipwebF3d4seA8vxljR7I +p/lXswGMaCuw8JVH2TX0/cDt4YzoDHZmhaBnFuYL1aRzID405cuOcg2Zt3r G8sY8HP6z/8o5ARnvZBxWSY8xDmWOY/MgkcDzq5gQmb03h+0CIwsXZPiw1Nk QrOe/VYCyGPd2JFla5gwGjOWWI68063GYiWLCf1FH+5QRuY/6ia9bSsTDlnA WxDZ1yc+Pd6dCWP+edsSjLz/0kj1utdMmCfblxCCLGqr6RtVyIR47S+rsMV6 ql4rfxYxocWTI8WXkDXLh48mkWh/2n9x0chL+YaXLlQxoXKfFy0Z+XXIIKxu Z8JPmlbL8pBXcPry3JewYJeyUDcXuc3nR8ptKxaM7fby60UuFAmg6HtY0Lno iXAfctJDccc8GxacknmgNbiYr8lwZY0dCx6rzTv+G7l+c+Kt+cMsmNez8hkP uZq28+ZhPxasq0o9KBuJkcVXX8XS77JgYKdctBFyWmZk2MsxFuzpfl5hjPxA R+OazDgLPvbzppkg33tTd+fMBAtG3nM7ZYac8lGucOMsC56f1LOwRL4+8HC0 iI8N7fxnP+9DDmeVOJbLseGNr10mHsiemTN6jYZs6PxevP0yMp55bHAykg3z cY+uK8jTRzsXLKPYkAmW/4hCLmfayNyPYcPt661+xiAffLJ5i2U8G1KM2z1x i+dnCMbevc2GKontxC3k7+npOubZbPgpTWI2Azkh7UfArXo23N3CjHmPPJNy UNBQSQPus/IIrEAeUVNrLFujAWu0J9wrkX9kj963XKsBP0H+rVXIH8mLBg4M DdjrwuupRr7NzfYK1NGAxo5V4g3IWzT4GgvMNOADSdWBbuTQoqz7G7w1YJr2 07I5ZPQH0NciNWD93rggCnmVTcOrqFINGC84pcND1v6Ypd1XrgE5oab35pH3 vzmofr9KAz5WnvbFLmPkw+QCSel6DeheOb90GfJWB9++yZ8oz/L2Oklkn/bB G8UiOHyk6LdUHbmts23Myg6HJmdmcxftdFq+cOwADlfNTTvRkXuW7QtNcMRh 0Br3VwzkIe0aydbDOHToF3FkIy+EETpuJ3DYu7HjmjayKv2hb2AoDnNI09v6 yCe9T06nZ+FQ/kHdRgPkP3yZpEU2Dp92d9Uv2i+pN3IoB4d/R64Lb0EOKXFW 0MnHYauDgw9Ajpe20X9H4vDxiSdsE+T813qc+kYcFuDl5KL1d5428WvBoS51 zNYUmfj+XFThGw55a53OmSF/EGLecfqO8hpzK82RvzmsLO4fQHlkjh6wQHYZ swuPHsZh9gvOwKK5F6/v0hrDYWWmtYgl8sgzsS7fCRw25krfXrSP8Y7H8tM4 bOg6wtqJPNUU7v1mFodHI8wLF805XrbxEA+HM/NF262Qaf8fmvB/Fog8HQ== "]], LineBox[CompressedData[" 1:eJwd1nk01dv7B/DzuShjxrhU5EZn8pEkFep5CHGlLjdRhHyF6sZNIpyECoUG TZJGJVGSJBrMJWXoZpYhkcyUzOfw2357rb32eq21137e69n7j63u5mO75zcG g/GOzLk1pfBLeXk5H+iNi/u+6qsA77FoYAVxgPDlxCI8BCdvM32qiH98yK/b JnkcdigZPf5EnHxJz8XiSAyMX9i4rp44/XHNyJKfcVB03UCqhThKQTpHKeUK nM9bzO0k/l+gJU/WORGSj3fG9ROrDRnfEjl9CwqPRpuOEceou4T/9u0OLDEW R6qCD5N/89xn4R6c3ONwUorYI+KqOT/hPthE/KOwiLgmJ5s1OfoAeCZGA2xi 475q8bG/HkKq0StpA+L0JT/6f6alw9pFX4KtiBewIr8HHM+AtpUtOr7EwTvv lvm1ZkJTWXxgJHHmSKbBiEQWqMx7LXGDuDumMO3gumdgYT8pUUW8Pb811vvi c7jY3xfYQxzjMDDTX5gDkky+jkglH4p/TPvsH8oFuVdqQUiso6Fs6/XnK7B8 ISLpSuz5mlncFfAa9O6ld4US39iur7fnXh58ftVx+C1xRAlbYmVoAbw82DLh WsWHkTHzAfpzEUis6qw4TXxmY6XmwMFiOOBa1vuMmHPOzvmhaAn4sVOnpT/y wZXtXsXRfwNnx/sPVxNXOoY9YZ4vBTu/hRHz/+PD3hTR3i7mO9B2mGw2IhYe PftHct47CLXb6pxGbHjmxgWN/jJ4WxeWeuUTH1IKXh5W31QOA+JNfbXEplIb 07+0lAPPL8Z3YTUf2na877rpVwFiw0Zb44kVRxrsVe9Uwsb/jPFRDR+K5KYT Y0M+gs+Y83/y9XxYYfb7sdONn0Cde3rLAeIbMquXG3OrIVVy2uwd8YJmm4px XjWcyva4E97Ah0Hf6EV7ltaA9nWOqFgTuc9bM8/BsxYEUhbrnFr4oMXvHP71 qx6mHN6urCBOLKXi08wbIEW1/ga08kHygiq4xTeAob5iLauND/1sh9gqw0ao ETuTLNnOhzT7D+zU8CYo8nc4qvyN9PPpEzcXmRYQ/WQXc5s4IaRSTNGtBRq9 +0S5XXwQ/7Mvo/xpC8gqjlqYfOdD7xeN2XX2rZD+qKYurIcPDxbEX1O40Qad p+xyTAf5oLAaejsXtsOWzITS2gk+XDinuSwhqQNSeXqhIZN8MOoOty8o64Dc f9Z5sab40AlforuGOiBvfVDJsWk+6A0l/NI16oQoUeebRjPkvVvLvP1Q0wku Ckpeg0ICUJSY9hKIdMFf1XXu2jICiD/5Md3VqxuEbjYJpomxhe6IONMNm944 Z72XFUC3XrTSo6xuCKUOB+yXF8DaTrPQSUYPqPKiTF8oCqDR5KVN3NUe+ORu dSBmiQBUGMm/it/3wqnup/tmuAJIDAo2YNIDoPBw/HWPlgAWbm3+HGs7AKzl gdJ1tADOLFt/9FfAAHgon0t9skIAx8pn8guLBsBT0yvdb5UA3FTDzZwcBiH5 8U07tqEAmEVRf50/PgRKimpWFlakvrDVU0H/MGCujYuetwDcNzuUeW4cAZtp boKvjwB6ZvOaM+xHQDzPq+zJvwLwfqo5PLl/BDLNRalVhwRwRGVEMebiCAiV 5eTgEQFEd8e6Z3wbAb9xBc+ocAFkniienYj8BWLy4nGFVwTAeK2tf7p8FJaf jQq5VSKA67RI0kO7CbjrZEPtV5uBls3nLluTvh308anPjZqBpW1111YoUxjn PbSLNTIDTe7XjfKvC6EuFZIjvX0Wroj93csfE8HLY9r23LxZ8Kj/b/BnuCi6 1bqMmUgxcG0JMK50iKOwiJdsyhoGyod8azdeK4VOMRPtom4MnHXdpnIvXxor 0yIVf4tgYMDKxhWfpWSxqF4uWPkBA8ff9gvATg6TO++25pQycNpksV7KZXmU X63eLtnOwLAtxf96FimgZUODHU4y8NxgZUP4fEUcS/c0my9Fobqq7aZRfSX0 jb3v/kSNQoOv69qLj/2OMkMs3RMrKGyIWd9xqUgZzXcFtlsZUaReTl/ekApe DxDxAQsKb16KVzPVX4w7VXen1dpQWDYytGOp5xKMP72h8scOCgPW/o8/e14V VbuucHm7KUyXNXxvWKeGej/3SxzzpHDVerOtnuFLcSxhgCt5gMIaQ7Uq5+Xq WJ4i+jjlIIXP6flCDqXq+OlUpKPNYQodv3Ne8Hb9gfodlVcfH6FwYx8jcitj GU4IbZl2CKawP1uu3jp+GR6vDPtx/iiF9Yd1P1vTGjhlY5eQeIzCeceER6cr NfCSWL7X2jAKx7bKxdXu0UQ5EePXGeEUcvd/Mt0lthwnPHkmDcdJf7ZUBsnc WY7qC86erThB4Q6NBvc3a5jILWSFPDpJYa3pRXdWExNTNKWOZBD7a9y6EdHM ROPwYZ+nxIrCDxs6W5m42i13Ry6xQ3Hx5tsdTGSZHln4hrjZeERPZYCJ9crl 2s3EnRtsRSQZLOyRS/8hGkHhr7UyyUOaLExa0sR3IpajY75nH2ShdbBstgtx c+1g4yY/Fg5WWB5wI04OsSlv8GehknBxrSexwUfFJ1PBLNRznD3jS+x26HbQ hggWmhQ0JkUSZ+ZmS71NYCH98KlrBrGtefuq2mIWfkz+9i+f+IKLfujIQjbu 4u1LnSHm4N7AI7+zkR3z91dGJIVFSxN9BSpsNO/Ybi1CPNxO7Zm/lI0xlInM AuLN7hWWizhsDJC8+6casfBed/mNG9jYb4lXkdjPNy45zoONsX+8aggh3n5y sHzlczZmLey+EEosaaftF53LRrryu3X4XD0N70XfXrLR8sGevJPE2iUDe+ML yP6kf8/HEM8TGpg3W8ZGtW5vRgLx89A+LG9m4wdt6/lZxL/zurM8fuNgm5pY eydxk+/XxGvWHDzb7u3fRZwrEchn/sVBl5cPxLuJ4+9KO2XZcnBc4c6Kvrl8 dUaLKuw5uK8ya/8P4up1V67O7OZgVseiRwLicsbmy7v9OVhVdmPnwigK8848 O8u8ycGgVsUYY+Kk1Kjwp8Mc7Gh//NaE+I6u1jmFEQ7e9/dhmBLfelF1/fAo B6NuuR80J058r5i7ZoqDx8b0La2IL/beHXopxEX7gKmP24gjOIVOJYpcvPSp zdST2Ct1Ur/WiIsub6SbTxHTqfv6xqK4mE17tp0mntjbOmsVzUU2LPgaTVzC tlW4HcvFTausv8US73ywbr1VHBf5rGsd5+fOTxE9e/MaF9WvNOdfJf6SnKxr kc7FD0kyUynEF5K+Bl6t5uLWBnbsG+LJxJ2iRqpauM3aM+gt8aCmZm3xUi2s 0Bn1KCX+mj5022qZFn5A4Q1lxO8LThg6srSwy1XQUU58rTPdO0hXC02cyqRr iNdrCdXmmGvhHVmN3nbisJdpt1f7aGGSzsPiaWLyBzBYUaCF1X+fD+YTL7at eRZdpIVxouO6AmKd92k63SVayAszuzVDvP3FzuW3y7TwvtqEH3WKwrsJObLy 1VroUTozbz7xBke/7rFvJM+C5ipZYt/mvkt5EjTeU/Gft5y4qbVp2NqeRtPD U5lzdj6klDu8g8bF0xPOTOKO+dvCLjjRGLzU4xmLuF+nQrZxN42OPRJOXOLZ 8Hxd939o7FrTck6HWIN51y8ojMaMArNrBsQHfA5MJKfRqHSnao0h8U+h1ALL dBoftrdVz9k/viuqP4PGX4MXxdcThxa6KOtm09jo6OgLxHHytgavC2i8/88D rilx9nN9XnUtjTl0ScGcDTYfMvVvoFGPv8/OjDj/y2NJ5c80CpY5HzUnfifG vu78heQ16Sy1IP7suCivp5fkUdi7w5LYddg+ImaAxvQnvN45d564uGXFMI2l qTYSVsSDj6Ta/EZprM2UvzZnX5M/7ytN0FjTtoezmXi8LsLnxRSNeyMtcufM 21+8ZpeAxsmZl5usiRn/P7Tx/wCN2tgO "]]}, Annotation[#, "Charting`Private`Tag$7358#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd03k4lc8XAPDXi2QrW0gqQu697mvvZm1GWiRapJAWSUllCUWSkOSbpSIl VLQIlUgRFZMrRZbKzrVl6drpqoj4jd88z8w8nz9mznnOnFF29rQ5QhIE8QnP +X3m70K8EogyVxz8zlIAGxxCrOftJ3AzuQT6ANdnp7X4sMc/FzfYil0Ee6x6 H+FzKC1e/6CFfxS4qVCTLYCd9byOt/xnLLCM0tkhhB0hs/i1XPotwHwkEiaC ffjslkDJA8ngxqSd1SLslaNmKYJXUsDZDNkMKewo5YOhZO994H/cPFEOe2pX oMsceATqzresXI59NPz2ppnExyDgVaOhCnbd6zza1K8MIO7D4tKxzQZrRX7v eAq+Px5n6Mzns3x86OeTLLC4np80xF5Eu/zD72I2uDUo426JfW7vw3Lf9hdA JG0Bny32C94LI57oS7BkWp9+AJsb9f7JKcNXIGcjjeWLvae4PdrjRj44F8lR CJ7P1354duj9a3BU7GlcFDZ7fNrzxGgBsL12xuwxtrbqUptjlm/B1OH9Z15h u75TZ/f5vQOKMmtBKfbdPSz9I4+KwOm2+Khu7PBSuqhOMAK6p57K0PkIxPu9 aZhqLQH2N5p+GGPHmFerDZ9iA7m+69u2YzOu7T7wdGEpiJvyavDDdqK71DBY H0BrNaO6BrvaMSRH/fpHEOMkbvID2y194UCf+idgfH/aZA5b4NfVVWlFn8Ap kxd/tEkCGcfcjVMdKgf237y2JWGnozenlTdXAoXxZJt87A3i5lmdbZWAnrC2 vxa7w6Gi755vFTAqPlS1iJ9AsrwmuxX3q4GgnpRnJHaJ1HRydNAXwOBjkykC BNLaKH/hSvM3kJtQa/EJ+67EmtVmGrVglT/dcBx7EWdn1Z/AWjAaJi2/UZBA I96Ry44o1QGviA8VE9hZKbP5wLUeWAl1dfoIEYg50zM2MdEIXFQFC9Kwkz/y JTzZ1ATOHew1aMEWi1sBnBOaAKdJRct8IYGG6PbRNcbNAJUGjikKE+iJ3Wd6 ZmgLmNPuTRoVwfXMzXE+KNEG1Pasb2aKEigxqFpY1rkNDIiZvTmOLWI5mF2Z 2wbOyG45ycUe6FSdM7RrBwqmHoGDYgTKWJSQJHO3A3BVb6+SWEwgmTVgoGdJ F8hMyWv4Kk2guGtqKokPugF92uTzchkCmXBD7VB5N5DUOWdxHLsHdEb2jXaD rmYWR2AJgfRHEyd0TXoAx8PYGcrifreWKPtc1wPI0aLcL/K43qLTx/4J9gHj Te65tisIlHDpS5bTMS7YzrLbnIMN26ju8BguWF7It2/RStzP+pFyz15ygenL kAUV2AY9G4OniH4gMRpgv1mZQM3r3+yMvd0PjNoe5jioEkiBSJtgVwwAdqmV bisD1zfgnJE6NQzurR7Q3qhBoCXbOa3RNsOg6uqO+8+xY1RMz0/4DQP34K2c S0wCXaicLX5fMgw44tkP12oSyHlF6MZ99iNARXbhhmwdAqmXROy4fnEUPNOF N3kGOL7A1tx/Q2Og/JJXTLYFgVys7MtdzXmg4kYEAbcQqH+uiJNtxwMpNfZd NdgeuWpjUyd4oHrAYXjMkkD+CjzZqBs8kCzpuMrAmkCR3GiX7F4e8AkKT2rZ if93GHtu8vIEkOCcvn3SkUDEO03WlcpfQOPBhuxMTwLdoQQfPN09CbrtbPQy EwjUZnXtprXkPyC7mUi3/EQgpY6GJK2lfFAq3Wfy4iSBWlzumBTf4Yes6TCf 42p86JbwroGZ34IwVsAtv8yWDx1t/DryM3QhHGDQijuD+JBBKSBudYtAG7+1 sUmP+JB0UG+XmYE4/K8/+sORSj4052Sr8Kh4MfQem8t1HuZDfjrNWq3ikrAj jXHlrjiJ/pQN/QO7peAr68k/FXQSTa9X1E+/KQ3NNu+PVjIjUcg2tpdriQws JL8Y+9iR6NpIdVOokCwkeTN2eW4kUl5hs/kXSw76JP98/DuAREbfDbvYF+Sh VJX9yO3/SNQUZdodX7IUWiyYvucRPx/v9WDRqAI0/eecE5xConvxCSs3sBRh yPF1FoczSFTOG3VQcl0O+XW51txsEvkZHJ6Zu74Cfktc0tGXT6IsSeMK44aV cMBdqiLgHYn0TDdudw1VgsJ03YbUEhLVGa+sObBaGe7yFGvoLyNRPiXEb/9R GboH0R5sryCR4w9GYeD+VdDluK2fVxWJzAeJy9sJFVgvmO3WX0OioTypRusE FbhAM3Ru6iuJGk/rtlpTqvCQKOduRy2JFlwQ+DVdrQrf5S2yOFBPot/bpWLr j6hBdpM139sGEmmc+LZhv/Bq6H87O626EddnW3WAxP3V8FX9+gcvmkjkoNrk 8mGtOlTpWFwW2kyi+g03XGgt2CpGVy5hn1FNuRvOUYfMjMtWEdiyAk+betrV Idx7/XM0tj2bbZXarQ7rTENyE7A5Zjx9hWF1uHuqQyMLu2edjaAYQYMegc1l jdgTBhJpo2o0qBezr1ethURSVNSPvFM0yOfk6U7D5tSPNG/2pcE288c8BnZa 0M7KpjM0SIuK/KuFbfRFNufvORpU/WX50xDb2Sc1YF04DQ72frpijf2iIE+8 LJEG9bOyj/lg22zq0qtn06C3bYtiIXbcQVYwbwkdkuuB5ltsBnQ76y9PhzGB auuKsEuUkr3/KdChyOIAhxLssS6+I0JKdHhu1imoAtvKpWrLMgYduu9dFNqC LeDmIm2+jg7DxgT8p7B9vWPTYo/SIZeQ363XSqI9l0YqdfLp8FWe+Lg+tthu Td/IAjq87jQUycIuUfVY1vuGDl28XYsMsTVLh90SEB3a3j8mC7EX8A8vmCun Q3UbVpwVdn7wIKzk0OG4WWepC7Z8IPflUZIBWyKENWOxW7y/JydZM+AzWk9a HHaB6NkZ9R0MeGIifUU8dsLDxfte2jDgDu0JkYT5/BpMllXZMWD9XFrDHexa w1u3Zw8xYJsrwzgDu5KwunnoDAMqvR41LcYuinl1Vf0eA+ppzdpwsR9kRoTm jjFgl6q3Xz/2fV3mNRkeA07MLksawE4prLlz+hcDClyU7hzCTq6QLVj7F9+X meI0jn1j4OHoG34N+MMyw+Qvdjjj/b5SWQ2oeF3CRZRDomOZU6x6Ew2YNSMY pYFNZR4f/B2hAd1mFc8zsSfd2ue2RmrApCXX3CnsUrqNTGq0BpQzjLLSwt6b YWi6NVYDTq3hknrY4ekLr95L0oD+VPROI+zOtDRdiywNuE/O46wFdtyD72dv 12pA5shH4cPYU8l7F5qsYMLCrl198x5RU6tnKzGhcqpJiQv296zR1K0qTMja v9r/KHYFCjN2pDGh/FNXjht2Uk+WR4AuE95LFbrshW3K5K9/vYkJPyzhuJ7H DnnzJHWNJxPaOlR5xmMLt8wYaSEmbHQtUbiJrWhT9yqyhAnfEGYf5q1d8USb W8qEPGmOfAL2nsK9q1PLmfByWGxhIvbDxNeS0rVM6MO/iXsPe52jL/d3LxO+ PckdycD25gzGF4lS8GxgYMFb7Jb2ljFrOwoGiLc7vMM+4CNXMOZAwe1r2FPz 7hayDYnbR8Hc0qUGxdhD2lWSzYcomKNDPn+PPRdarOtykoK7miXDy7BV1R/6 BoRQ0G4ks7UG293TfTLtCQXBqI77F+yf/JloSxYFW9s2z877TEJfxFA2BePb lFd+ww5+f3Cpbh4FUcUtxzrsWGkbo3eIgtzH9cVN2Hn5rMDaegqeP+tj2Yxt ZOWz4UwTBQNDHtXNu7jzudjSVgpaBn380YL9SZh+50AnBeuVxITbsFsdlxX1 D1BQ7I7ttXk7jdmFRw1TMIWjJ9eO3RN2Y5vWGAW//MhX6Zh/72fiHb6/KFi9 a3/GvL3XWz6Wm6TgGDtRsxP7T0O4Z+FfCn697JU778AT7LX7/+HzI+1ru7CJ /w9N+D9E7Nxc "]], LineBox[CompressedData[" 1:eJwd03k4lc8XAPDXiyxRtpBUhNx73dfezdocaZFISaFVUlKhUCQpKvlmSZay FVqESqQoFXKlkqWyZLm2LF07XRURv/Gb55mZ5/PHzDnPmTPKzp62h0iCID7g ObdP/xXGKwGUueLAd5YCWucYZD1nX4EbyaXgjVwfn9Liwx77VNxgJ3YR7bTq uY/PQXqc/n4Lv3B0Q6EmRwA7+0kdb+nPaGQZrrNVCDtUZuELuYybiHlf9JIo 9sEzmwIk9yWj2Al7qwXYy0fMUgWvpqIzmbKZUtjhyvuDyZ47yO+oeaIc9uT2 AJdZdB/VnWtevhT7cEjChunEB8j/+TdDFey6F/m0yV+ZSNybxaVjmw3Uiv7e +gh9fzDG0JnLZ+nY4M+H2WhhPT9piL2AduWH78UcdHNAxt0S++yuex992p4i 0fR5fHbYT3lPjXjzn6FFU/r0fdjc8LcPTxo+R7nraSwf7J3FbREesQXobBhH 4cJcvg5DM4NvX6DDYo9iwrHZY1Oex0ZeIruo02YPsLVVF9sesXyNJg/uPf0c 2/WNOrvX9w1SlFmNyrBv72TpH7pfhE61xoV3YYeU0efrXChBuicfydD5COD9 3jBEtZQih9jGH8bYkebVakMn2Uiu9/oWG2xG1I59j4TLUMzkiQZfbCe6Sw2D 9Q61VDOqa7Crdwflql9/jyKdxE1+YLtlCPf3qn9AxnemTGaxBX5dW5Fe9AGd NHn6R5skwDjydozq4Efk8PXEliTsjJJXp5Q3ViKFsWTbAux14ubZHa2ViB6/ uq8Wu92xojfFpwoZFR+oWsBPgCyv0X7ZnWokqCflGYZdKjWVHBH4GTH42GSq AAFa6+XPX236ivLiay0+YN+WWLXSTKMWrfCjG45hL+Bsq/oTUItGLknLrxck YNgrbMkhpTp0IvRdxTh2dupMAXKtR1ZCnR3eQgQwp7tHx8e/IRdVwZfp2Mnv +eIfbmhEZ/f3GDRji8UsQ87xjYjTqKJlLkzAIN0hosa4CZWUBYwqihDw0P4T PSu4Gc1q9ySNiOJ65uU675doRWo71zYx5xOQGFgtIuvcivrFzF4dxRa1HMip zGtFp2U3Hedi93eozhratyEFU4+AATECMhfEJ8ncbkdc1YQVEgsJkFmF+rsX daKs1PyGL9IExESpqSTe7UL0KZNPS2UIMOEG25d87EKSOmctjmJ3o46w3pEu 1NnE4ggsIkB/JHFc16QbcTyMnUEW97u1RPmnum5EjhTlfZbH9Z4/deSfYC8y 3uCeZ7eMgPjLn7OdjnCRDct+Yy42tFJdIZFctLSQb8+C5bif9cPkHj/jItNn QfMqsA2611+YJPqQxIi/w0ZlAprWvtoWndCHjFrv5TqqEqBApI+zK/oRu8xK t4WB6+t/1kidGkIpK/u112sQsMiG0xJhO4Sqrm298wQ7UsX03LjvEHK/sJlz mUnA+cqZ4relQ4gjnnNvtSYBzsuC1+9xGEYqssLrcnQIUC8N3Xr94gh6rAs3 eAY4vsDmvH+Do+jj5RORORYEuFg5fHQ156GK2FACNhHQN1vEybHnodQah84a bI88tdHJYzxU3e84NGpJgJ8CTzY8loeSJXevMLAmIIwb4ZLTw0PegSFJzdvw /77Enp24Mo4kOKcSju8mgHijybpa+Qtp3F2Xk+VJwC1K8O6jHROoy95WLyue gFarqBvWkv+Q7EYiw/IDAUrtDUlai/lAKsN74uIEAc0ut0yKb/EDa+qS91E1 Prgpsr1/+rcgRAu4FZTb8cHhb1+GfwYLQz+DVtwRyAcGZYi42SUKtr6ro5Pu 84F0YE+nmYE4/NcX8e5QJR/MOtkp3C9eCF6js3nOQ3zgq9Ok1SIuCe3pjKu3 xUn4Uz74D+2QgufWE38q6CRMrVXUz7ghDWYb90YomZEQtIV9wrVUBgrJz8be 9iREDVc3BgvJAsmbts93I0F5me3GXyw58E7++eC3PwlG3w072eflQarKYTjh PxIaw0274koXg8W8qRSPuLl4LwaKRhTA9J9z7oVUElLi4pevYylC0NE1Fgcz SfjIG3FUcl0K/Lpca24OCb4GB6dnry+Dr4mL2nsLSMiWNK4wblgO/e5SFf5v SNAzXW/jGqwEInTdhrRSEuqMl9fsW6kM2z3FGvrKSSighPgd3iuDeyDtrk0F Cbt/MAoD9q4Al6N2vieqSDAfIK7YECpQL5jj1ldDwmC+1DfreBWYpxk8O/mF hG+ndFusKVU4MJ9zu72WhHnnBX5NVavCm/wFFvvqSfhtIxVdf0gN2I3WfK8b SNA49nXdXpGV4JeQk179DddnS7W/xJ2V8Lx+7d2njSQ4qja6vFutDirtC8uD m0ioXxfrQmvGVjG6ehn7tGrq7RCOOjAzr1iFYssKPGrsblMH2HX9UwS2A5tt ldalDnWmQXnx2Bwznr7CkDrsmGzXyMbuXmMrKEbQwCOgqfwb9riBRPqIGg30 Ivf0qDWTIEWF/8g/SQM+J093Gjanfrhpow8NWs0f8BjY6YHbKhtP04AWHvZX C9vos2zu37M0UP1l+dMQ29k7zX9NCA0Gej5ctcZ++jJfvDyRBvrZOUe8sW03 dOrVs2ngZdesWIgds591gbeIDuRapPkamwFuZ/zk6RAZoLamCLtUKdnrnwId RBf6O5Zij3byHRJSosPZGafACmwrl6pNSxh0cN+1ILgZW8DNRdp8DR0ujQr4 TWL7eEWnRx+mA5eQ36HXQsLOy8OVOgV0eJ4vPqaPLbZD0yfsJR2uOw2GsbBL VT2W9Lyig4uXa5EhtmbZkFt8CR3s7hyRBex5/EPzZj/SQd2WFWOFXXBhACo5 dBgz6yhzwZYP4D47TDKgOVREMxq72et7cpI1Ax7TutNjsF/OPzOtvpUBx8Yz lsVhx99buOeZLQO2ao+Lxs/l12CypMqeAfWz6Q23sGsNbybMHGBAqyvDOBO7 krC6ceA0A5RejJgWYxdFPr+mnsIAPa0ZWy723azQ4LxRBnSqevn2Yd/RZUbJ 8BgwPrMkqR87tbDm1qlfDBC4KN0xiJ1cIfty9V98X1aq0xh2bP+9kVf8GvDD MtPkL3YI4+2eMlkNULwu4TKfQ8KRrElWvYkGZE8LhmtgU1lHB36HaoDbjOI5 JvaEW9vs5jANSFoU5U5hl9FtZdIiNEDOMNxKC3tXpqHp5mgNmFzFJfWwQzKE r6UkaYAfFbHNCLsjPV3XIlsD9sh5nLHAjrn7/UxCrQYwh9+LHMSeTN4lbLKM CYWd23vnPKymVs9WYoJymkmpC/b37JG0zSpMYO1d6XcYu6LkkvFuGhPkH7ly 3LCTurM9/HWZkJImdOUEtimTv/7FBia8W8RxPYcd9Oph2ipPJtg5VnnGYYs0 TxtplTDhm2upwg1sRdu652GlTHhFmL2bs3bFQ21uGRN40hz5eOydhbtWpn1k wpVL0YWJ2PcSX0hK1zLBm38DNwV7zW4f7u8eJrw+zh3OxPbiDMQVzafgTEDA y9fYzW3No9b2FPiLtzm+wd7nLfdy1JECm1XsyTl3CdkFxeyhIK9ssUEx9qB2 lWTTAQpydcgnb7Fng4t1XY5TsL1JMqQcW1X9no9/EAX2w1ktNdjunu4T6Q8p QCM67p+xf/JnlWzKpqCldePMnE/H94YO5lAQ16q8/Cv2hbf7F+vmU1BScXN3 HXa0tK3RmxIKuA/qixux8wtYAbX1FJw7423ZhG1k5b3udCMFAUH36+Zc3PFE bHELBZaB7380Y38Qod/a10FBvZKYSCt2y+4lRX39FIjdsouas9OofUj4EAWp HD25NuzuS7FbtEYp+PyjQKV97r0fi7f7/KKgevvezDl7rbV8IDdBwSg7UbMD +09DiGfhXwq+XDmRN+eAY+zVe//h88Ntqzuxif8PTfgfvD54XA== "]]}, Annotation[#, "Charting`Private`Tag$7388#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0wk01U0bAHB/96pEimRLlqx3+SNElsyU0qZNixZFRXirt5IW6k2p8IWS rJGlbKVEytaH4bZZ641rJ1kiey4i5Ht8c86cOb8z55lnzjPPqB49beMkLCQk 9BHm7BrGi4+MjKQIbanY22akgKL0FrbO+iIzLLoYn0OM4UvPH4B/lhXW7Ba/ gUJPtVDR4KRQQ/uNlwJQ0WOL5ofgtBfVgmXDwShBNwLFgf2kF+bIpoQjxoYf 2o/Bxzw2XZE8HI325OlGJoGVB9fEidyOQwUjLkFPwQGq9t7CnY+Q3NQ9iRfg iV1XHGdQIhKcSV78CnzcJ9Jq6kEyir2TGJsLrs7J0p4YfYI0OX4vC8Freqvm j+14hg5lb7Z+P3ufZT/7hlPTUJtF98kKsIS2b9fFG+noL/eYtc3gywcSStxb XqJGlPqrE/xS8NJUIPYK3Vxz2WAQ3B1QlHrW5DVyLN2IGA8osrewJfDvkGx0 3cp4oQQ4YF//n76iHJTVVuokD+b9nDx9YjAXlUgUJq0A66nL27hs/i/SO7ng ngXYOV+L9/1iPqq92URZg2P2Ghk6JRagEzrVF1zAPm9ZYiuuEbTZeuxZMlgw ZtVPNxajbh2F0hzwHctKjf6zPPR8+bFTpWB20J7Dz+a9RedHdKwGwQ4sx09s o3fo4141hKIoUnnweobWvQ9oSXiX/26wa8q8nu9aH1Emx+7wX2Dm6N3lSQUf ket/pEPCwWZ3Yu6r95UgtaqveBycQt6cV91Qjrj0hlzJaIqsW2CZ1tpcjpbr /ZvFAX/dX/o91r0C+Uz/wUfAMoI6W6VHlag1ze/uF3Cx1GR04NXP6My3jcKV Dymiu17O63b9F8Qvy4wdBscsWqm5hlOFpmN+1srGwPs07az4daUKCT4dlXME D7j5L3VSqUa++c58Riy8Z9yfbOTMR0dUn6g4xFGEO9UxNDJSi/j+lQfugKM/ UBGpVnUotPAfOh8sfl8JHY2oQzocfpRiPEX6WPsCP5nVo/eKFeFt4FTbMtZT 7wa0rc/+++3HUM/MjKP2i5oRP/RLSDH4wdVKUZmjzWjpkHD9b/D8zb3p5ZnN 6BWrTvVUAkV6WtVnTGxbkIZB/Yt9iRR5IhERJR3zFQVuL7i7JZki0itRT8eS b+jbc9GGmFSK3A/SUHvwuB1tF2f1tYPNu71tSUk7cj+V4cl6RpEO1Or/fbAd ObVxxLPAhoMPRvTNO1DhnMnf1c+h37cuel9W3YFSTK/VsdKh3mKTLtMi31Gt c5SIzmuKRNz6nObg0o3oD0tNvMG4mW73udONfgzWfqsBdxv6yz5/1Y0iPOcF X8+iyKqO9dcmhH4gpSMHjzdlU6R+7ZudwZE/kOYtm6TkPIooCCWN8Ep70N7R M+nBBOrredlUi+5HHxR0lwnAS7Y3NQbagCt9h3cVQX+qrf5n5GI/Cq6Y4MsU U8Sr/E9hUXE/ql/geimeR5GjSt7r7fYNoIXRIwMl7ymiVey3496NQWR1uPCl UwXkZ27JnO4bQpg/cCynkSKO1vtKnC0F6IXEsVHTJor8mCloSrcVIHPPmd58 8N+ZGkMTJwRo00aZue+aKXJJQSATECJA1XMu/Kj9ShH/7kDH9E4BKtDlMhd1 wP++yZsZ9x1B5xRPZLzvo4hQvo7R7fJRlOgXf9JohiIPaZHHz/aMoxN5qgdD 1IVJs3VQ2FbJaZRl3vpSdIcwUflaE6UrT+HdGktlFa4IkwbHh+aFDxlYdfnz S3qJwiRcdFfP1JgIHvZa8Z+Iz8LkeO2/A8Pe87DX3Q/JFr+Eyaq3SCi8fT6u 9Lc3blBgkMVXO7+tWbUAXxs7k3vPgkFmHHYrJBYuxNQ/GlVTdgxycUW9buMC SSy7fECMeDLIr/d902iPFM5IqR0oC2GQybWKhilhi/H2FbtvOj5lkOvbeGec i6XxO+W+x1KFDBI0UFnnPVcGR9+ef5n6zCCqSjYbRo1k8YJs1RuMVgYxbTP5 xvOSw52fvdWj+hmkLmB1e2ixPDb4IKkZOT6bL6e3YFABD3kFJ7cLM0lsaITy OiNFLJm+gqElxiQlgsH9Ks7LsObTsH4NKSa5uOrY1Mw9JbxSomhLihyTpEma lZrVKGPG3M3+9cuYxGD1+u3O3irYUrIrP3E5k1SbKX86rKmK9bPqLj3SZJJs ei5j3wdVvD5IOq2cxSQHu9h5Vw4tx2pm90kWl0kse4V8twup4c1vVnsxdZmk L0uqdmuEGq5NlJb4qccktef1G7fS6vjW6IuY1/pMMseLOTpZqY6NjMLXKhgy ydh2qWC+kwaWuHrRxGElk3BOfFl3SFQTe/SMmjgYMYnqtkrPRY80ceQoVWho zCT71esc3xlr4fxNc9+NgfnrQhy1G7Twk2S9/RPgC+pxMT5NWjgs7WHvJFiG +ayuo0ULq67ZIEatYpJ9PJ51fLsWbpEeXykGblojMFTo18JxImUmyuAOCxsR cSFtfHGqU9gKPLJqUdKghjYW6TCuuQOWogO6ss5qYyN0RP/ebDx/oH6DuzYW 7f8UcB+cdHVned0FbRyq420eATb9LJPx+7I2lo+2840HHz0X72nhA/u/xssy wS9zsxa8f6CN5yuqydeCbay+GfB52thQz4Qhb8Ik9+2NrgmWsLBbbvGQApiN XT0uybFwlW9XkyK4WCXabVqBhUdb52SogIe+UU5zVVhYuyF7ozbY2rFi01I2 C2e7vDEyBjNdHRdbWrBwcGXP4t1gd7fgpODjLMyP6xK5Dd57a6B8RTYL2ziP 3/IHi+/RcffPZeFjEiIigbP51P9e2vmGhWeeSwsFgXXe9rtGEBbe8kO5JxQ8 h9E/Z6aEhalozzvx4Oxrvbi8iYXfbKxQzAHLXel+dVyYjYdWj7i1gRvc2qKj trLxlJj1l3ZwrpjHlNYONh5viNPrBEckLLR7ZcPGQsfX9XTN3q/GfGmFLRuH X/bd2Q+uMgmP/HOEje1sY4Z+gcuFrMOOXGDjmf2/z4ubMknBndd3tWLZOGif IU8f/Pipn3fmEBsXWDZXGYAf6XODpAVs3Pi2pN0QHJf36eH5UTY+53OaMgZH l8rkGv9m4772SQMzcEhPwuAbBgc7tdy6YAn2YRfZvZXhYA/ef913gV2eThjx zTlYriX+9Fkw/fSv3jE/Dr7p4bLDDTzu2jKzxZ+Db6wL0zsHfsuykY4P5OBt QqxBd/CBJyartwRz8NrlRk6XZs9PmXc3NoqDbb5YrfQCtyYl6W9M42A2b9g5 AHz/cZtHZBUHn2vU4SaCJ6IPzDNX4mJeVeXErAc0NPg8FS5uTah5nwRuSxuM 36LGxUv8le1TwKXkptlBbS52d33klwqO6kj721Ofix2ulRVmgFdzGfwcKy62 WRRSlA++/iY1fuVpLjYQ3cOqBos2TJnqEi6+65r7cdaKNtWv/Yu5WHn/C2c+ WK80Va/7LRdvkdqZUAPem3dAM76Ei1Xl3eXqwQkPciQXV3Fx2SqPvmawxUH3 7rFOLj707vL6LrBbU29ogRiN492SS8fBDS0NQ1ttacz+oOswAT58TjZ3aD+N xZTWjc66fe7u6/ftaGxvKKU0Ce7Tq5CsP0Ljititf02DZ7wL9R1P0jjWK7Cf MmMSda0Ed8/rcP6Lm/HzwadOnxpPSqWxcZkBSww8zHhKNqXR2O6yR/qsL0R8 9+tLp/GuxpJ8cfC1Int5/Swa8w/4VkmAgxfbmOYTGudE5fVKgbOyja5U8Wlc jMdPLgabWp9bd6GOxqed/+2fdWHrC3H5RhqPnLQdkAZ/FGU9PNxKY5HMvB4Z cOPBpQU/emgsXtTkIgt2GLL1CeiH+Izo77PuuBmyTXeIxmedfrXKgQeeL/jq PkrjsILgQ/Jgt7Wbk2XHaaypUVE/6181PqfzftN4b3vSHgXwlRM840PTNNa2 VPl31kL/Hzr4f1Zi1HY= "]], LineBox[CompressedData[" 1:eJwd0wc01t8bAHBf76sSKZKVjMx3IURG7lNKS0tDQ1ER2kmD+qVU+IWSzMgo q5RIWf3Mt2U2eG2SEdl5ESH/x/+ec889n3PPvc9znude5cOnrRwEBQQEPuKc WUO4seHh4RRwzOV7Wg3kSITO/JYZX6SHRBbBOUIbuvT8AfpXaX71TtEbJPhk MxWJTgjWt11/yY8UPjZreohOeVHFXzIUSOK0w0gM2kdyfpZ0Uiihrfup+Rh9 xG3DFfGDkWRXjnZ4AlpxYFWM0O0YkjfsFPAU7ads6ynY8YjITN4Te4Ee33HF fprEE/6ZxIWv0Ee9wi0mHySS6Dvx0dnoqqwMzfGRJ0Sd5fMyH72qp3Lu6LZn 5EDmRsv3M/ks+dU7lJxCWs26TpSjxTS9Oy/eSCXHXKNWN6Ev74srdm1+SRpI 8u8O9Ev+S2O+yCtyc9VlvQF0l19h8lmj18S+ZD2hPaBgd36z/6mgTHLdwnC+ GNpvT9/f3sIsktFa4iCL5v6aOH18IJsUi+UnLEPrqMpaOW38j+icmHfPDO2Y q8H9cTGX1NxspCzRUbsN9B3i88hxraoLTmivtwyRZdcKyEbL0WeJaP6oRR+n oYh0acmVZKHvmFeo9Z3lkudLj5wsQTMDdh18NuctOT+sZTGAtmPYf2IavCMf d6sQEkFBxf7raRr3PpBFoZ2+O9HOSXO6f2h8JOksm4PH0PSRu0sT8j4S538l g0LRJnei7qv2FhOVym8whk4qeHNeeV0ZYXPWZYtHUrBmnnlKS1MZWarzJYOF /ra35Ee0aznxmvoLh9BS/FprhUcVpCXF5+5XdJHERKT/1c/kzPf1ghUPKdBe K+Nxu+4r4ZWmRw+hoxYsV1/FqiRTUb9qpKOwP43by39fqST8T4dl7NH9Lr6L HZSqiHeuI48Wjf2M+ZtJHHnkkPITJbsYCtiT7YPDwzWE51ux7w468gMVlmxR S4Lz/+HkokXvK5DDYbVEi8WLkI+loJexx/+TSR15L18e2opOti5lPPWsJ1t6 bX/cfoz1TE87bLugifCCvwYVoR9crRCWOtxEFg8K1v1Bz93Yk1qW3kReMWqV T8ZR0N2iOm1k3UzU9Ope7Imn4IlYWIRk1DfivzXv7qZECiSXk+72Rd/J9+fC 9VHJFNwPUFN58LiNbBVl9LahTbs8rQuK24jryTR3xjMK2kmL74+BNuLQyhLN QOsPPBjWNW0n+bMm/lQ9x/e+ecH70qp2kmR8rZaRivUWmXCaEvpBahwjhLRe UxB263OKnVMX4XxYbOSJhiZOm9edLvJzoOZ7NbpL31f6+asuEuY+J/B6BgUr 2tdeGxf4SRQO7T/amElB3eo32wPDfxL1W1YJiTkUyAkkDHNLusnukTOpgQVY X/fLxhqcPvJBTnsJH71oa2ODvxW6wntoRyG+T5WV/wxf7COB5eM8qSIKPMr+ 5hcW9ZG6ec6XYrkUHFbwXGuzp5/MjxzuL35PgUaRz7Z7NwaIxcH8lw7lGJ++ KX2qd5AAr/9IVgMF9pZ7ih3N+eSF2JER40YKfk7nNaZa84mp+3RPLvpUutrg +HE+2bBeava7JgouyfGl/IL4pGrWhZ813yjw7fK3T+3gkzxtNn1BO/7vm9zp Me9hck7+eNr7XgoEcrUMbpeNkHif2BMG0xQ85Ag9frZrjBzPUd4fpCoITZYB IZvFp0iGactL4W2CoPStOkJbloKdaoul5a4IQr39Q9P8hzRQXvr8kk68IIQK 7+ieHBWCIY9l/4Z9FoSjNV/6hzzngMfdD4lmvwVhxVsiENo2Fyp8bQ3r5Wiw 8GrH91Ur5sG10TPZ98xoMG23Uy4+fz5Q/6hVTtrQ4OKyOu2GeeIgvbRfpMCd Br/f906RXRKQllTTXxpEg4nV8vpJIQth67KdN+2f0uD6Fu4ZxyJJeKfY+1gi nwYB/RW1nrOlIPL23MvUZ8xTwWrdiIE0zMtUvkFroYFxq9F3rocMdHz2VI3o o0Gt38q24CJZ0Psgrh4+NhMvqydvQA4GPQIT2wTpEB0cprjGQB7EU5fRNETo UMwf2KvkuATUn4b0qUnQ4eKKI5PT9xRguVjhpiQZOqSIm5SYVCsCbfZG37ol dNBbuXaro6cSmIt35sYvpUOVieKng+rKoJtRe+mROh0yObNpez4ow9oAyZQy Bh32dzJzrhxYCiom9wsy2HQw7xHw3iqgAhvfrPSga9OhN0OiZnOYCtTES4r9 0qFDzXndhs0cVbg18iLqtS4dZnnQRyYqVMHAIHS1nD4dRrdKBPIc1EDs6kUj u+V0YB3/uuaAsDq4dY8Y2RnQQXlLhfuCR+oQPkLl6xvSYa9qrf07Qw3I3TD7 3SiatybIXrNeA54k6uwdR19QjYnyatSAkJSHPRNoKfqz2vZmDVBetU6EWkGH PVyuZWybBjRLji0XQTeu4uvL9WlAjFCpkSK63cxKSFRAEy5OdghaoIdXLEgY UNMEoXbD6jtoCY5fZ8ZZTTAgh3TvzZzn9detc9UE4b5PfvfRCVe3l9Ve0IRg LU/TMLTxZ6m0P5c1QTbSxjsWffhcrLuZF+7/HitNR7/Mzpj3/oEmzJVXka1B W1l81+NxNUFfx4gma0SH+7YG1/iLGOCSXTQoh2aCs9slGQZUenc2yqOLlCJd puQYMNIyK00JPfidcpitxADN+sz1mmhL+/INi5kMyHR6Y2CIpjvbLzQ3Y0Bg RffCnWhXl8CEwKMM4MV0Ct1G777VX7YskwFWjmO3fNGiu7RcfbMZcERMSMh/ Jp7qqcUdbxgw/VxSIACt9bbPOayAAZt+KnYHo2fR+mZNFzOAinS/E4vOvNYD ZY0MeLO+XD4LLXOl69VRQSYMrhx2aUXXu7RGRmxmwqSI5dc2dLaI26TGNiaM 1cfodKDD4ubbvLJigsDRNd2dM/lVmy4ut2ZC6GXv7X3oSqPQ8L+HmGBjHTX4 G10mYBly6AITpvf+OS9qTIe8O6/vakQzIWCPPlcX/fipj2f6IBPyzJsq9dCP dNkBknwmNLwtbtNHx+R8enh+hAnnvE5ThujIEqlswz9M6G2b0DNBB3XHDbyh scCh+dYFc7QXs9DmrRQL3Lj/ue5AOz0dN+CZskCmOfb0WTTn6bGeUR8W3HRz 2uaCHnNunt7ky4Iba0J0zqHfMqwkY/1ZsEWAMeCK3vfEaOWmQBasXmrgcGnm /qQ5d6MjWGD11WK5B7olIUF3fQoLmNwhRz/0/cetbuGVLDjXoMWOR49H7ptj qsAGbmXF+Iz71dR4XCU2tMRVv09At6YMxG5SYcMiX0XbJHRJwU2T/ZpscHV+ 5JOMjmhPOeWuywa7a6X5aeiVbBovy4INVguCCnPR198kxy4/zQY94V2MKrRw /aSxdgEb7jpnf5yxvFXVa98iNijufeHIQ+uUJOt0vWXDJontcdXo3Tn71GOL 2aAs6ypTh457kCW+sJINpSvcepvQZvtdu0Y72HDg3eW1nWiXxp7gPBEOxLok loyh65vrBzdbc4D5QdtuHH3wnHT24F4OiCisGZlx2+yd1+/bcMBWX0JhAt2r Uy5ed4gD5dGbj02hpz3zde1PcCDaw7+PMqGDqkacq/t1vP/Fzdi56JOnT44l JHPAsFSPIYIeoj0t2JDCAZvLbqkzvhD2w6c3lQM7GopzRdHXCm1ldTM4wNvn XSmGDlxoZZxbwIGsiJweCXRGpsGVSh4HimDsxEK0seW5NRdqOXDa8UvfjPNb XojKNnBg+IR1vyT6ozDj4cEWDgil53RLoRv2L8772c0B0cJGJ2m03aC1l18f nk+L/DHj9ptBW7QHOXDW4XeLDLr/+bxvriMcCMkLPCCLdlm9MVF6jAPqauV1 M/5d7XU65w8Hdrcl7JJDXznONTwwxQFNc6UvMxb4/9CC/wHNtHB2 "]]}, Annotation[#, "Charting`Private`Tag$7418#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0wlUjs0XAPCXp4fIkiSEFsrbuzzxadM6Q1miQmgXUiohLSpkKYlPqxbS piwVJaRVqtGCVlHRIqT4Ur2VVlT63/5zzpw5vzNz5t5z74ysjbOx3XQWi/Ua 5tRKP9JQUlKiCKO7vPurqiTalVLuNmVPoeuxxdgNpegtWqsM/llZ9H7PnIso fHS5gwo4KVJ5/1avQGTQ+HmZGjj9Uf3gioEwVJJotV0dfEV8fu7ilBsoOuPa iCb40Cl97wXWsUhx7tkVCCzdtyGBvpqAwkyXk43gQNn9vtO/3UY3Wo5+2gz+ vdvbdhLdQ7X+Tl7bwYf9b24ej05GIV3iwTvB9bnZCr+H76NBTTtpE/CG7rrZ IzvTUMduM77VVD4rfvYMpKYjqUc/Mm3A8xQu/+d58TG6sbduvQv4jMXdcvdP GSi6Wkb5FDhjMENjUCQT+XwdeeAD7gx8keqinoWebVklEgE2KfoUdDwiBzl2 OA3FTeVrJvjb8yIXlWXLmqeAS36OOTv15aHOxKyIQvBauaXGDtueo2z2RacK sH0Bu+S7ZwEyLogteA+ON1FVtrtXiBxYIXX9YP9Sjsg/FwiqVTIr4ypTZHBk s4BpKUbhwi4nNcDBujXyApcSpH7CN2EbmBu61zpNuBQ1OVvbHwUf4Ni+4aqW IWOf8OwscI2lzxP2tVdoskBEuxzsmCLc9Z39GrVqiOm0goWGQ1YmFb5G+iLB j2aoUEQzOD5crqccWVT+a7QfnELyT8puqULe24qSPcB6c3XTv7RWoYTp088E gz+bV3y/5V6NlL7ZhxSBJQYbTaVu1yCeyqNjbFWKFIuNxQadq0Wbk+p656pR ZM2mJeevNr1D+4SunV8DjhdVWb2BV4cmOTh+F3jex13Vo9516K/xuN8NcK9r wDI7mXo0Z3nQEGc99DPhbw6yb0BloleRozpF+OMd/UNDH1DtTIeEcHDsq2lR qZsbkU3XyqBC8JxwKWQT1Yhiy2/OktCgSA/HLOiNZhO6u9fiaiU41bSS88C3 GcWpSVzZqQX1fPrEZr9oK5LcqBdxERx9rmaWhE0rQitLODng2du6H1c9bUVi R1j90toU6foiN6lu+gmJyZzpGAXfnxcVIx7/GXFniei9QBQRV0FdHYva0J9v FmdydSkSHiq/KvpOO6LXJL0ZBWt1+pqS8nbk93vBdTU9inSgLwHf+9qR/rlA r1ywcl/00DqtDuSdVxZctAneu6Hoy8r6DlTcKNzwdQvUW2TMYYL+jtycuqy9 DSgSdak2/YBDJwoRKEaWg3Er0+4f3ImqT4ioLTaE96wcsPhhZify/ZL8/Cl4 fcemC79ZP1BojFT5TyOKNG3M3xV28wcKaox/6rOLIpKspKGSii7k6lMq32cC 9T19RoPNCND8Sq3ILaYUWbTjY0uQsQAFmZbZJoCDV2mfHfIUoMfnRFftNqPI +aq/RS+KBej8rZJFBeYUsZHy3WRl1ovsXwXG3raiCLv4ys5rF/uQXrLW0Qwb iC+0/elETz+ytzpi+t6ZIrYGZuX2uoOIdfaSnNEJivyYLPz42HQQGWVmGr0E H38q3//bCfygKTfHhSJekoMSgRGD6C1/rCnejSIBnUG2j78Nova4gfGznvC/ /Uomf10eQkGzCthnz1OEVaCoerVqGCXPO/7QMZQicQx9J23vLxTE+xGbn0GR VoPQ64YLJhAvQ/9lejNFZD6/j1mzdBoutD7moUkJkWbbOK2iOArLt+5sW8QR Ijdm7e4aH6FxrfCXdOldQuTwh7e9A77CON7ZweetuxBZX4pYN9pn43hbJZPC SCGy8Ny3tg3r5+K8exck32QLkckDeyTvFc3HSeoJh1h1QsTzn6Y1LXMX4P3H 2uLieoXI6MueCbRXDDswlsdrZtBkbONy5ZTrC7F+gm58myRNfIxKTtgXi2P1 jpMFUoo0Ce2tafSdKYE9Eg4bftWmiayU8ZZh1cW4511oVaUBTTS+qreVnF+C 1fIVxTzNadIYqN0eWbwULxWsUMw5REO83O7CPkm8lV/fvfMYTW5FRknrqS7H fmPJojNP0qR8sM9cxn4FlohIEgSfoYnn+kPjk9ekcHJxbP9tH5qkL9Cs0Hwv jcVELrt6+9NESXvTDntfGcyp/1w9epUm9ZrSb6xXy+JTCtF+T4JpksPMpMxe yeJ9/YvvJl2jieV/3Gfe+1bi07ZpXfsjaKLbzbq8g7UKr04ZkL98nSY92WIf DKNWYfFrdhG7o2jy4eS6FkNGDjuKJab8uUmTGeeFhsdq5LDploeLtsbQZGSH WFiDnTymrdc0ecXShOf0Tm/frNV45SVJVYc4qI9RzWnR26txU4iQQDGeJuZy jbZlamx82XO2RQe4QS/CVqGZjbfbmpd8B3vIJcT7f2TjVe3CvB9gCaG0xo5P bFxZHzQsAJuVlBgktrNxt5ih5yj444ZBZUkBG5soBCjOvkWTDh1jeg5LAZeJ qLgpgofWiyb1ySvgeT3Jga5gMSbwv2wXBewzP+6FO/hjQ2/TFncFfNtwaMgD nHRuV1WjhwK+llVtcgasUSvx5M8ZBWylbzDTD2zjlnhax18B777psTwSnJGX PfdltAIOUNwqnQ023tym1FCigCfupxcPgsP3q14YXMTBxFw5dBjMxY6nvJZw MPY+ajUKLpaJdZ2Q5OCB0tH+P+D+tml2M2U4+OBA+OzpCTQxsK3WX8blYBHZ hyxRsJCj7UJdHQ5+NhH5lwt2dw1LCjvMwbpLe07sA5tc6q36JwfOp4k3WoPn 7FV0D8jj4JfUNp0D4GK548u+5cP+pdaZh8CKpQLHKMLBYoZ5IQ7gGZRgxmQ5 B/dcr3F1A+dc6MZVHzl4U/Tjq1fAS7w7Mw9P52LrtxIrH4ObXb/Gxhhy8fCP pCNPwHkip8bZO7nYqE4vIwMcdXe+VaYxF4+8TdPJmsrvvdayalMuPuCFDZ6B 69Rv3Px7kIvLkudoloKrWAbXD3pwsR73ndMHcGFwVgj7FhdLHrfTHgPfeXDF 92k/F9P+B7XGwbfX8UPFB7k46thDjQlwwrM3cSeHuZhzRVVlEhxbIZGn9oeL xdokV1KJNInoutuXT/Hwqfqwltlgf+4Lq1IJHlZKs6tdCnZ48Fu1QYuHdx+p a1IBMw+OdI9c4eF19sJpquBfjp8mtwfwMD6bflYNXMoxFk8M4uGrLjuk1cEW 99W1t4fxcHlDr6XW1P0pwiG3Ynh4Ruzws43gL0lJ67am83CPTrLYDnD4na+n btbx8CXOuOZh8O9YC2EtKT7enbl1fMq98vINJTJ8LBie8dwe/DW9L3H7Kj52 0WhWdwRXED9NSwU+FqP+UzwKjulIP356HR+neg38dQFr86mG3M18LBfyr/pZ sE9+aqKKMx+7ecQwYeBZzeMaawgfWxakFk95uXF9VkAxHwc832MaDl5bkbq2 s5SPc8ddzkeATZ5ZrE4s5+PnCm0V18F3o3MXLKzj4+D8GqMYsI6le+fINz5+ 2Phizl2w68fuyEIRBuff3OGcCW7+1NxvaMrg8Rj22JSt3Rbn9Zsz+IR8uH8W uH3mHp9wKwaHLVkdmw3uWVu9oOkgg/289YpzwZO+RetsjzK4wvzBn+dgOfZd 99M+DM6V2CJVBj7mfOxXUiqD9dN5cVMeoB4Q/XQGP3n0cNlLsEfU9ys9jxks uyJg8SvwhRf7l67LZvCMd09nl4PDFhprFBAGsx0nPlWBs3NUvesaGDzNvcW0 Gqxh4Kbn0cjg0YuWtVMu+vJoztIWBge+20hqwK9nceKsvzB45HdWTC24xXJZ 4Y8uBpf9TV3wFnyg39Q/UMBgwYbNl6fc4RdhtKafwUMxDi7vpvr9cO5n92EG p+j8/DZl143bkhf/YrCVmrRFHXj0vb/zsz8M9qocqJ6yt1OJ2r4JBivioxvq waz/D0X8Pz7T26s= "]], LineBox[CompressedData[" 1:eJwd0wlUjdsXAPD7fH1EhiQhNFBud/jiadJ4NmWICnmahZRKSIMKGUriadRA mpRHRQlplAYNvEZR0SCkeKlupRGV/rv/Weuss37rnHX2XnufI2vjbGw3g8Vi /YtzeqUfaigpKVHA6K7o+awqSXanVLhN21PoemwJuJEUvcXrlNHfq4re/jX3 IgkfW+Gggk6KVN6/zSuQGDR9XK6GTn/YMLRyMIyUJlrtUEdfEV+QuyTlBonO uDaqiT50St97oXUsUZx3diVBS/dvTKCvJpAw0xXFm9CBsvt9Z3y5TW60Hv2w Bf1zj7ftFLlL6vydvHagD/vf3DIRnUxCusWDd6EbcrMVfo7cI0OadtIm6I09 9XNGd6WRzj1mfKvpfFZ+7x1MTSdSD79l2qDnK1z+z/PiI3Jjb/0GF/QZizsV 7h8ySHSNjPIpdMZQhsaQSCbx+Tx63wfdFfg81UU9izzdulokAm1S9CHoeEQO cex0Go6bztdM8Lv3eS4pz5Y1T0GXfh93durPI12JWRGF6HVyy4wdtj8j2eyL TpVo+wJ26VfPAmJcEFvwFh1voqpsd7eQOLBC6gfQ/mUckT8vFJM6JbNyrjIF Q6NbBExrCQkXdjmpgQ7WrZUXuJQS9RO+CdvR3NC91mnCZaTZ2dr+KPoAx/YV V7WcGPuEZ2ehay19HrOvvSRTBSLaFWjHFOHur+x/SZuGmE4bWmgkZFVS4b9E XyT44UwVCjSD48PleiuIRdXfRvvRKcX5J2W3VhPv7UXJHmi9ebrpn9qqScKM GWeC0R/NK7/ecq8hSl/sQ4rQEkNNplK3awlP5eExtioFJWLjsUHn6siWpPq+ eWoUrN289PzV5jdkn9C182vR8aIqazby6skUB+J3o+e/310z5l1PfhtP+N1A 97kGLLeTaSBzVwQNczZgPxN+5xD7RlIuepU4qlPAn+gcGB5+R+pmOSSEo2Nf /hGVuqWJ2HSvCipEzw2XIjZRTSS24uZsCQ0KejlmQa80m8mdvRZXq9CpplWc +74tJE5N4souLaznk8c2+0XbiOQmvYiL6OhztbMlbNoIWVXKyUHP2d7zqPpJ GxE7whqQ1qag+5PclLrpByImc6ZzDH1vflSMePxHwp0tovecUCCuQro7F7eT X18szuTqUhAeKr86+p8OQq9NejWG1uryNS2u6CB+PxdeV9OjoJN8Cvja30H0 zwV65aKV+6OH12t1Eu+88uCizfjeDUVfVDV0kpIm4cbPW7HeIuMOk/RX4ubU be1tQEHUpbr0Aw5dJESgGFmBhjamwz+4i9ScEFFbYojvWTlgyYPMLuL7KfnZ E/SGzs0XfrK+kdAYqYrvRhQ0b8rfHXbzGwlqin/is5sCSVbScGllN3H1KZPv N8H6nj6jwWYEZEGVVuRWUwoW73zfGmQsIEGm5bYJ6ODV2meHPQXk0TnR1XvM KDhf/bvoeYmAnL9VurjAnAIbKd/NVmZ9xP5lYOxtKwrYJVd2XbvYT/SStY5m 2GB8oR1PJnsHiL3VEdO3zhTYGphV2OsOEdbZS3JGJyj4NlX4/pHpEDHKzDR6 gT7+RH7gpxP6fnNujgsFXpJDEoERQ+Q1f7w53o2CgK4g20dfhkhH3ODEWU/8 336lUz8uD5Og2QXss+cpYBUoql6tHiHJ848/cAylII6h/0nb+4ME8b7F5mdQ 0GYQet1w4SThZei/SG+hQObj25i1y/6AQutjHpqUELTYxmkVxVEg37arfTFH CG7M3tM9MUpDnfCndOndQnD43eu+QV9hiHd28HntLgQbygjrRscciLdVMimM FIJF5760b9wwD/LuXpB8lS0EUwf+krxbtACS1BMOseqFwPPP5rWt8xbC/mPt cXF9QjD2oneS7BUDB8byeO1MGsY3rVBOub4I9BN049slafAxKj1hXyIO6p0n C6QUaQjtq23ynSUBHgmHDT9r0yArZbx1RHUJ9L4Jra4yoEHjs3p76fmloJav KOZpTkNToHZHZMkyWCZYqZhziMZ4uT2F/ZKwjd/Qs+sYDbcio6T1VFeA33iy 6KyTNFQM9ZvL2K8EiYgkQfAZGjw3HJqYuiYFySWxA7d9aEhfqFmp+VYaxEQu u3r706CkvXmnva8McBo+1oxdpaFBU/qV9RpZOKUQ7fc4mIYcZhZl9lIW9g0s uZN0jQbL/7hPvfetgtO2ad37I2jQ7WFd3slaDWtSBuUvX6ehN1vsnWHUahC/ ZhexJ4qGdyfXtxoycuAolpjy6yYNM88LjYzXyoHp1geLt8XQMLpTLKzRTh5o 67XNXrE08Jze6O2bvQZWXZJUdYjD+hjVnha9vQaaQ4QEivE0mMs12ZarseGy 5xyLTnSjXoStQgsbdtial35Fe8glxPu/Z8PqDmHeN7SEUFpT5wc2VDUEjQjQ ZqWlBokdbOgRM/QcQ7/fOKQsKWCDiUKA4pxbNHTqGNNzWQpQLqLipoge3iCa 1C+vAPN7kwNd0WJM4H/ZLgrgsyDuuTv6fWNf81Z3BbhtODzsgU46t7u6yUMB rmXVmJxBa9RJPP51RgGs9A1m+aFt3BJP6/grwJ6bHisi0Rl52fNeRCtAgOI2 6Wy08ZZ2pcZSBZi8l14yhA7fr3phaDEHis2VQ0fQXHA85bWUA+B91GoMXSIT 6zopyYHBsrGBX+iB9j/sZslw4OBg+JwZCTQY2NboL+dyQET2AUsULeRou0hX hwNPJyN/c9HurmFJYYc5oLus98Q+tMmlvuo/c/B8mniTNXruXkX3gDwOvKC2 6xxAl8gdX/4lH/cvtc06hFYsEzhGFXNAzDAvxAE9kxLMnKrgQO/1Wlc3dM6F Hqh+z4HN0Y+uXkEv9e7KPDyDC9avJVY9Qre4fo6NMeTCyLekI4/ReSKnJti7 uGBUr5eRgY66s8Aq05gLo6/TdLKm83urtbzGlAsHvMDgKbpe/cbN3we5UJ48 V7MMXc0yuH7Qgwt63DdO79CFwVkh7FtckDxupz2O/uf+Fd8nA1yg/Q9qTaBv r+eHig9xIerYA41JdMLTV3EnR7jAuaKqMoWOrZTIU/vFBbF2yVVUIg0R3Xf6 8ykenGoIa52D9uc+tyqT4IFSml3dMrTD/Z+qjVo82HOkvlkFzdw/0jN6hQfr 7YXTVNE/HD9M7QjgAZxNP6uGLuMYiycG8eCqy05pdbTFPXXtHWE8qGjss9Sa vj9FOORWDA9mxo483YT+lJS0fls6D3p1ksV2osP/+XzqZj0PLnEmNA+jf8Za CGtJ8WFP5raJaffJyzeWyvBBMDLzmT36c3p/4o7VfHDRaFF3RFcW+2laKvBB jPpP8Sg6pjP9+On1fEj1GvztgtbmU425W/ggF/K3+lm0T35qooozH9w8Ypgw 9OyWCY21xXywLEgtmfYK44asgBI+BDz7yzQcva4ydV1XGR9yJ1zOR6BNnlqs SazgwzOF9srr6DvRuQsX1fMhOL/WKAatY+neNfqFDw+ans+9g3Z93xNZKMJA /s2dzpnolg8tA4amDEzEsMenbe22JG/AnIET8uH+WeiOWX/5hFsxELZ0TWw2 unddzcLmgwz4eeuV5KKnfIvW2x5loNL8/q9naDn2HffTPgzkSmyVKkcfcz72 IymVAf10Xty0B6n7xfrpDDx++GD5C7RH1NcrvY8YkF0ZsOQl+sLz/cvWZzMw 882TORXosEXGGgXFDLAdJz9Uo7NzVL3rGxn4w73VtAatYeCm59HEwNhFy7pp F316OHdZKwOBbzYV16L/nc2Js/7EwOjPrJg6dKvl8sJv3QyU/05d+Bp9YMDU P1DAgGDjlsvT7vSLMFo7wMBwjIPLm+l+P5j30X2EgRSd71+m7bppe/KSHwxY qUlb1KPH3vo7P/3FgFfVYM20vZ1K1fZNMqAIRzc2oFn/H4rwP7Yld6s= "]]}, Annotation[#, "Charting`Private`Tag$7448#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwd0gc01t8fB/AnnkGIyGyR9axvMqJQ95ZRQkNFyyqiVEqirFA/lGiIhIQy QlIySnFDg4yys1L2eHjyIIr87/O/59xzz+ucez6fz3nfq3TU3cpZgEQifcKb f4L8hurqajIijFaM/NRVALsd3IRqsL3JMQll8DyIJRsU8P3rc2nzPtErQFpp a3Mtdlq0jv32izfA3PfLrl+wc5418lZO3AElMrxT9dhhy8SLZDPuAbJpXE8j 9rFLZn5L7RJAwf3z1S3Yq8e3JFGuJ4F/g37q7dg3lOyDBfpSgElB3mQX9uxe P6cFkAr0NaR1erCPh9w3nYtLBy3sxL4B7MaiAvrs1BPgqG0uzMHeMtKweHp3 NjjrIfdwgj/Pyl+jE1k5gFuxKH0Gewk9dMD7Si745CojRq0hI99Djys9u16A tk96bmLYL3gv9HkiL0HXQUcDaezBG++yzm3MB5Tr+Zpq2NalXRFn7haC0KgG Gw3sGwc4/0bfFYGqlO7xDdjlv/66u42/At7UrAuW2OtU5K1cd7wBPUoHjx3A dnmrXt7v/RawvraUHcNOtNbVcU4tAZQ2lRZf7JAKhohmIAJlz+f2PsfmTZty iPYyIN6yrq4UO9KoVpVzrhzAn4PFtdjMW/vtsoUqgL5s0RAH24HhVMfUfQ/s UsKiNWvJqPZw0HP12x+BwVBUvBH2iQyh4X71T8DE/Z2kNTZ56uaatJJPQFbL Yp8ftkFkYpTKaCXwZEWsqcXOQMUXlLZVg0WW8rk92MZiRjndndVAgtiTM4v9 /WBV/0PPGuBfGjynVkdGMrxWm1UptSBRb2lXCHaZ5N+EiIAvwOsUJ/XwFzLS MJG7fP1bPbjeRUrxwU6UWK+2hdUA1gqtVorDXtKxp+a3XwNIrhTLaMMe8whf 7qzYCMy8E5ocv+L3TPpXCFyaQKiGRXRYPRmx53q5k5MtYNR++8tn2AkfF8Vm mbaCDRznfS3YolGrwNHYVrDyma8svYGMRhkHIuoMvgFmv15qHXaWzWdGZnAb 0BREJbpNOM+850ftJTpBgWJzlzN2XECtsMzRThD6ucA/GnvxjpHc6rxOYHBW W28ae7hbZWGjTRewPn/17ttmMnqyJDZ+WeJ34JsTVH+slYyWrQfDvdI/wMf1 6TJiHWQUdUtVOe5RD9iz4B+5DdtwMNgGVfaAdNu37sHYvaA7vH+8B5R3fjg9 i60zHjepZdgLhAXZe0c78X+3lPjwubEX6Oy7Ft/3Hect8td1ntIPQlUsm1V6 ySj2vy85Dq6D4DaJrnQKG3YSPSGRg+DmL7e6POxBnXDZpy8HgfN62/3GfWS0 odckcJY0BCa48otO9pPRt63Fe+7cHwIss9qMj4NkpEBKmyyvGgatqO1FFQfn 6+Orr05wANvD3HbFGBlJ7+poj7DiAF+taw5nsCOVN/lPenPAV6drZ6XGyehy 9b/Sd2UcoDBkn+vIJaOjq4JNjhwYAwN/v/kt4ZGRelnY7ttXxgEnOCUzfQb3 J5vnzY9ygWt3TH0VmYKcLA5UuhjxwON8D/+NFAoaWijpyLXhAeKIT0AG9pk8 Ve6sGw9UiRYEhVIp6KICT+bGXR6wEfC8YiZEQeGDEU65fTwg95FO7xShoBdX yxdmQieB7HbPm1CKgkhv1+per54C7PYprd41FPSAoDzK3j8DnMD71MStFNRp cSvGcuk8SN8h8DvKhYIUvzfHa8gvglZ/W8xWR1BQm9MDw9IHgvBV9KC/di4F 3RPeOzw3TYF11e2aNk0UdLzl69hEsBDU/SjY5TtNQRsqAOlez2L4sUDzqbQ0 FUkF9P3YskEMFv5e5NqqTUULDvsUUkvF4eYK7U9yO6nIW/ObRrvYUuj4XX6m 0YWKfn8YnQf7JeHcvOEK5wAq+rt1hU5GjBSUnNfiKt2moqCd5WddypZBOTev UflHVHRrrLY1mCYDad2yxk3PqUhpldW2KV1ZeMq6NeNDKRXp/9z4o/yyHKyK OnM76TMVtd7Y1BNdJg9vGuiADU38fkUjJeMK8HOoC3V9FxU9jI5dbay7Ar4K q0s93UdFlbzxg4ouK6HL0Mv74SN43g3H5hZur4IK7+xsN/2iopylBlUGzavh tQb7/E9TVKS9yWSXS7AiDETKAnOzVNRosLrOTk0J/muymLo0T0WFBE3wwEcl +JnVXQRINHR4gPnaz3YNzIhUPl8jQENGI6TQXSRl2B3UbVFPpqHRAskWy1hl 2LouTiSYSkMtF7TaLQkVGHjYqmqJEA1RL5On/taqwHaTap9twjQ0vUvyTpOz KmRqelk6L6Yhllu9sa2wGvQsPFhtIkJDSjtrfSRS1ODkM3mCJEpDB1Vand7r qUMH9i+bTOwm47tO9DZ1eNueF5eN7aWSlBjSoQ7DZ9w7crBlyNmtvV3q8PP+ jkN52AfKyy2Se9ShxdkHJm+wO7bwdBQ46lA8P6GhBrt3sxVFlESH+RSL1nHs yQ0SaeOqdKg351CkIUZDksSNgYJzdAiLzas0sTuaxr5t86RDaYsXbdrYaQF7 qlu98P31v6f1sPW/yDz/40uH1/UDVkLso+eTfTaH0GGtlbvybuwXrwrEPsTR YV4nQ8Ed28r0h3ZTOR2uzpceycCOstcN5Ekz4B+v+fhMbCY8cemiHAO+ccw2 z8YuU0zwmFdgwME1x9KfYXN/LHKmKTJgg5nF7gJsC6cas+VMBjTlVbmWY5NP OEkZbWbAPZI7Xndge3rcSbtznAHtrARERZfQkPV/Y9WahQz4hBg4IoYtun+t Z/grBrzUP5C9BLtM5czyvmIGTDEHO5Zir63gnIhFDPja3NpHBpsqyKEuVDJg t1p6riJ2YeAIrO5gQInlXy/pYMv5Db48LsCE4QWkBwex2zx+JsRbMqFAvPbX Q9ivRC7Nqe9mwlLrK+Qj2LGPxY+8tGJC+5++rnb8+ZoNl9fYMKG/dI/qMeyG jffu/3NkwqP1Mt6nsKtJFjGOXkzoLubkHYBdEpl/U/0hE0YyCyWSsB9lhgXn cZmQs7Z/ge8ULfatZTwmtOa6jyVjJ72ue3BhiglVT0RXPsJOqJJ5pfeHCVMP 6VxMx747/Hi8WJAFz0WuKczBDmG+O1Ihw4L1Ui9L3mC7Zs7qNhmy4PuQ4yIt 2ETmyZHpMBZcZRj9he+ZE10L5uEsyOnfFN2KXcGwWpYcwYLDQf9WtGEferJx k/kdFiy9YqrWya+fIXTzYTwLhj3drNiD3Z2WprU9hwX3FrNejmFHPfp56X4D Cy4WVTtDFqeh2YRDQoar2FAnL2wNBXtMVbWpXJENWT3OzXz/zBlPNldmwxqH 24Y07Cp01eAwnQ2bDxUKLMaO780546PFhlez7niJY29iCzYVmbKh0aplC/LY QcVZyevd2fDMtW9pBLZw25y+BmLDkB9PtdZir7BqzA8vY8O7B5RK+F5XlbVu sIINZbL6GzSwrV8fUkuuZMP3ohN/NLEfxxUtlWpgw+MRxnq62JsPew5O97Fh sWzMyc3YHh0j0SUiBLTT3V1pid3W1ca1tCHgm+wAi53YdudlX3EPElD62LY6 vnto+4KijhCw4X1Gwy7s0XU1S785EjDta17LHuyF4FItp1MElCsiavZjq6g/ 9vQJIqDpwGt3W+zT7qdn0rIIuNGpvJ/vCcFMZJZDwLbj7rZ22F6x/WGjuQSM kc0zs8cOfGcvr1VAwPBG7kpH7DtSVvpvEQH9/YPznbALCnX9GpoIqCXQq+aM rW9x3tirlYCv7Tj3+C7tfiYq307AyuyZi8exPwkzHth1EzCIO6Prit1+eHnJ 0DABG8OSUvl24NqE3OAQcHjJhNQJ7N6rd3dqcAmYPRI1zvfYU7HvnlMEDHzf e+QkP7+tO9JlZwh4Iqq7ku/fzSHur//g+jGhum7Yfm7lerbzBMwVb0vhm/T/ tRb+D0iU0XE= "]], LineBox[CompressedData[" 1:eJwd0gk01U8bB/Abd1GWQtZKZL3LL1lCqHlaKKFFRZsteyolUbai/ihRSAmV lKVISpZSCGWnXMvNlrIkXNSlKPLOfeecOXM+c+bM85zvjNIRLysXARKJVI0n f0X57Pr6ejIQm5ePfNWTR7scPIUasP3IN5PL4TRKIBsV8P2jrrRtr8hFJKW0 qa0ROz1e137b2ato9vN59w/YOU9beCt+xqISad6xZuyIpYuLZDJvIbJpYl8L ttM5s0Bxu2RUcPt0fTv2yvGNKZQrKejfUKB6J/ZVJftQgYFUZFKQN9mDPbMn 0HkepSFDTSndPmzXsNums4kZqJ11d+AbdktRgcbM1CPkqGO+kIu9cYS96Neu bHTSW/beT34/K36M/szKQROVCzKmscU0wr/5XcxF1e7SotQGMgQcfFjj0/Mc dVTre4piP+c9N+QJv0A9BxyNpLCHrr7NOrUuH1Gu5GupYVuX9kSduFGIwuPY NprYV/dz/42+LUK1qb3jBtgVP/56eY6/RH7UrDOW2GtU5Kzct79GfUoHnPZj u71Rrxj0e4OYH9vLnbDvWuvpuqSVIEqHSnsAdlglXVjrQhkqfza75xk275cp l+gsR4vb1zSVYkdvblTlnqpA8HWouBGbcX2fXbZQJTKUKfrOxXagOzcx9N4h u9SIeK1GMjQeCnmmHlOFjL7HJW3G9sgUGh5Ur0YmXm8lrLHJU9dWpZdUIxlt i72B2EbRd+NURmuQDzNqVSN2ZlnxGaWt9WiBpVxuH/YW0c05vd31aAmxO2cG +/OB2sF7Pg0oqDR0Vq2JDNI8jo1CaiO6qy/eE4ZdLvE3OSr4A/I9xk079IEM miay5698akZXekip/th3l6xV28hko9VCK5USscW6djf8DmSj+zWimR3YY96R y1wUW5CZX3Kr40f8nin/CpFbKwrXtIiPaCYDa7Z/YnKyHY3ab3vxFDu5akFC likHGXBd9rZji8QpoCMJHLTiaYCMBpsMo/T9UU1GnxBjUD+tCTvLpo7+OLQD aQmWlei14jzznh2xX9KNChTbelywE4MbF0of6UbhdQVB8diLto/k1ud1I6OT Ovq/sId7VebX2fQg69OXbrxpI8MjsYSkpXc/o4CckGYnDhmWrkXD/VJfUNXa DGnRLjLEXVdVTnzQh3bPB0VvxTYeCrUpq+lDGbZvvEKx+1Fv5OB4H6rofn98 Blt3PHFS27gfLRRk7Rntxv/dcsn7upZ+pLv3ctLAZ5y38F/3OcogClexbFPp J0PCfx9yHNyHUAxJQ+kYNnQTfWHRQ+jaD8+mPOwh3UiZJy+GkMta231bBshg 0G9yYYb0Hf2ckFtwdJAMnzYV7469/R0xzRozq4bIIE9Kn6yoHUacso7ntVyc r3+AoTrBRSxvc9vlY2SQ2tnVGWXFRQHalx1OYEcrrw+a9OOij86XT0qOk+F8 /b/St+VcJP/dPtdxggxHFEJNDu8fQ9/+fgoU45FBvTxiV8zFccQNTX2cMY3r k83z5kYnkHvvzeZaMgWcLfbXuG3moYf53kHrKBT4Pl/SlWvDQ8Rh/+BM7BN5 qhMznjxUK1IQEk6lwFl5nvTVGzxkI+Bz0UyIApFDUc65AzwkW6Wh0S1MgeeX KuanwyeRzDafayBJAdKb1XpX6qcQq3NKu38VBe4QlAfZ+6aRM3qXdncTBbot rt+0FJ9DGdsFfse5UUDxc1uSptwCsPrbbrYyigIdzneMS+8Iwsv4oSCdXArc WrhnePYXBZrqO7VsWing2v5x7GeoEOhVCfYE4H2DSkS61bcIqgq0nkhJUUEy eODLRgNRKPy9wJ2jQ4V5h73yaaWLYUOlTrXsDir4aX3S7BQVB8fPctMtblT4 /X50Du2TgNk54+UuwVT4u2m5buZNSZCY055QiqFCyI6Kk27lS0HW03dU7gEV ro81ckJp0kDrldnS+owKSgpWW6f0ZOCYNSfzfSkVDL+u+1JxXhZq407EpNRR gXN1fV98uRxcM9JFBq38ekUjJePyUBfuRl3bQ4V78Qkrt+gth5cRTWnHB6hQ wxs/oOi2Aty+v7gdOYL7NXCanY9RAPm3drbrf1AhR9yo1qhtJVxm2+dXT1FB Z73JTrdQRbhQpiwwO0OFFqOVTXZqSvCv1WLq3BwVCgma4P4qJahj9hYhEg0O fWO8CrRdBZnRyqcbBGiweYQUvpOkDL0hvRbNZBqMFki0WyYoA2dNonAolQbt Z7Q7LQkVuHDIqlZMiAbU8+Spv40q0GlS7791IQ1+7ZSIbXVRBYaWr6XLIhow PZu32C5UA5/CA/UmwjRQ2tHovyRVDSafyhEkERocUOE4v9NXBwfWD5vH2K1b bjhrdKhDjD0vMRvbVyXlbliXOkROe3XlYEuTszn9PepQt6/rYB72/ooKi/t9 6mBx8o7Ja+yujTxdea46LM5PZjdg92+wooiQNCCfYsEZx540WJI+rqoB+rMO RZqiNJAgrn4rOKUBUGxeq4Xd1Tr2aauPBkhZPO/QwU4P3l3P8cXn1/7+pY9t +EH62Z8ADbhiGLwCsI+cvu+/IUwDGq28lHdhP39ZIPo+UQPyuunyXthWpl90 Wis0YGW+1Egmdpy93gWeFB3++M4lPcZmgMe5s7J0eO2YbZ6NXa6Y7D0nT4eh VU4ZT7EnvixwoSnSgW1msasA28K5wWwZgw6mvFr3Cmyyh7Pk5g102C2x/VUX to93bHqsKx3srARERMRoYP3fWL1WIR0eEd8Oi2KL7FvtE/mSDucGv2WLYZer nFg2UEyHVHO0XRx7dSXXI6GMDq/Mrf2lsamCXOp8DR161TJyFbELL4xAfRcd liz7eE4XWzZw6IWrAAMiC0h3DmB3eH9NTrJkgECSzseD2C+Fz82q72JAqfVF 8mHshIeLD7+wYoD91wB3O35/bcbLGmwYECTVp+qEzV536/Y/RwYcaZb2O4Zd T7K46ejLAC9RZ79g7JLo/Gvq9xgQzShckoL94HFEaN4EA7irB+f5TtVmXV/K Y4D1hNfYfeyUV013zkwxQNUjvuYBdnKt9Ev9PwxIO6h7NgP7xvDD8WJBJpyK XlWYgx3GeHu4UpoJzZIvSl5juz+e0Ws1ZsK7MFfhdmzi8dGRXxFMUDCO/8D3 tEfPvHkkE7iD6+M52JV0q6X3o5gwHPJveQf2wUfr1pvHMqH0oqlaN//+TKFr 95KYEPFkg2Ifdm96uva2HCbsKWa+GMOOe/D13G02ExaJqJ0gL6bBTPJBIWMF FujmRayiYI+pqrZWKLKA2efSxvfXnPH75sosaHCIMaZh15ZdMjqkwYK2g4UC i7CT+nNO+Guz4FJWrO9i7PUswdYiUxZsVlg6L4cdUpx1f60XC05c/pROYC/s mDXULGNB2Jcn2quxl1u15EeWs+DGfqUSvtfUZq0ZqmSBdNYgWxPb+tVBtfs1 LHgn8vOPFvbDxCJxSTYLXKO26OthbzjkM/RrgAXFMjePbsD27hqJLxEmwE5v V40ldkdPx4SlDQGvs4MtdmDbnZZ5OXGAACmnrU1899H2hsQdJoD9LpO9E3t0 TYP4J0cC0j/mte/Gng8t1XY+RoBsEdGwD1tF/aGPfwgBpt9eedliH/c6Pp2e RcA654pBvn8KPi4zyyGgw9XL1g7bN2EwYjSXgJsyeWb22Bfe2stpFxAQ2TKx whE7VtLK8E0ZAUFBofnO2AWFeoHsVgK0BfrVXLANLU5v8eUQ8MqOe4vv0t6n InKdBNRkT591xa5eSL9j10tAyMS0njt256FlJd+HCWiJSEnj22HCJuwql4Bh sZ+SHtj9l27s0JwgIHskbpzvsSein32mCLjwrv/wUX5+m7ZnyEwT4BHXW8P3 77Ywr1d/8P03w/U8sQM9K/Rt5wjIXdyRyjfp/2M1/A+/5m1x "]]}, Annotation[#, "Charting`Private`Tag$7478#1"]& ]}, {}}, {{}, {{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{-4., 15.}, {4., 15.}}]}}, {{}, {}}}, {{}, {{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], Dashing[{Small, Small}], LineBox[{{-4., 0.}, {4., 0.}}]}}, {{}, {}}}}, AspectRatio->NCache[ Rational[1, 3], 0.3333333333333333], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 15}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->500, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-2.2, 2.2}, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.05], Scaled[0.05]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{{{-4, FormBox["4", TraditionalForm]}, { NCache[-3^Rational[1, 2], -1.7320508075688772`], FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, { NCache[3^Rational[1, 2], 1.7320508075688772`], FormBox["1", TraditionalForm]}, {4, FormBox["4", TraditionalForm]}}, None}]], "Output", CellChangeTimes->{3.951388964648898*^9, 3.9536080703196774`*^9, 3.967967123986408*^9}, CellLabel->"Out[59]=",ExpressionUUID->"84c89c93-1a90-42c6-8b9a-3cb9262ddb17"], Cell[BoxData["\<\"KS_embeddings.pdf\"\>"], "Output", CellChangeTimes->{3.951388964648898*^9, 3.9536080703196774`*^9, 3.9679671241301084`*^9}, CellLabel->"Out[60]=",ExpressionUUID->"452a0c76-e19e-45a7-b1b8-7154b52bcdfa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Near the boundary behaviour of the embedding", "Subsection", CellChangeTimes->{{3.9473250764951477`*^9, 3.947325099961667*^9}, { 3.9679674247135277`*^9, 3.9679674273770633`*^9}},ExpressionUUID->"c75473cc-d1be-442b-9c46-\ 2e50b6cb65a5"], Cell["\<\ The Klebanov\[Dash]Strassler background exhibits a somewhat intricate UV \ behavior near the boundary, so the equations will require some manipulation.\ \>", "Text", CellChangeTimes->{{3.9679520272061234`*^9, 3.9679521039570765`*^9}},ExpressionUUID->"dc47bc63-8b0b-4e34-a09a-\ 8b67395e35e1"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"hprime", "[", "\[Tau]", "]"}], "//", "TrigToExp"}], "//", "Simplify"}], ")"}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"num_", " ", "\[Tau]"}]], "->", SuperscriptBox["e\[Tau]", "num"]}], "}"}]}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Series", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"e\[Tau]", ",", "\[Infinity]", ",", "15"}], "}"}]}], "]"}], "//", "Normal"}], "//", "Simplify"}], ")"}], "/.", RowBox[{"e\[Tau]", "->", RowBox[{"Exp", "[", "\[Tau]", "]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"hUV", "[", "\[Tau]_", "]"}], "=", RowBox[{"Integrate", "[", RowBox[{"%", ",", "\[Tau]"}], "]"}]}], ";"}]}], "Input", CellLabel->"In[61]:=",ExpressionUUID->"db7a7e26-a56f-4bce-87ec-e269a2e42026"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["e\[Tau]", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["1", SuperscriptBox["e\[Tau]", "2"]]}], "+", SuperscriptBox["e\[Tau]", "2"], "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], RowBox[{"1", "/", "3"}]], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{ SuperscriptBox["e\[Tau]", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Tau]"}], ")"}]}], "+", "\[Tau]"}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["e\[Tau]", "2"]}], ")"}], "3"]]}]], "Output", CellChangeTimes->{3.947310648819739*^9, 3.9473106826501412`*^9, 3.9473251270729847`*^9, 3.947325599746299*^9, 3.951388964899006*^9, 3.967952171031181*^9, 3.967967124185855*^9}, CellLabel->"Out[61]=",ExpressionUUID->"20937206-4b89-4626-9d04-6bb55766ec24"], Cell[BoxData[ RowBox[{"-", RowBox[{ FractionBox["1", RowBox[{"6561", " ", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[ExponentialE]", "\[Tau]"], ")"}], RowBox[{"40", "/", "3"}]]}]], RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"6561", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"12", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Tau]"}], ")"}]}], "-", RowBox[{"4374", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"10", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"3", "-", RowBox[{"8", " ", "\[Tau]"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Tau]", "2"]}]}], ")"}]}], "-", RowBox[{"1458", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"8", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"12", "-", RowBox[{"51", " ", "\[Tau]"}], "+", RowBox[{"16", " ", SuperscriptBox["\[Tau]", "2"]}], "+", RowBox[{"8", " ", SuperscriptBox["\[Tau]", "3"]}]}], ")"}]}], "-", RowBox[{"162", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"6", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"135", "-", RowBox[{"792", " ", "\[Tau]"}], "+", RowBox[{"378", " ", SuperscriptBox["\[Tau]", "2"]}], "+", RowBox[{"128", " ", SuperscriptBox["\[Tau]", "3"]}], "+", RowBox[{"160", " ", SuperscriptBox["\[Tau]", "4"]}]}], ")"}]}], "-", RowBox[{"27", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"945", "-", RowBox[{"7047", " ", "\[Tau]"}], "+", RowBox[{"4032", " ", SuperscriptBox["\[Tau]", "2"]}], "+", RowBox[{"2688", " ", SuperscriptBox["\[Tau]", "3"]}], "+", RowBox[{"1280", " ", SuperscriptBox["\[Tau]", "4"]}], "+", RowBox[{"2560", " ", SuperscriptBox["\[Tau]", "5"]}]}], ")"}]}], "-", RowBox[{"72", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"405", "-", RowBox[{"3672", " ", "\[Tau]"}], "+", RowBox[{"2646", " ", SuperscriptBox["\[Tau]", "2"]}], "+", RowBox[{"1632", " ", SuperscriptBox["\[Tau]", "3"]}], "+", RowBox[{"2280", " ", SuperscriptBox["\[Tau]", "4"]}], "+", RowBox[{"1024", " ", SuperscriptBox["\[Tau]", "5"]}], "+", RowBox[{"2816", " ", SuperscriptBox["\[Tau]", "6"]}]}], ")"}]}], "-", RowBox[{"8", " ", RowBox[{"(", RowBox[{"4050", "-", RowBox[{"43173", " ", "\[Tau]"}], "+", RowBox[{"35640", " ", SuperscriptBox["\[Tau]", "2"]}], "+", RowBox[{"31320", " ", SuperscriptBox["\[Tau]", "3"]}], "+", RowBox[{"28800", " ", SuperscriptBox["\[Tau]", "4"]}], "+", RowBox[{"58752", " ", SuperscriptBox["\[Tau]", "5"]}], "+", RowBox[{"22528", " ", SuperscriptBox["\[Tau]", "6"]}], "+", RowBox[{"78848", " ", SuperscriptBox["\[Tau]", "7"]}]}], ")"}]}]}], ")"}]}]}]}]], "Output", CellChangeTimes->{3.947310648819739*^9, 3.9473106826501412`*^9, 3.9473251270729847`*^9, 3.947325599746299*^9, 3.951388964899006*^9, 3.967952171031181*^9, 3.9679671242023616`*^9}, CellLabel->"Out[62]=",ExpressionUUID->"55761d66-1027-4651-9581-e51da6d04014"] }, Open ]], Cell["\<\ In particular, it is useful to work with the exponential, rather the \ hypergeometric functions,\ \>", "Text", CellChangeTimes->{{3.967952143696653*^9, 3.9679521697737193`*^9}},ExpressionUUID->"bfadfb7f-1043-407c-b775-\ e504b979470f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"eom\[Tau]subs", "==", "0"}], ",", RowBox[{ RowBox[{"R", "''"}], "[", "\[Tau]", "]"}]}], "]"}], "//", "TrigToExp"}], "//", "Simplify"}], ";"}], "\[IndentingNewLine]", RowBox[{"eqaux", "=", RowBox[{ RowBox[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{"\[Tau]", ">", "0"}], ",", RowBox[{ RowBox[{"%", "//", "Simplify"}], "//", "Flatten"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}], "/.", RowBox[{ RowBox[{"(", RowBox[{"x_", "->", "y_"}], ")"}], "->", RowBox[{"x", "-", "y"}]}]}]}]}], "Input", CellChangeTimes->{{3.9409313775360365`*^9, 3.9409314496933775`*^9}}, CellLabel->"In[64]:=",ExpressionUUID->"149b81d4-f0a6-474d-8669-e7e2f17b0e6d"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "5"}], " ", "\[Tau]"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], ")"}], "5"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}]]}], "+", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], "-", RowBox[{"8", " ", "\[Tau]"}]}], ")"}], RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "3"]}], "-", RowBox[{"8", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{"-", "\[Tau]"}]]}], "+", SuperscriptBox["\[ExponentialE]", "\[Tau]"]}], ")"}], "5"], " ", RowBox[{"R", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"], " ", RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"12", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "5"}], " ", "\[Tau]"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], ")"}], "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[Tau]"}]], "-", RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], " ", "\[Tau]"}]}], ")"}], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], "2"]}], "+", FractionBox[ RowBox[{"72", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "3"}], " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Tau]"}], ")"}]}], "+", "\[Tau]"}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[Tau]"}]], "-", RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], " ", "\[Tau]"}]}], ")"}], "2"], " ", RowBox[{"R", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], "3"]}], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], ")"}], "2"]], "-", RowBox[{"12", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "3"}], " ", "\[Tau]"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}]]}], "+", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], "-", RowBox[{"8", " ", "\[Tau]"}]}], ")"}], RowBox[{"2", "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "+", RowBox[{"5", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"6", " ", "\[Tau]"}]]}], "+", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"3", "-", RowBox[{"12", " ", "\[Tau]"}]}], ")"}]}], "-", RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}]}], ")"}], " ", RowBox[{"R", "[", "\[Tau]", "]"}], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], "3"]}]}], ")"}], "/", RowBox[{"(", RowBox[{"24", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{"-", "\[Tau]"}]]}], "+", SuperscriptBox["\[ExponentialE]", "\[Tau]"]}], ")"}], "3"], " ", RowBox[{"(", RowBox[{ FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}]], "4"], "-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], "4"], "+", "\[Tau]"}], ")"}], " ", RowBox[{"R", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}]}], "+", RowBox[{ SuperscriptBox["R", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]], "Output", CellChangeTimes->{{3.9409313877274284`*^9, 3.940931450237514*^9}, 3.947310684207251*^9, 3.9473251277877755`*^9, 3.947325604103277*^9, 3.951388965757885*^9, 3.967952175258445*^9, 3.967967125029321*^9}, CellLabel->"Out[65]=",ExpressionUUID->"ef81b067-e3fc-4baf-abe7-46020144cbb6"] }, Open ]], Cell["\<\ In this way, we can treat the exponentials order by order. The following \ computations actually take quite some time, if you lack pacience you can load \ the solution from the initialization cell below.\ \>", "Text", CellChangeTimes->{{3.967952143696653*^9, 3.9679521697737193`*^9}, { 3.9679522133997674`*^9, 3.967952230426649*^9}, {3.967952374512477*^9, 3.967952422591194*^9}, {3.967967138474292*^9, 3.9679671533059015`*^9}},ExpressionUUID->"786c454e-3e57-4fa6-849d-\ 1b41284671a2"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"eqaux", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[ScriptH]", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"hUV", "[", "#", "]"}], "&"}], ")"}]}], ",", RowBox[{"R", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"R0", " ", "+", " ", RowBox[{ RowBox[{"f1", "[", "#", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], RowBox[{"#", "/", "3"}]}]]}]}], "&"}], ")"}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"num_", " ", "\[Tau]"}]], "->", SuperscriptBox["e\[Tau]", "num"]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", "\[Tau]"], "->", "e\[Tau]"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"aux", "=", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], "%"}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"num_", " ", "\[Tau]"}]], "->", SuperscriptBox["e\[Tau]", "num"]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", "\[Tau]"], "->", "e\[Tau]"}], "}"}]}], "//", "Simplify"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], ">", "0"}]}], ",", RowBox[{"Series", "[", RowBox[{"aux", ",", RowBox[{"{", RowBox[{"e\[Tau]", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}]}], "]"}]}], "Input", CellChangeTimes->{{3.947310838745514*^9, 3.947310918218644*^9}, { 3.9473109485339146`*^9, 3.9473109744447117`*^9}, {3.9473110597037516`*^9, 3.9473110973360443`*^9}}, CellLabel->"In[66]:=",ExpressionUUID->"fb838763-939c-4c69-9a8b-35af3ad692ba"], Cell[BoxData[ InterpretationBox[ RowBox[{ FractionBox[ RowBox[{"9", "-", RowBox[{"36", " ", "\[Tau]"}], "-", RowBox[{"32", " ", "R0", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "+", RowBox[{"72", " ", "R0", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], RowBox[{"72", " ", "R0"}]], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", FractionBox["1", "e\[Tau]"], "]"}], RowBox[{"1", "/", "3"}]], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], {}, 0, 1, 3], Editable->False]}], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], { Rational[1, 72] $CellContext`R0^(-1) (9 - 36 $CellContext`\[Tau] - 32 $CellContext`R0 $CellContext`f1[$CellContext`\[Tau]] + 72 $CellContext`R0 Derivative[2][$CellContext`f1][$CellContext`\[Tau]])}, 0, 1, 3], Editable->False]], "Output", CellChangeTimes->{3.9679671363740373`*^9}, CellLabel->"Out[68]=",ExpressionUUID->"4d196d1c-50cf-4566-b764-275274123cdb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"f1", "[", "\[Tau]", "]"}], "/.", RowBox[{ RowBox[{"DSolve", "[", RowBox[{ RowBox[{ FractionBox[ RowBox[{"9", "-", RowBox[{"36", " ", "\[Tau]"}], "-", RowBox[{"32", " ", "R0", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "+", RowBox[{"72", " ", "R0", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], RowBox[{"72", " ", "R0"}]], "==", "0"}], ",", "f1", ",", "\[Tau]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{"{", RowBox[{ RowBox[{ TemplateBox[{"1"}, "C"], "->", "0"}], ",", RowBox[{ TemplateBox[{"2"}, "C"], "->", "0"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.9473111011027966`*^9, 3.947311142673812*^9}}, CellLabel->"In[69]:=",ExpressionUUID->"7be358dc-0a15-40a9-9848-e45b928b42b9"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"9", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], RowBox[{"32", " ", "R0"}]]}]], "Output", CellChangeTimes->{{3.94731111648973*^9, 3.947311143007606*^9}, 3.9473251396718645`*^9, 3.9473256158450413`*^9, 3.9513889700630827`*^9, 3.9679671364989815`*^9}, CellLabel->"Out[69]=",ExpressionUUID->"7565e10e-bf74-4beb-8862-605ae0f8f2c9"] }, Open ]], Cell["\<\ The constants are set to zero, because they correspond to modes with an \ exponential, which correspond to other orders in the expansion.\ \>", "Text", CellChangeTimes->{{3.967952143696653*^9, 3.9679521697737193`*^9}, { 3.9679522133997674`*^9, 3.967952230426649*^9}, {3.967952268195312*^9, 3.967952310470984*^9}},ExpressionUUID->"820b1735-0938-4903-bad3-\ 03bfb64725e6"], Cell[BoxData[ RowBox[{ RowBox[{"rulef1", "=", RowBox[{"{", RowBox[{"f1", "->", " ", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", FractionBox[ RowBox[{"9", "-", RowBox[{"36", " ", "\[Tau]"}]}], RowBox[{"32", " ", "R0"}]]}], "]"}]}], "}"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9473116704779997`*^9, 3.947311670737298*^9}}, CellLabel->"In[70]:=",ExpressionUUID->"96f40fc7-d1a3-4b4e-942b-2515c9a263a7"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"eqaux", "/.", RowBox[{"{", RowBox[{ RowBox[{"\[ScriptH]", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"hUV", "[", "#", "]"}], "&"}], ")"}]}], ",", RowBox[{"R", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"R0", " ", "+", " ", RowBox[{ RowBox[{"f1", "[", "#", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], RowBox[{"#", "/", "3"}]}]]}], "+", " ", RowBox[{ RowBox[{"f2", "[", "#", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "4"}], RowBox[{"#", "/", "3"}]}]]}]}], "&"}], ")"}]}]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"num_", " ", "\[Tau]"}]], "->", SuperscriptBox["e\[Tau]", "num"]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", "\[Tau]"], "->", "e\[Tau]"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"aux", "=", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], "%"}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"num_", " ", "\[Tau]"}]], "->", SuperscriptBox["e\[Tau]", "num"]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", "\[Tau]"], "->", "e\[Tau]"}], "}"}]}], "/.", "rulef1"}], "//", "Simplify"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], ">", "0"}]}], ",", RowBox[{"Series", "[", RowBox[{"aux", ",", RowBox[{"{", RowBox[{"e\[Tau]", ",", "\[Infinity]", ",", "1"}], "}"}]}], "]"}]}], "]"}]}], "Input", CellChangeTimes->{{3.9473111709040213`*^9, 3.947311182017473*^9}}, CellLabel->"In[71]:=",ExpressionUUID->"ba57fbf2-4a8b-489e-b3e2-aed2d3e728dc"], Cell[BoxData[ InterpretationBox[ RowBox[{ RowBox[{ FractionBox["1", RowBox[{"96", " ", SuperscriptBox["R0", "3"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], "2"]}]], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3807"}], "-", RowBox[{"4860", " ", "\[Tau]"}], "+", RowBox[{"11664", " ", SuperscriptBox["\[Tau]", "2"]}], "-", RowBox[{"5184", " ", SuperscriptBox["\[Tau]", "3"]}], "-", RowBox[{"128", " ", SuperscriptBox["R0", "3"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"1024", " ", SuperscriptBox["R0", "3"], " ", "\[Tau]", " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "-", RowBox[{"2048", " ", SuperscriptBox["R0", "3"], " ", SuperscriptBox["\[Tau]", "2"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"96", " ", SuperscriptBox["R0", "3"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "-", RowBox[{"768", " ", SuperscriptBox["R0", "3"], " ", "\[Tau]", " ", RowBox[{ SuperscriptBox["f2", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"1536", " ", SuperscriptBox["R0", "3"], " ", SuperscriptBox["\[Tau]", "2"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox["1", "e\[Tau]"], ")"}], RowBox[{"2", "/", "3"}]]}]}], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", FractionBox["1", "e\[Tau]"], "]"}], RowBox[{"4", "/", "3"}]], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], {}, 2, 4, 3], Editable->False]}], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], { Rational[1, 96] $CellContext`R0^(-3) (-1 + 4 $CellContext`\[Tau])^(-2) (-3807 - 4860 $CellContext`\[Tau] + 11664 $CellContext`\[Tau]^2 - 5184 $CellContext`\[Tau]^3 - 128 $CellContext`R0^3 Derivative[1][$CellContext`f2][$CellContext`\[Tau]] + 1024 $CellContext`R0^3 $CellContext`\[Tau] Derivative[1][$CellContext`f2][$CellContext`\[Tau]] - 2048 $CellContext`R0^3 $CellContext`\[Tau]^2 Derivative[1][$CellContext`f2][$CellContext`\[Tau]] + 96 $CellContext`R0^3 Derivative[2][$CellContext`f2][$CellContext`\[Tau]] - 768 $CellContext`R0^3 $CellContext`\[Tau] Derivative[2][$CellContext`f2][$CellContext`\[Tau]] + 1536 $CellContext`R0^3 $CellContext`\[Tau]^2 Derivative[2][$CellContext`f2][$CellContext`\[Tau]])}, 2, 4, 3], Editable->False]], "Output", CellChangeTimes->{3.947311302049428*^9, 3.94731170859041*^9, 3.951388977408935*^9, 3.9679671732915745`*^9}, CellLabel->"Out[73]=",ExpressionUUID->"12019a42-5ae8-4073-ac92-45bc9492696f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"f2", "[", "\[Tau]", "]"}], "/.", RowBox[{ RowBox[{"DSolve", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3807"}], "-", RowBox[{"4860", " ", "\[Tau]"}], "+", RowBox[{"11664", " ", SuperscriptBox["\[Tau]", "2"]}], "-", RowBox[{"5184", " ", SuperscriptBox["\[Tau]", "3"]}], "-", RowBox[{"128", " ", SuperscriptBox["R0", "3"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"1024", " ", SuperscriptBox["R0", "3"], " ", "\[Tau]", " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "-", RowBox[{"2048", " ", SuperscriptBox["R0", "3"], " ", SuperscriptBox["\[Tau]", "2"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"96", " ", SuperscriptBox["R0", "3"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "-", RowBox[{"768", " ", SuperscriptBox["R0", "3"], " ", "\[Tau]", " ", RowBox[{ SuperscriptBox["f2", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"1536", " ", SuperscriptBox["R0", "3"], " ", SuperscriptBox["\[Tau]", "2"], " ", RowBox[{ SuperscriptBox["f2", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "==", "0"}], ",", "f2", ",", "\[Tau]"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "/.", RowBox[{ TemplateBox[{"2"}, "C"], "->", "R4"}]}], "/.", RowBox[{ TemplateBox[{"1"}, "C"], "->", "0"}]}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.947311717439825*^9, 3.947311746622448*^9}}, CellLabel->"In[74]:=",ExpressionUUID->"cc163dd8-5c1b-4a0d-801c-d2301693e9d2"], Cell[BoxData[ RowBox[{"R4", "-", FractionBox[ RowBox[{"81", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "\[Tau]"}], ")"}], " ", "\[Tau]"}], "+", RowBox[{"9", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"4", " ", "\[Tau]"}], "/", "3"}]], " ", RowBox[{"ExpIntegralEi", "[", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "]"}]}]}], ")"}]}], RowBox[{"256", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["R0", "3"]}]]}]], "Output", CellChangeTimes->{{3.9473117313229594`*^9, 3.9473117470907373`*^9}, 3.9513889779093027`*^9, 3.967967173877052*^9}, CellLabel->"Out[74]=",ExpressionUUID->"e8dbe8a2-62ec-4bd1-9322-5af13aae79d7"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"rulef2", "=", RowBox[{"{", RowBox[{"f2", "->", " ", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", RowBox[{"R4", "-", FractionBox[ RowBox[{"81", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "\[Tau]"}], ")"}], " ", "\[Tau]"}], "+", RowBox[{"9", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"4", " ", "\[Tau]"}], "/", "3"}]], " ", RowBox[{"ExpIntegralEi", "[", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "]"}]}]}], ")"}]}], RowBox[{"256", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["R0", "3"]}]]}]}], "]"}]}], "}"}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.947311760065955*^9, 3.9473117640733476`*^9}}, CellLabel->"In[75]:=",ExpressionUUID->"02fc5f95-5c18-41c7-b6e5-18dd76fc1357"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Entanglement entropy", "Section", CellChangeTimes->{{3.9473106301562166`*^9, 3.9473106375698495`*^9}, { 3.9679674389837627`*^9, 3.967967439915538*^9}},ExpressionUUID->"74984531-25e8-4ad6-8450-\ ea918ce9acd4"], Cell[CellGroupData[{ Cell["\<\ Near the boundary behaviour and formulas for the entanglement entropy\ \>", "Subsection", CellChangeTimes->{{3.9473250764951477`*^9, 3.947325099961667*^9}, { 3.9679672618119097`*^9, 3.9679672682767105`*^9}},ExpressionUUID->"7c5e4b6f-6c02-4217-b17f-\ a4290803f25b"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"\[ScriptCapitalL]dimless", "//", "TrigToExp"}], "//", "Simplify"}], ")"}], "/.", RowBox[{"\[ScriptH]", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"hUV", "[", "#", "]"}], "&"}], ")"}]}]}], "/.", RowBox[{"R", "->", " ", RowBox[{"(", RowBox[{ RowBox[{"R0", " ", "+", " ", RowBox[{ RowBox[{"f1", "[", "#", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], RowBox[{"#", "/", "3"}]}]]}], "+", RowBox[{ RowBox[{"f2", "[", "#", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "4"}], RowBox[{"#", "/", "3"}]}]]}], "+", RowBox[{ RowBox[{"f3", "[", "#", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "6"}], RowBox[{"#", "/", "3"}]}]]}]}], "&"}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"aux", "=", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{"%", "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"num_", " ", "\[Tau]"}]], "->", SuperscriptBox["e\[Tau]", "num"]}], "}"}]}], "/.", RowBox[{"{", RowBox[{ SuperscriptBox["\[ExponentialE]", "\[Tau]"], "->", "e\[Tau]"}], "}"}]}], "//", "Simplify"}]}], "]"}]}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9409318778394547`*^9, 3.9409318938574286`*^9}, { 3.940932416904165*^9, 3.9409324240473213`*^9}, {3.9409324560947857`*^9, 3.940932486451147*^9}, {3.947312038265976*^9, 3.947312046350627*^9}}, CellLabel->"In[76]:=",ExpressionUUID->"e2cb2c7a-c505-4acc-adfc-41600a8c3c36"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[ScriptCapitalL]dimlessSeries", "=", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]], ">", "0"}]}], ",", RowBox[{ RowBox[{"Series", "[", RowBox[{"aux", ",", RowBox[{"{", RowBox[{"e\[Tau]", ",", "\[Infinity]", ",", "1"}], "}"}]}], "]"}], "//", "Simplify"}]}], "]"}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.940932382627719*^9, 3.9409323939118805`*^9}, { 3.9409324304916115`*^9, 3.9409324472561483`*^9}, {3.9409325272390146`*^9, 3.940932533229932*^9}, 3.9473258385984726`*^9}, CellLabel->"In[78]:=",ExpressionUUID->"04a1049f-cea2-4e53-a1e5-dd2c55378013"], Cell[BoxData[ InterpretationBox[ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]]}], RowBox[{"512", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"R0", " ", RowBox[{"(", RowBox[{ RowBox[{"9", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "+", RowBox[{"4", " ", "R0", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "2"]}]}], ")"}]}], RowBox[{"2304", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]], "+", RowBox[{ FractionBox["1", RowBox[{"15552", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["243", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"f1", "[", "\[Tau]", "]"}], "2"], "+", RowBox[{"2", " ", "R0", " ", RowBox[{"f2", "[", "\[Tau]", "]"}]}]}], ")"}]}], "+", RowBox[{"54", " ", "R0", " ", RowBox[{"f1", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "2"]}], "+", FractionBox[ RowBox[{"12", " ", SuperscriptBox["R0", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "4"]}], RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}]], "+", RowBox[{"54", " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"f2", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}]}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox["1", "e\[Tau]"], ")"}], RowBox[{"2", "/", "3"}]]}]}], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", FractionBox["1", "e\[Tau]"], "]"}], RowBox[{"4", "/", "3"}]], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], {}, -2, 4, 3], Editable->False]}], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], { Rational[1, 512] 2^Rational[-1, 3] $CellContext`R0^2 (-1 + 4 $CellContext`\[Tau]), 0, Rational[1, 2304] 2^Rational[-1, 3] $CellContext`R0 ( 9 (-1 + 4 $CellContext`\[Tau]) $CellContext`f1[$CellContext`\[Tau]] + 4 $CellContext`R0 (2 $CellContext`f1[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f1][$CellContext`\[Tau]])^2), 0, Rational[1, 15552] 2^Rational[-1, 3] ( Rational[243, 8] (-1 + 4 $CellContext`\[Tau]) ($CellContext`f1[$CellContext`\[Tau]]^2 + 2 $CellContext`R0 $CellContext`f2[$CellContext`\[Tau]]) + 54 $CellContext`R0 $CellContext`f1[$CellContext`\[Tau]] ( 2 $CellContext`f1[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f1][$CellContext`\[Tau]])^2 + 12 $CellContext`R0^2 (1 - 4 $CellContext`\[Tau])^(-1) ( 2 $CellContext`f1[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f1][$CellContext`\[Tau]])^4 + 54 $CellContext`R0^2 (2 $CellContext`f1[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f1][$CellContext`\[Tau]]) ( 4 $CellContext`f2[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f2][$CellContext`\[Tau]]))}, -2, 4, 3], Editable->False]], "Output", CellChangeTimes->{{3.9409323738048863`*^9, 3.940932468652723*^9}, 3.9409325023979373`*^9, 3.9409325337841954`*^9, {3.9473120409431677`*^9, 3.947312061279865*^9}, 3.9473254775176067`*^9, 3.947325525252982*^9, 3.947325767249711*^9, 3.9473258485626855`*^9, 3.951388767208721*^9, 3.9525023809845724`*^9, 3.952502525165851*^9, 3.953608219415574*^9, 3.9555209034482975`*^9, 3.9679671935193534`*^9}, CellLabel->"Out[78]=",ExpressionUUID->"dff62dd4-4e66-43df-b15e-f71c034ae33e"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"\[ScriptCapitalL]ctaux", "=", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]]}], RowBox[{"512", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]], "+", FractionBox[ RowBox[{"R0", " ", RowBox[{"(", RowBox[{ RowBox[{"9", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "+", RowBox[{"4", " ", "R0", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "2"]}]}], ")"}]}], RowBox[{"2304", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]]}]}], ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409325393310223`*^9, 3.9409326118425384`*^9}, 3.9473120707411127`*^9, 3.9473257951950006`*^9, 3.952502531925519*^9}, CellLabel->"In[79]:=",ExpressionUUID->"b7b85e92-7dae-4afb-a37d-3fbefa43bdba"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[ScriptCapitalL]dimlessSeries", "-", "\[ScriptCapitalL]ctaux"}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{"\[ScriptCapitalL]UVaux", "=", RowBox[{"%", "//", "Normal"}]}]}], "Input", CellChangeTimes->{ 3.9409325373772497`*^9, {3.940932575759494*^9, 3.9409326160038586`*^9}, { 3.9409328515467873`*^9, 3.940932860716572*^9}}, CellLabel->"In[80]:=",ExpressionUUID->"b7d1292d-6064-4b76-a96b-674ab4f08703"], Cell[BoxData[ InterpretationBox[ RowBox[{ RowBox[{ FractionBox["1", RowBox[{"15552", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ FractionBox["243", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"f1", "[", "\[Tau]", "]"}], "2"], "+", RowBox[{"2", " ", "R0", " ", RowBox[{"f2", "[", "\[Tau]", "]"}]}]}], ")"}]}], "+", RowBox[{"54", " ", "R0", " ", RowBox[{"f1", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "2"]}], "+", FractionBox[ RowBox[{"12", " ", SuperscriptBox["R0", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "4"]}], RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}]], "+", RowBox[{"54", " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"f2", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}]}]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", FractionBox["1", "e\[Tau]"], ")"}], RowBox[{"2", "/", "3"}]]}]}], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", FractionBox["1", "e\[Tau]"], "]"}], RowBox[{"4", "/", "3"}]], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], {}, 2, 4, 3], Editable->False]}], SeriesData[$CellContext`e\[Tau], DirectedInfinity[1], { Rational[1, 15552] 2^Rational[-1, 3] ( Rational[243, 8] (-1 + 4 $CellContext`\[Tau]) ($CellContext`f1[$CellContext`\[Tau]]^2 + 2 $CellContext`R0 $CellContext`f2[$CellContext`\[Tau]]) + 54 $CellContext`R0 $CellContext`f1[$CellContext`\[Tau]] ( 2 $CellContext`f1[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f1][$CellContext`\[Tau]])^2 + 12 $CellContext`R0^2 (1 - 4 $CellContext`\[Tau])^(-1) ( 2 $CellContext`f1[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f1][$CellContext`\[Tau]])^4 + 54 $CellContext`R0^2 (2 $CellContext`f1[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f1][$CellContext`\[Tau]]) ( 4 $CellContext`f2[$CellContext`\[Tau]] - 3 Derivative[1][$CellContext`f2][$CellContext`\[Tau]]))}, 2, 4, 3], Editable->False]], "Output", CellChangeTimes->{{3.9409325936625404`*^9, 3.940932616574953*^9}, 3.940932861303422*^9, 3.9473120729074287`*^9, 3.9473254775980206`*^9, 3.9473255253328238`*^9, {3.9473257673123655`*^9, 3.947325796143518*^9}, 3.94732584978294*^9, 3.951388767248102*^9, 3.952502386284609*^9, 3.952502533128778*^9, 3.953608219459575*^9, 3.967967193566085*^9}, CellLabel->"Out[80]=",ExpressionUUID->"4514d746-0838-463b-ac85-8639003b7436"], Cell[BoxData[ RowBox[{ FractionBox["1", RowBox[{"15552", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["e\[Tau]", RowBox[{"2", "/", "3"}]]}]], RowBox[{"(", RowBox[{ RowBox[{ FractionBox["243", "8"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"f1", "[", "\[Tau]", "]"}], "2"], "+", RowBox[{"2", " ", "R0", " ", RowBox[{"f2", "[", "\[Tau]", "]"}]}]}], ")"}]}], "+", RowBox[{"54", " ", "R0", " ", RowBox[{"f1", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "2"]}], "+", FractionBox[ RowBox[{"12", " ", SuperscriptBox["R0", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], "4"]}], RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}]], "+", RowBox[{"54", " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"f1", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f1", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"f2", "[", "\[Tau]", "]"}]}], "-", RowBox[{"3", " ", RowBox[{ SuperscriptBox["f2", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}]}]}], ")"}]}]], "Output", CellChangeTimes->{{3.9409325936625404`*^9, 3.940932616574953*^9}, 3.940932861303422*^9, 3.9473120729074287`*^9, 3.9473254775980206`*^9, 3.9473255253328238`*^9, {3.9473257673123655`*^9, 3.947325796143518*^9}, 3.94732584978294*^9, 3.951388767248102*^9, 3.952502386284609*^9, 3.952502533128778*^9, 3.953608219459575*^9, 3.9679671935700083`*^9}, CellLabel->"Out[81]=",ExpressionUUID->"90425561-4a82-4357-8152-46a2aeeef8bf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[ScriptCapitalL]ct", "//", "Clear"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{"\[Tau]", ">", "0"}], ",", RowBox[{ RowBox[{"\[ScriptCapitalL]ct", "[", RowBox[{"R0_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalL]ctaux", "/.", "rulef1"}], "/.", RowBox[{"e\[Tau]", "->", " ", RowBox[{"Exp", "[", "\[Tau]", "]"}]}]}], "//", "Simplify"}]}]}], "]"}], "\[IndentingNewLine]"}], "Input", InitializationCell->True, CellChangeTimes->{{3.940932638350602*^9, 3.9409326647480907`*^9}, { 3.9409326996442723`*^9, 3.9409327036589975`*^9}, {3.9409327337196083`*^9, 3.94093274637659*^9}, {3.9473120783568573`*^9, 3.947312079357935*^9}, { 3.952502392740569*^9, 3.9525024538129454`*^9}, {3.952502555884807*^9, 3.9525025708220363`*^9}, 3.953608279830037*^9}, CellLabel->"In[82]:=",ExpressionUUID->"aef85ba4-48dc-4223-85c0-96a41c36fe0b"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"32", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[Tau]"}], "/", "3"}]], " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "-", RowBox[{"9", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "47"}], "+", RowBox[{"40", " ", "\[Tau]"}], "+", RowBox[{"16", " ", SuperscriptBox["\[Tau]", "2"]}]}], ")"}]}]}], RowBox[{"16384", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]]], "Output", CellChangeTimes->{{3.9409326960057116`*^9, 3.9409327042811813`*^9}, { 3.9409327390963044`*^9, 3.9409327468999567`*^9}, 3.9473120796760335`*^9, 3.9473254776771207`*^9, 3.9473257996974816`*^9, 3.947325850513302*^9, 3.947326177452024*^9, 3.951388767279711*^9, {3.9525023878977976`*^9, 3.9525024751555805`*^9}, {3.952502539730878*^9, 3.9525025712401533`*^9}, 3.9536082194815755`*^9, 3.9536082802965884`*^9, 3.9536106234150686`*^9, 3.9555209034839535`*^9, 3.9679671936036863`*^9}, CellLabel->"Out[83]=",ExpressionUUID->"b46bd256-31ad-4b5b-82d2-5698ee181d51"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"factor", " ", "%"}], "//", "Simplify"}], "//", RowBox[{ RowBox[{"Collect", "[", RowBox[{"#", ",", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[Tau]"}], "/", "3"}]], ",", "Simplify"}], "]"}], "&"}]}]], "Input", CellChangeTimes->{{3.9679672005889134`*^9, 3.9679672007299166`*^9}}, CellLabel->"In[84]:=",ExpressionUUID->"5b9bf14c-72b1-44b5-88ce-f796c7f6b978"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[Tau]"}], "/", "3"}]], " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], RowBox[{"32", " ", SuperscriptBox["\[Pi]", "2"]}]], "-", FractionBox[ RowBox[{"9", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "47"}], "+", RowBox[{"40", " ", "\[Tau]"}], "+", RowBox[{"16", " ", SuperscriptBox["\[Tau]", "2"]}]}], ")"}]}], RowBox[{"1024", " ", SuperscriptBox["\[Pi]", "2"]}]]}]], "Output", CellChangeTimes->{3.953608281104555*^9, 3.953610624501946*^9, 3.9679672011127377`*^9}, CellLabel->"Out[84]=",ExpressionUUID->"245b9527-b3f1-4118-bb4f-129011cc8725"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sct", "[", RowBox[{"R0_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{"Integrate", "[", RowBox[{ RowBox[{"\[ScriptCapitalL]ct", "[", RowBox[{"R0", ",", "\[Tau]"}], "]"}], ",", "\[Tau]"}], "]"}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409335713732615`*^9, 3.940933593535302*^9}}, CellLabel->"In[85]:=",ExpressionUUID->"80a24b53-d450-417d-98c0-f48da829e33c"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"423", " ", "\[Tau]"}], "-", RowBox[{"180", " ", SuperscriptBox["\[Tau]", "2"]}], "-", RowBox[{"48", " ", SuperscriptBox["\[Tau]", "3"]}], "+", RowBox[{"32", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[Tau]"}], "/", "3"}]], " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox["21", "2"]}], "+", RowBox[{"6", " ", "\[Tau]"}]}], ")"}]}]}], RowBox[{"16384", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]]], "Output", CellChangeTimes->{3.940933595480733*^9, 3.947312082588945*^9, 3.9473254778210344`*^9, 3.947325800827686*^9, 3.9473258505758176`*^9, 3.9473261783561506`*^9, 3.951388767307865*^9, 3.9525026548743973`*^9, 3.9536082195854845`*^9, 3.95360828440084*^9, 3.9555209035669675`*^9, 3.967967202390537*^9}, CellLabel->"Out[85]=",ExpressionUUID->"59f325ef-d65a-4005-a407-560d9c7f65c7"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{" ", RowBox[{ RowBox[{ RowBox[{"Sct", "[", RowBox[{"R0", ",", "\[Tau]"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"factor", " ", "%"}], "//", "Simplify"}], "//", RowBox[{ RowBox[{"Collect", "[", RowBox[{"#", ",", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[Tau]"}], "/", "3"}]], ",", "Simplify"}], "]"}], "&"}]}]}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9525026643258543`*^9, 3.9525026786055765`*^9}, { 3.9679672096981974`*^9, 3.9679672116819544`*^9}}, CellLabel->"In[89]:=",ExpressionUUID->"82300a3d-19af-4e2b-a53f-2a7a0cd73a1f"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"3", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"2", " ", "\[Tau]"}], "/", "3"}]], " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "7"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], RowBox[{"64", " ", SuperscriptBox["\[Pi]", "2"]}]], "-", FractionBox[ RowBox[{"3", " ", "\[Tau]", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "141"}], "+", RowBox[{"60", " ", "\[Tau]"}], "+", RowBox[{"16", " ", SuperscriptBox["\[Tau]", "2"]}]}], ")"}]}], RowBox[{"1024", " ", SuperscriptBox["\[Pi]", "2"]}]]}]], "Output", CellChangeTimes->{{3.952502665059947*^9, 3.952502679047019*^9}, 3.953608219603508*^9, 3.9536082847512517`*^9, 3.955520903584979*^9, { 3.9679672038820686`*^9, 3.9679672121026506`*^9}}, CellLabel->"Out[90]=",ExpressionUUID->"ba8bafb9-b727-42f9-99d5-93caa43e0065"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[ScriptCapitalL]UV", "//", "Clear"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{"\[Tau]", ">", "0"}], ",", RowBox[{ RowBox[{"\[ScriptCapitalL]UV", "[", RowBox[{"R0_", ",", "R4_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalL]UVaux", "/.", "rulef1"}], "/.", "rulef2"}], "/.", RowBox[{"e\[Tau]", "->", " ", RowBox[{"Exp", "[", "\[Tau]", "]"}]}]}], "//", "Simplify"}]}]}], "]"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9409328343727245`*^9, 3.940932867983173*^9}, { 3.9473120863896313`*^9, 3.9473120884275928`*^9}, 3.953608234502107*^9}, CellLabel->"In[91]:=",ExpressionUUID->"c7e2e804-941f-4a60-8bbb-5691c81fa117"], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4096"}], " ", SuperscriptBox["R0", "3"], " ", "R4", " ", RowBox[{"(", RowBox[{"13", "-", RowBox[{"56", " ", "\[Tau]"}], "+", RowBox[{"16", " ", SuperscriptBox["\[Tau]", "2"]}]}], ")"}]}], "+", RowBox[{"81", " ", RowBox[{"(", RowBox[{"4797", "-", RowBox[{"5360", " ", "\[Tau]"}], "+", RowBox[{"7712", " ", SuperscriptBox["\[Tau]", "2"]}], "-", RowBox[{"3328", " ", SuperscriptBox["\[Tau]", "3"]}], "+", RowBox[{"256", " ", SuperscriptBox["\[Tau]", "4"]}]}], ")"}]}]}], ")"}]}], "-", RowBox[{"11664", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"4", " ", "\[Tau]"}], "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], "2"], " ", RowBox[{"ExpIntegralEi", "[", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "]"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"1048576", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"2", " ", "\[ExponentialE]"}], ")"}], RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[ExponentialE]", "\[Tau]"], ")"}], RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], ")"}]}]], "Output", CellChangeTimes->{{3.9409328683010283`*^9, 3.9409328795403633`*^9}, { 3.9473120837996426`*^9, 3.947312088933812*^9}, 3.947325478139222*^9, 3.9473258017822847`*^9, 3.9473258514020233`*^9, 3.9473260632010345`*^9, 3.9473261790865736`*^9, 3.951388767357051*^9, 3.953608219645014*^9, 3.9536082916543627`*^9, 3.955520903591552*^9, 3.9679672200637197`*^9}, CellLabel->"Out[92]=",ExpressionUUID->"2f4a0067-19ad-45df-bbb4-2461bbe40559"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Clear", "[", "SEEUV", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{"\[ScriptCapitalL]UV", "[", RowBox[{"R0", ",", "R4", ",", "\[Tau]"}], "]"}], ",", "\[Tau]"}], "]"}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SEEUV", "[", RowBox[{"R0_", ",", "R4_", ",", "\[Tau]s_"}], "]"}], "=", RowBox[{ RowBox[{"Limit", "[", RowBox[{"%", ",", RowBox[{"\[Tau]", "->", "\[Infinity]"}]}], "]"}], "-", RowBox[{"Limit", "[", RowBox[{"%", ",", RowBox[{"\[Tau]", "->", "\[Tau]s"}]}], "]"}]}]}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9409339043150396`*^9, 3.9409339314894304`*^9}, { 3.9409339732161303`*^9, 3.940933977628273*^9}}, CellLabel->"In[93]:=",ExpressionUUID->"a696f74e-f53f-4c94-9ebe-9e0f1492ae8b"], Cell[BoxData[ RowBox[{"-", RowBox[{ FractionBox["1", RowBox[{"2097152", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"2", " ", "\[ExponentialE]"}], ")"}], RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[ExponentialE]", "\[Tau]"], ")"}], RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["R0", "2"]}]], RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4096"}], " ", SuperscriptBox["R0", "3"], " ", "R4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "7"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "+", RowBox[{"81", " ", RowBox[{"(", RowBox[{"165", "+", RowBox[{"140", " ", "\[Tau]"}], "-", RowBox[{"528", " ", SuperscriptBox["\[Tau]", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["\[Tau]", "3"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{"17496", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "6"], "+", FractionBox[ RowBox[{"2", " ", "\[Tau]"}], "3"]}]], " ", RowBox[{"ExpIntegralEi", "[", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "]"}]}], "+", RowBox[{"11664", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"4", " ", "\[Tau]"}], "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "7"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], " ", RowBox[{"ExpIntegralEi", "[", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "]"}]}]}], ")"}]}]}]}]], "Output", CellChangeTimes->{{3.940933911583356*^9, 3.9409339320278997`*^9}, { 3.9409339755556207`*^9, 3.9409339787500763`*^9}, 3.9473120914273167`*^9, 3.94732547948136*^9, 3.9473258032237167`*^9, 3.9473258514646397`*^9, 3.947326180501063*^9, 3.9513887674860497`*^9, 3.953608219777356*^9, 3.9536082935396233`*^9, 3.955520903610756*^9, 3.9679672232442536`*^9}, CellLabel->"Out[94]=",ExpressionUUID->"ae84d287-f7bf-47e4-aed2-49b53f662c5c"], Cell[BoxData[ RowBox[{ FractionBox["1", RowBox[{"2097152", " ", SuperscriptBox[ RowBox[{"(", RowBox[{"2", " ", "\[ExponentialE]"}], ")"}], RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", SuperscriptBox["\[ExponentialE]", "\[Tau]s"], ")"}], RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["R0", "2"]}]], RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "4096"}], " ", SuperscriptBox["R0", "3"], " ", "R4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "7"}], "+", RowBox[{"4", " ", "\[Tau]s"}]}], ")"}]}], "+", RowBox[{"81", " ", RowBox[{"(", RowBox[{"165", "+", RowBox[{"140", " ", "\[Tau]s"}], "-", RowBox[{"528", " ", SuperscriptBox["\[Tau]s", "2"]}], "+", RowBox[{"64", " ", SuperscriptBox["\[Tau]s", "3"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{"17496", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "6"], "+", FractionBox[ RowBox[{"2", " ", "\[Tau]s"}], "3"]}]], " ", RowBox[{"ExpIntegralEi", "[", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]s"}]}], ")"}]}], "]"}]}], "+", RowBox[{"11664", " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"4", " ", "\[Tau]s"}], "/", "3"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "7"}], "+", RowBox[{"4", " ", "\[Tau]s"}]}], ")"}], " ", RowBox[{"ExpIntegralEi", "[", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"4", " ", "\[Tau]s"}]}], ")"}]}], "]"}]}]}], ")"}]}]}]], "Output", CellChangeTimes->{{3.940933911583356*^9, 3.9409339320278997`*^9}, { 3.9409339755556207`*^9, 3.9409339787500763`*^9}, 3.9473120914273167`*^9, 3.94732547948136*^9, 3.9473258032237167`*^9, 3.9473258514646397`*^9, 3.947326180501063*^9, 3.9513887674860497`*^9, 3.953608219777356*^9, 3.9536082935396233`*^9, 3.955520903610756*^9, 3.967967223823803*^9}, CellLabel->"Out[95]=",ExpressionUUID->"be230d65-3c96-4262-8ac5-4722944b65d9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Code to compute the entanglement entropy", "Subsection", CellChangeTimes->{{3.9473250764951477`*^9, 3.947325099961667*^9}, { 3.9473254938763566`*^9, 3.94732549483001*^9}, {3.95360832401033*^9, 3.9536083246182528`*^9}, {3.967967243109215*^9, 3.9679672483965635`*^9}},ExpressionUUID->"846f3d98-df6c-40f7-bce8-\ 976d2fa1701d"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"RUV", "[", RowBox[{"R0_", ",", "R4_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{"R0", " ", "+", " ", RowBox[{ RowBox[{"f1", "[", "\[Tau]", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], RowBox[{"\[Tau]", "/", "3"}]}]]}], "+", " ", RowBox[{ RowBox[{"f2", "[", "\[Tau]", "]"}], SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "4"}], RowBox[{"\[Tau]", "/", "3"}]}]]}]}], "/.", "rulef1"}], "/.", "rulef2"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Rprime", "[", RowBox[{"R0_", ",", "R4_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Tau]"}], "]"}]}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.9409330105455303`*^9, 3.9409330556553383`*^9}, { 3.940933091425874*^9, 3.9409331003351917`*^9}, {3.9473120965518723`*^9, 3.9473120994927015`*^9}, {3.947312155250908*^9, 3.947312157470332*^9}}, CellLabel->"In[99]:=",ExpressionUUID->"f851d53b-e544-450b-a832-b20c2f2adc3a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"integrand", "[", RowBox[{"R0_", ",", "\[Tau]_"}], "]"}], "=", RowBox[{"Assuming", "[", RowBox[{ RowBox[{"\[Tau]", ">", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"\[ScriptCapitalL]dimless", "//", "TrigToExp"}], "//", "Simplify"}], ")"}], "-", RowBox[{"\[ScriptCapitalL]ct", "[", RowBox[{"R0", ",", "\[Tau]"}], "]"}]}], "//", "Together"}], "//", "Simplify"}]}], "]"}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409329204618373`*^9, 3.9409329296924057`*^9}, 3.9409329835431976`*^9}, CellLabel-> "In[101]:=",ExpressionUUID->"48c1e2dd-8f4b-447d-b201-841da62db86d"], Cell[BoxData[ RowBox[{ FractionBox["1", RowBox[{"49152", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]], RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"-", "\[Tau]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "96"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"5", " ", "\[Tau]"}], "/", "3"}]], " ", SuperscriptBox["R0", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"4", " ", "\[Tau]"}]}], ")"}]}], "+", RowBox[{"27", " ", SuperscriptBox["\[ExponentialE]", "\[Tau]"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "47"}], "+", RowBox[{"40", " ", "\[Tau]"}], "+", RowBox[{"16", " ", SuperscriptBox["\[Tau]", "2"]}]}], ")"}]}], "+", RowBox[{"128", " ", SuperscriptBox["2", RowBox[{"1", "/", "6"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}]]}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"R", "[", "\[Tau]", "]"}], "2"], " ", SqrtBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]], " ", SqrtBox[ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], ")"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}]]}], "+", RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]]}], "-", RowBox[{"8", " ", "\[Tau]"}]}], ")"}], RowBox[{"1", "/", "3"}]], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]}], RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[ExponentialE]", RowBox[{"4", " ", "\[Tau]"}]], "-", RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"2", " ", "\[Tau]"}]], " ", "\[Tau]"}]}]], "+", RowBox[{"12", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["R", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], "2"]}]}]]}]}], ")"}]}]}]], "Output", CellChangeTimes->{{3.9409329850023375`*^9, 3.940933000202757*^9}, 3.947312102190416*^9, 3.947312160454278*^9, 3.947325487320771*^9, 3.9473269423607345`*^9, 3.9473278945995417`*^9, 3.951388776886261*^9, 3.951407685401865*^9, 3.9536083116447835`*^9, 3.955520904774457*^9, 3.967967236823479*^9, 3.9679672769330473`*^9}, CellLabel-> "Out[101]=",ExpressionUUID->"bc7ec02a-8303-449a-8537-821b0fdfa432"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"computeEEvar\[Tau]", "[", "\[Tau]s_", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"R0", ",", "R4", ",", "hof\[Tau]"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"R0", ",", "R4"}], "}"}], "=", RowBox[{ RowBox[{"{", RowBox[{"R0h", ",", "R4h"}], "}"}], "/.", RowBox[{"FindRoot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"RUV", "[", RowBox[{"R0h", ",", "R4h", ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "]"}], "-", RowBox[{"R", "[", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}]}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Rprime", "[", RowBox[{"R0h", ",", "R4h", ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "]"}], "-", RowBox[{ RowBox[{"R", "'"}], "[", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}]}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"R0h", ",", RowBox[{ RowBox[{"R", "[", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"R4h", ",", "R4seed"}], "}"}]}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "wpc"}]}], "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"R4seed", "=", "R4"}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{"SEEUV", "[", RowBox[{"R0", ",", "R4", ",", "cutoff"}], "]"}], "//", "Print"}], ";"}], "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ "\[Tau]s", ",", "R0", ",", "R4", ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"integrand", "[", RowBox[{"R0", ",", "\[Tau]"}], "]"}], "/.", "solh"}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",", "cutoff"}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "wpc"}], ",", RowBox[{"AccuracyGoal", "->", "acc"}], ",", RowBox[{"PrecisionGoal", "->", "prec"}]}], "]"}], "+", "\[IndentingNewLine]", RowBox[{"SEEUV", "[", RowBox[{"R0", ",", "R4", ",", "cutoff"}], "]"}], "+", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Sct", "[", RowBox[{"R0", ",", "\[Tau]s"}], "]"}]}]}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409335441497555`*^9, 3.9409335598767104`*^9}, { 3.940933635437479*^9, 3.940933648459052*^9}, {3.9409337933553514`*^9, 3.9409337996345406`*^9}, {3.9409338394955964`*^9, 3.9409338420252542`*^9}, {3.94093394928458*^9, 3.9409339602904606`*^9}, { 3.9409340011725016`*^9, 3.940934015582567*^9}, {3.940934047182334*^9, 3.940934090770082*^9}, {3.940934136511298*^9, 3.940934138878644*^9}, { 3.940934195995254*^9, 3.940934197721568*^9}, 3.9679673247470694`*^9}, CellLabel-> "In[129]:=",ExpressionUUID->"3e13e582-59e1-4915-a189-ab2aa39d565d"], Cell[BoxData[ RowBox[{ RowBox[{"computeEEvar\[Tau]Disc", "[", "Rs_", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"R0", ",", "R4", ",", "hof\[Tau]"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"R0", ",", "R4"}], "}"}], "=", RowBox[{ RowBox[{"{", RowBox[{"R0h", ",", "R4h"}], "}"}], "/.", RowBox[{"FindRoot", "[", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"RUV", "[", RowBox[{"R0h", ",", "R4h", ",", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "]"}], "-", RowBox[{"R", "[", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}]}], "/.", RowBox[{"dogDis", "[", "Rs", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Rprime", "[", RowBox[{"R0h", ",", "R4h", ",", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "]"}], "-", RowBox[{ RowBox[{"R", "'"}], "[", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}]}], "/.", RowBox[{"dogDis", "[", "Rs", "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"R0h", ",", RowBox[{ RowBox[{"R", "[", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}], "/.", RowBox[{"dogDis", "[", "Rs", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"R4h", ",", "R4seed"}], "}"}]}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "wpc"}]}], "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"R4seed", "=", "R4"}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{ RowBox[{"SEEUV", "[", RowBox[{"R0", ",", "R4", ",", "cutoff"}], "]"}], "//", "Print"}], ";"}], "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ "Rs", ",", "R0", ",", "R4", ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"integrand", "[", RowBox[{"R0", ",", "\[Tau]"}], "]"}], "/.", "solh"}], "/.", RowBox[{"dogDis", "[", "Rs", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{"dogDis", "[", "Rs", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",", "cutoff"}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "wpc"}], ",", RowBox[{"AccuracyGoal", "->", "acc"}], ",", RowBox[{"PrecisionGoal", "->", "prec"}]}], "]"}], "+", "\[IndentingNewLine]", RowBox[{"SEEUV", "[", RowBox[{"R0", ",", "R4", ",", "cutoff"}], "]"}], "+", "\[IndentingNewLine]", RowBox[{"-", RowBox[{"Sct", "[", RowBox[{"R0", ",", "0"}], "]"}]}]}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.9409335441497555`*^9, 3.9409335598767104`*^9}, { 3.940933635437479*^9, 3.940933648459052*^9}, {3.9409337933553514`*^9, 3.9409337996345406`*^9}, {3.9409338394955964`*^9, 3.9409338420252542`*^9}, { 3.94093394928458*^9, 3.9409339602904606`*^9}, {3.9409340011725016`*^9, 3.940934015582567*^9}, {3.940934047182334*^9, 3.940934090770082*^9}, { 3.940934136511298*^9, 3.940934138878644*^9}, {3.940934195995254*^9, 3.940934197721568*^9}, {3.9409348722393913`*^9, 3.940935001972232*^9}}, CellLabel-> "In[127]:=",ExpressionUUID->"69d5697f-c1ad-442b-b615-65af7dd386e1"], Cell[BoxData[ RowBox[{ RowBox[{"plotIntegrand", "[", "\[Tau]s_", "]"}], ":=", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"R0", ",", "R4", ",", "hof\[Tau]"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"R0", ",", "R4"}], "}"}], "=", RowBox[{ RowBox[{"{", RowBox[{"R0h", ",", "R4h"}], "}"}], "/.", RowBox[{"FindRoot", "[", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"RUV", "[", RowBox[{"R0h", ",", "R4h", ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "]"}], "-", RowBox[{"R", "[", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}]}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Rprime", "[", RowBox[{"R0h", ",", "R4h", ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "]"}], "-", RowBox[{ RowBox[{"R", "'"}], "[", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}]}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"R0h", ",", RowBox[{ RowBox[{"R", "[", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], "]"}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"R4h", ",", "3"}], "}"}]}], "}"}], ",", RowBox[{"WorkingPrecision", "->", "wpc"}]}], "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Print", "[", "R0", "]"}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"integrand", "[", RowBox[{"R0", ",", "\[Tau]"}], "]"}], "/.", "solh"}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{ RowBox[{"dog", "[", "\[Tau]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",", "cutoff"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Darker", "[", "Blue", "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalL]UV", "[", RowBox[{"R0", ",", "R4", ",", "\[Tau]"}], "]"}], "/.", "solh"}], "/.", RowBox[{"dog", "[", "\[Tau]s", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{"1", RowBox[{"cutoff", "/", "2"}]}], ",", "cutoff"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Red", ",", "Dashed", ",", "Thick"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", ",", RowBox[{"ImageSize", "->", "150"}]}], "\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}]}]], "Input", InitializationCell->True, CellChangeTimes->{ 3.9409329125349665`*^9, {3.9409330681166964`*^9, 3.9409330754613895`*^9}, { 3.9409331172628655`*^9, 3.940933157145672*^9}, {3.9409331978955736`*^9, 3.9409332354093285`*^9}, {3.947312260207341*^9, 3.9473122611977034`*^9}, { 3.967967911182707*^9, 3.967967911781576*^9}}, CellLabel-> "In[128]:=",ExpressionUUID->"269d34a1-b6ac-4d7c-82c0-d9fe9a7529f7"] }, Open ]], Cell[CellGroupData[{ Cell["Numerics", "Subsection", CellChangeTimes->{{3.9473250764951477`*^9, 3.947325099961667*^9}, { 3.9473254938763566`*^9, 3.94732549483001*^9}, {3.95360832401033*^9, 3.9536083316658278`*^9}},ExpressionUUID->"5a2f66bd-1d7e-4aac-bd7f-\ f500a21e8865"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"R4seed", "=", "3"}], ";"}], " "}], "\[IndentingNewLine]", RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{ "because", " ", "the", " ", "values", " ", "of", " ", "R0", " ", "and", " ", "R4", " ", "are", " ", "obtained", " ", "using", " ", "FindRoot"}], ",", " ", RowBox[{"an", " ", "initial", " ", "seed", " ", "is", " ", RowBox[{"required", ".", "\[IndentingNewLine]", "Then"}], " ", "the", " ", "seed", " ", "is", " ", "updated", " ", "everytime", " ", "an", " ", "embedding", " ", "is", " ", RowBox[{"calculated", "."}]}]}], " ", "*)"}]}]}], "Input", CellChangeTimes->{{3.940933818914565*^9, 3.9409338196727705`*^9}, { 3.9679674564988904`*^9, 3.9679675567475595`*^9}}, CellLabel-> "In[109]:=",ExpressionUUID->"f7230cc3-19e8-4ee2-988e-51de02395941"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"computeEEvar\[Tau]Disc", "[", "1", "]"}]], "Input", CellChangeTimes->{3.940934974510513*^9}, CellLabel-> "In[112]:=",ExpressionUUID->"580aed6a-2d00-467b-b628-2b1f709d62b6"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "1.6174235915561582576114137621815282269337453680499270249105`40.", ",", RowBox[{ "-", "1.5640251980746312437415827238002652689599198462073408872585`40."}], ",", "0.0085811657133095375114979164536367631652483686771010854022`40."}], "}"}]], "Output", CellChangeTimes->{{3.940934974874358*^9, 3.9409350067162004`*^9}, 3.947327897294794*^9, 3.951388777019014*^9, 3.951407687368516*^9, 3.9536083341649756`*^9, 3.9679674540764866`*^9, 3.967967558810397*^9, 3.9679675903257046`*^9}, CellLabel-> "Out[112]=",ExpressionUUID->"3b27a69c-6144-4628-911b-31eadfe9fad0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"computeEEvar\[Tau]", "[", "1", "]"}]], "Input", CellChangeTimes->{{3.940933801236323*^9, 3.940933806741517*^9}}, CellLabel-> "In[113]:=",ExpressionUUID->"868b9122-e985-4ea8-83b1-1197ba8fb99f"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "1.3394264163556225469329798788662945680936795175175096468473`40.", ",", RowBox[{ "-", "2.9146181130815697982978508310687661361100151808515736552953`40."}], ",", RowBox[{ "-", "0.0102924320140393346660964529198208515794847038590038754866`40."}]}]\ , "}"}]], "Output", CellChangeTimes->{{3.9409340491716833`*^9, 3.940934140784267*^9}, 3.947312269133111*^9, 3.9473279034597273`*^9, 3.951407699687755*^9, 3.9536083403263817`*^9, 3.967967591340583*^9}, CellLabel-> "Out[113]=",ExpressionUUID->"1aa61931-ab0e-4f57-b1b5-749f3b6002cf"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"computeDiskTau", "[", RowBox[{"1", "/", "10"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"computeEEvar\[Tau]", "[", RowBox[{"1", "/", "10"}], "]"}]}], "Input", CellChangeTimes->{{3.940934172724471*^9, 3.94093417304175*^9}, { 3.951407697785533*^9, 3.9514076983252687`*^9}, {3.967967600482757*^9, 3.9679676012655506`*^9}}, CellLabel-> "In[116]:=",ExpressionUUID->"3b8e8ded-22d4-4968-ae3f-b522ad6b0b22"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox["1", "10"], ",", "1.3578451142188335462952067983494366187284870821190401896089`40.", ",", RowBox[{ "-", "2.7440903138442544005447714975161554531319501416318825775672`40."}], ",", RowBox[{ "-", "0.0087967191027684061877674941933776984039336050551070867442`40."}]}]\ , "}"}]], "Output", CellChangeTimes->{{3.9473121400152817`*^9, 3.947312165477254*^9}, 3.947312213496332*^9, 3.9473279033639364`*^9, {3.951407695217904*^9, 3.951407698683223*^9}, 3.953608340254861*^9, {3.967967598055505*^9, 3.9679676063733683`*^9}}, CellLabel-> "Out[117]=",ExpressionUUID->"39f54298-96f4-4a3a-a154-cd18f8e5c730"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"computeEEvar\[Tau]", "[", "10", "]"}]], "Input", CellChangeTimes->{3.940934123887676*^9}, CellLabel-> "In[118]:=",ExpressionUUID->"0edd0136-c80d-4e6c-b77f-e7e9d28cf106"], Cell[BoxData[ RowBox[{"{", RowBox[{ "10", ",", "0.172990921892457952672976754878563190091591249118460796158`40.", ",", "5121.6451356913541181687468109333844452501517513853599024436707`40.", ",", "0.8922188308047406225356324265224393168412618521971121345577`40.\ 038451227963805"}], "}"}]], "Output", CellChangeTimes->{{3.940934124143255*^9, 3.9409341685956917`*^9}, 3.9473122706224756`*^9, 3.947327903545433*^9, 3.951407700513771*^9, 3.953608340390277*^9, 3.9679676073228636`*^9}, CellLabel-> "Out[118]=",ExpressionUUID->"7747a35d-2660-4eef-b57f-082b17ceabea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Row", "[", RowBox[{"{", RowBox[{ RowBox[{"plotIntegrand", "[", RowBox[{"1", "/", "10"}], "]"}], ",", RowBox[{"plotIntegrand", "[", "1", "]"}], ",", RowBox[{"plotIntegrand", "[", "10", "]"}]}], "}"}], "]"}]], "Input", CellChangeTimes->{{3.940933077301464*^9, 3.9409330808357944`*^9}, { 3.9409331641357307`*^9, 3.9409331824433117`*^9}}, CellLabel-> "In[119]:=",ExpressionUUID->"c72c23ae-c979-41ab-843f-5806041f7e6f"], Cell[CellGroupData[{ Cell[BoxData["1.357845114218833546295206798349436618728487082119040189609`40.\ "], "Print", CellChangeTimes->{{3.9409330814065886`*^9, 3.9409332372470045`*^9}, 3.940934119179858*^9, 3.9473122726827927`*^9, 3.9473279035855155`*^9, 3.9473279813328485`*^9, 3.951407701303134*^9, 3.9536083405125895`*^9, 3.967967610818886*^9}, CellLabel-> "During evaluation of \ In[119]:=",ExpressionUUID->"8b2a211d-e99d-49eb-85cb-87319b50a1a8"], Cell[BoxData["1.3394264163556225469329798788662945680936795175175096468473`40.\ "], "Print", CellChangeTimes->{{3.9409330814065886`*^9, 3.9409332372470045`*^9}, 3.940934119179858*^9, 3.9473122726827927`*^9, 3.9473279035855155`*^9, 3.9473279813328485`*^9, 3.951407701303134*^9, 3.9536083405125895`*^9, 3.967967610889065*^9}, CellLabel-> "During evaluation of \ In[119]:=",ExpressionUUID->"af9ea3bf-ff0a-4b23-bdc5-e29f29bf48ec"], Cell[BoxData["0.1729909218924579526729767548785631900915912491184607959398`40.\ "], "Print", CellChangeTimes->{{3.9409330814065886`*^9, 3.9409332372470045`*^9}, 3.940934119179858*^9, 3.9473122726827927`*^9, 3.9473279035855155`*^9, 3.9473279813328485`*^9, 3.951407701303134*^9, 3.9536083405125895`*^9, 3.967967610982006*^9}, CellLabel-> "During evaluation of \ In[119]:=",ExpressionUUID->"085407c3-7b3f-4ca3-9adb-daa305031fe8"] }, Open ]], Cell[BoxData[ TemplateBox[{ GraphicsBox[{{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]]], LineBox[CompressedData[" 1:eJwV1Xc8Vf8bAHArkpSIFJd777mXxI2seyQ9TxpfK6uSSshomhEayCzJKl9R EtKkISQpBykUpSVFvpSVTWRU/M7vr/N6v17n9XzOedaH5eJt6y4kICBgLigg 8P/nA4/tHhqZJfDCgNwXD0mUcO9bq5uvHoO7lfdvVf0kaus+Cx3ORCn4Z/ms eK6RRI3vWTetYFkGnxx9jESXJVHpubJVc0IqwDlFzuzqWCLVmjlrM67+AnZ7 zz1odzuRcot97/nh1BsQbXu4R1o+kSLvP7WtVf4McYLXJT7OxlG38w9Hjvl8 Bjev6epTA3GUYoHqQ+XKzzDy8Xz/puY4SuBh0tIAty+gOwjlvQ/jqJpS9zb2 rWbImugreukVR9lXS3qd0G4FQ6vBG7/bzlJrhu5WXchuh58xLwJi38RS494x u3mv2kHRy2FtX1ksdXfY9Vflz3ZYOPDGcMfdWIo5Kr98cMM3uLnWe8opLpYS GQ+P3dD9DT7UJm9dahFL1U3b2Y6od8CNj11K6+rOUA6is/+ZFXVB29AshH2K oS5KpE5qNnfBP+5eiXm1MdQnqVWLZAW7IUTi6PWO0hjKVsHV+D+LbjgpsUX5 eGYMZapVnePX0Q2RSxsU1x2MofR3JhxIl/kBAQl5XpoCMZTUXeWfA759YFFn 4RKsd5qyLHgk8f5CHwh5Gv01VDtNxT6y4Tx62geioU+6RBmnKdFnEdvCxftB rb4rtkLkNPX3U3exXFY/pDVUutV+OEX1Ct4/AQ0DEGp7WYoReIr6toIZYbJk GEz3wcilqmhKq3j/j2a1YVBIKc+UeBxNBa/Pt/JeMwz+ei6q0feiKXkHY8WU PcPQabY/+dLFaMoyzq3oe+4wbJSh2jf5RlOPh252h+AIiJUM56Uwo6lzhass ig6MQqdRY8676CiqDY89MDkxCkTLtdyY4CiKV18p3xI/Ch16C9eY+UdRNZ1b OoUKR8HPybuue08UNSMXEGI9MwqKauEe542iqINHH9/vO/cTMiWL/83+FUkZ r10vy34yBm3418/SO5Ja4loRY9IwBl6GkvO890ZS/adgxqtjDJY8q2Sk7Y6k Ut4adpfOH4fVmfdPiltEUr1uuiXbdo9D/a5V0TvUIqmkWO7umJlxaE3lL7vV GUG1NYldG8YJ4L7u+HPRLYIK9avTpZ5PwePVFptCgsKplC9qB+KapuCYtd7r v77h1N11py7v6puCjVvyHcMPhVMtC41FJ6WmwUZ+wOOiYzhlkFf8ScthGmL+ nhafszGc+tmRfSx7dBpM/ppQj6XDqX12R8ujlP/AhjOvLB3zwygrAxULi6Mz wLXKuuo0dZIKkfILel0jiLHjy7/8WBxKqa/eOk/aVASfTEc0ZRw8QbHyGKmb M0RRrKd/Qer4UUpU82J/L1ccrcxMzV6aB1J60zNrToZL4ETBoNWt9/6Uwe+O Oq33kpjtG+kY73+YShGlkljqUujW0NnZM+ZNFRXMPlbZvggt/rhcm/fvIcr8 R1q1Q7o0TszdPji+Yh9VVzLml9ksg+Vz6ue/03GlDt9dr+Q8RxbbNh66xSxw ohLU+3OtTeSwJGbdDWetHdTbutP8p0eW4IdlZkU+DVuoM79Cru98Io87D626 rOa3mdIs1Sua83cpHh4jmZXNG6jJq20VGssVsGhZ0Nt7wmuop0WZrLU8BazJ nts3WmdIhVc7h1lpK+DgGn6jQ4ohNb+vDQ+vUUD5WK2eHDVDiqndThVbK+BE Qug2EdvVlEl5+1Pjowr4q0vX4+ctkkpt+VZi/1IBR62vZK8I0KMMZDvzIz0U Uf3ZzBO/qZVU/ES6IPoq4r+ymgGhOSupjs9bbX4fUcSAE/d311itpBIzqoZ9 QxWx8Z2i/aIbPKpLNUfT6Zwiyjil7Q6216DOrXa9Y/CIjvfursrNF2pUv1P7 zUFhBt6MdOy9/IZDXbn99Yr9JQYWCER8P8BYQjknLFb5c4WBfrIVjbvOy1Fs f/O8KzkMdPT4XFgsLkflGJU86rrDwIq4LQF5E4up2w3Jb/3LGZgjLqMU1SRN Ff4yF07qZOCq7HCTlF2SVI3x4721mkoYuI7lkP/vdNnwlxTe6iolnJpf0fQw TADec3cFGtcqocnV1Ke1AYLw0Ee5wuy1En5/VfT970EhOCF6c+uuJiXsbG+r fGUtAuLaJcdP9CshKry5Ky49F9gxzbVli5VxQUJVpO+hhbCVz9y73l0ZO/QS ToaVyQE/vOOe+UFl7OuJbohVXwLL6m9ObfGm32e/LeWlLoE2l1VxbkeVMbpm wtTARx48440Lo+KUUdF5OvSIwjKI7nQTqilSxqHtb7Y8cGRAS+1WKxVhJgpb 7SpvrWNByidtj9A5TKzc/ndryxQLrDulYprEmLhbZsrrngobqgTqK8/MZ+Lj pS+TGkPZkMvfqD8ky0SL/IahFVoEHLumx3i0nInKidKas6c5sCRMrs/Ukoma bu9ODyioQkP8mNhVayae1b+i9mK9KpxJf8f5Y8vEfDUFscBDqjBTHO94dzsT F7ak1O15rApdg6LvpPcwkdqe92m33XIodJh41OzHRP+D84OFTqmBLdkU7ZnG xHeGK24kvVIHxtSJOVOXmJi15Xb76RF16ClhRUZmMPFN5JWIrUs0INjwUNil q0y0waodB1w06Htp5njtHSY+OGCkc/aXBsxs4PhyK5lIrLPIrJdbCbk2Pru+ 9jKxNzv/6rSCFgRIy37ZP8DEiC0O5ds0tADfl9iPDTFxxdzmvPQ1WtC4VdhO YpyJ7/0NeYMOWiBkn2JtMMtEZp8pNytdC+wdn2z8V4aFrMZrwzbyq0Dk0Fyt zWtY+LpD+6y+oDaI3OmvrVvLwlaJQs73BdowZ6jB1WIdC088ZNUEK2qDqF/a BfNNLBx4ssMxmK8N4sdXzJpas3Ch1LTcDQ9tWBBr8XqTGwv5OTsr777XBvnc RA88y8IZrrJTa7IOyA/4i5bHs3B6y9N4l0wdWKq5IxOSWJj0jdRrzNWBZQWs D2tTWIgJZxedrdQBRukDQ6NMFi5rNyJ1hnSA/erDvNWFLIz7Lfg9aKMuqPfJ 39JpYaFe4f4OXpcu+MtOrT7dysIL1mF20kO68AQ+17W0sbBWTu/8jwldsExO G47qZOHUxINYH3E9OGy0jGwaZGGW02andnU9eJygUH1CkI3UruZNdl56YKKr 1PlchY2aEF9f/UMPkhxnApapsbF7dFGb7IgefDndOtdbnY0Wkzeqt0/qgcfX DA15LTYqEj1GxaL6kBCt7H/QgI0u7x8WdLL1obGJKbzQgo3ZrWYJYjv0wS2Y YNn7sjHI/HHihSf6ULbz5eL//Nh4sqpSdLBSH+RJ37l7A9jINZ7aza/Vh1ej ZUN+x9n49mvJp+yP+qC9f2dZQhT9fjVnYeuAPghuSdpVncbGRLWlmoMKfNip RVpZprPRC4Z3BrL4UCj5n/HHDDb+qQicM6bCh/01Giu+X2Wjg0f43+pVfGgw qpmcucPGZ8Ppp5o38SFj+ey/+pVs9NNy9yjx4sPknOsxT6vY2BLYLhrqxwfb 7xbBG6rZ2GP9vIQM4oNoxkU32zo2KqQvP3s6jA+eMvo6Xo1sFB8/OHLxPB/W zHg0XOtlY9S25q5zRXxIaZap0hig482vdc8o4cPwo8fFBUNsdDUNTMp4yoer fnOvVIyx0Sj4rEzwcz7M+3HV8+sMGzeXbS0r+MCHz++/zJOVIVChwK904Qgf TqQF//KRJVB1LOjsqjE+KDkxv9UtIXA2e+OM6QQfXHrdSyIVCRy/LvLM8S8f egVG9o1xCdSIjGUvFSfhN0/s+XuSQFHW85ZGJRIyft66r2lIoFT1cpG9LBKw xCI91ojARs/bhv0ECZEbzvmtNybw17Xg/74uJ2H+Lga7wJxAh48D9tu1SWCc 1gk950hgZ9mckJvrSSjf3Hhw0JnAW4kckbyNJLjIHLUzcyVQU476ff0fEq5n lPGE9hOoAi6XI8xJWFlk2uLrS6AdW1iuyZaEhmP91fV+BB7SubAvdSsJhzGh QC2AQPGLm32s7Uh4+OrDmfZjBF46vvryjR0kwDcnA5tIAiubLrb9dCLh2w0h 7p1oAnUn1l46vIf+fs9rUuIxBLoIqNv8cCGhZrK3uzyOwDvMbzFl7iRYLwxI 0bpAYJybP4ofImH0g3z42TQCtwVHSpt4kJB8sdSz5xKBz24JLw71JKGJK7gx M5NAz6qyGx+9Sdiz5uzPhbcJXOF83oXrTwIZ4TXtlEfgjciwP8wjJEi9tBa8 f5dAlkqlsWwAnZ/tsgutCwhUkvH90R1IQmrGhGxmEYHteW6aL4JI8On8rDhc TKBkctSGy0dJYPplrEh8QqBeeHO+3nESJktOrmorI3D/VV+JCdoNAq6kVgXd H5pdVvknSDgZr7qp4TmBaR2dKBVCgv1H8c3MGgIPkl9limhrKfZv8XlJ4Ewg fLMNJaHt1v09Um8I1JpXufToSRIeDZ/b7/yW/v7Jky8Ew0hI5B/xvv+ewKDm zV4RtPeHbA8QaCSwvnut8AxtfG4QbN1ExxsVe+IbToL8fMXIzC8E7vlvTmor 7WHbmTPDLQTu+zzXa0MECZltlamJ7QT29J7I+E07SPXalbbvBB75+vqnRSRd D69T17W6CByRqXS9QHt50YE7J3sIzK3fw22mLfDHvLChl8BCETMN+Si6HsYr S5kDBC7dmW1jSft+jFSlzxCBjBre62DapxtGa8pHCJzzUjf/Om3nJR/fSI3R /3cypraGNulY3Oj8i8AFh1bqd9CWupb29f4kgauZQswp2j19xzsEfhMYGchy E4um66ft2Gf9l8DzgmETC2inHsXRzFkC36qWy0vR9ilnTw0LctBWYumjebRN xOYIrBPhYKGcfN4MHY9p2S2aJMrBRe5X9fppTybXSrbP5eDTa7G739NuaM5d vEqCg9/tsvoKaN9kxyuESXJQtvG3VDztkwd82G8XcrD6nfTgHtr2923VWNIc bOsIstCkrTWhq+W7mIPL9/5c94vO19y1S/gVcnS8myXCxbT/i5wyWrSUg/Uf Atx9I/8/T80b9ihwUOTKkBOXdrx0mXk+g4ObO0/pv6frs3dHpq0gk4Mqs7de HaO9NjN8hw2bg8vOb5tVoC3X7eacxeGg4qlAxWK63oO8f/aNqHAwZmPOYgva GaUSR5LUOZgmXG3mSvdLgNDg8XYeB/cdsfjYSfebpWlD+CotDnoP3JFzoT3T mJz4VpeDoF2dZUL3p+MoI2/RWg5K7XzDrqf7+5/+F4uTkYO6/b9IKdpaXd7B cus5eMfspIsFPQ9CXyosFUw4ePNhTv89en6uVbiPcGw52KIyIsmh5y++dMHO G1vp83/XyWnR8xlQVFyptp2DU84vQI+eX5Nb4skrHThY5dy6Xf0wCf2Jd/TJ vRx06VyVWE3P/8czdlce7+dg37EsyQx6P5RFzooZHeLg12dCC7zo/ZEYZPN5 nQ8HHzY47ZreT4KO8/hx82P0+ekO5s9dSTimaVThGM/BJ7qzM2r2JLiqdam1 J3Lw3uzzlIv0frMgEs65nuegl9juTpFtJCgtaXfdn8rBeNltS6ptSKiYiRQ9 nM3B9CO+H4Xo/Tn3dZ151EM6P2Gp0Q5rSBipPlIoVsLBwARpZ8/VJHypUGKc KeVgwcxkchBJQl6Rz2B8OQezT8kmBuvS83Z5cVLqSzp/7du812uQcMHDoTG3 lYNRW2RKny2j96WlIF+4nYPTibccs+VJmNa6fmHndw6ObeKknJAjwWF8yF68 h4Pur41j2dJ0f4dENO8d4aDo9dWb+fR9czvhdhtLhItDv9m50b/48OTBZO8F NS5e+VOn1FrPh4Hky+ZD6lw8k972UvMVfZ8FGudtWsnFHkcL6+AaPoQZnvUc 1+ZiftVPifnP+LCpSnnYdg0XY694x04W8+HNx03jklZcvJcTFCiTxYdvk8mz Ef5ctDx1J93Dhw+ceIFKyUAuFitebpjx4MNewiPywlEuisX/13X2AH0/bl4v nhvCRdMzEmOXXPjwM3tE+t1p+vwv+1RjtvJBZLOlCvMyFz+JXq7M4vNBJUts 85PnXHS+9pQcntaHA6bHLo7JqWDUph7TxYH6IJS3Q/fqXRXceOmpGOmiB4sc lmbYr1fFBQd+5xTr68Kuhqij1ztUMTdOrPx6qzY8suvfon18OZKPZHR+JK8C 66zZK3ZKamjdo16au1ILHA1+loaVqeHwFxWDgFs8CPne1ti7ZQXeePD12TG+ OnyxOe7aP74CV+eEhsCd5WDybuGQepw6rn2bmVvvqQIamZFmh1kaaF1HybF2 csBC+/oSm0oNvHbjcokdsCGkseK7pz0Pt0lGpSp7MmH+rLjG/F08TOdaKO9w Z0Kaqq3/7d08vC37GtJ2M6Ew6JtItwsPF2gp3ORaMqFvmbCKsycPddlpQcs1 mWDvtGG/bTgPnQ+8zYj/pgw6PS/69fN4aFQ65965YSUol1qo9/Eufd6XvvZT 7UpgabA92C+fh08b+pqj3ynBwTPdkvcf8tCz9io3p1AJMjXmaqpV8HBF/fik 01ElWOBr6qvQyMObQmXJh0SUID0tqaSkiYeNgW/x8zgD1Co/C9o383BZS2vE 2m4GbJA5eC65jYd1u5qqBmoZcLzoTIFkHw83Pltf4pvAgLmt737nDvAwh9ts rhzGgBRRhQ1mwzxMafh8WMCPAQ+2536IHuehzjbnHCM7BuDJn4rcSTofKxXq uv5hQP1NQ/dn0zy8/EtL/pEBA3a+jbiz5y8Pp1uqvnurM6Bn6tX47CwPD8wP ymczGPA/wlZN9g== "]]}, Annotation[#, "Charting`Private`Tag$13339#1"]& ]}}, {}}, {{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], RGBColor[1, 0, 0], Dashing[{Small, Small}], Thickness[Large]], LineBox[CompressedData[" 1:eJwV13c8ld8fAHArEVkVUS7uc659zes+JTqfEtFOKBkZlWgoOxoUGiiRioom kpSRwtf2lZHILDL6EjJKC5m/8/vrvt6v5zn3zM/ncx4lF0/LA3w8PDxivDw8 //91iTFdxMPDgI7Pr8vlFOSKl1LaQnZ8DOD5Y333bIds8b/ZywVzBRhw7ZWN yMxN2WLVlmHeI8IMUBmtil8jKVv8TSbmb5sUA3g9v3NaBJYXn7zbNficxYC/ 8zp8x8eWFUen+r/Zt5kB5hYvLup8lCwuLnoSWnyDAaYifhIBPfzFa3w2ybEN FUChyoR3y9+JtWN3D2tVNirAR1tI3ua+BJeOPw7U4SjCQLR57Kt1CljWNWfY KkwRHEwT3Mv3svAVYf6V4u8VoTx5vu/OEnUc8/u7rSKlBGjgudLyK1o41Mvo RJa3EpgPb12tr6mLY9SrN7YXKYHPG9OQued6OLTV1kSxRAmaP2syFufqYf9z Q2sPlioB8x6/r8w/eti+XYT7s5y07662VqjSw8qXt6FF1UqQcj1PaKZbD+d/ beIxbFKCXX1ddkNi+vhzalde/IAStNObxx6662Mdld8athJMOJW5emOzFAeL NIecuSTJhPhEnm3hMhzcHyz+Pk+KCRK/zPs4Kzn4Tru6n9wyJnzOiiu/wOLg hVecSzpkmeDncd9DYBUHd/1+Z+VIMaFABcz22nNwVNmT065cJih9ORB59gEH Dznsqz9qz4S5H3IVQ8gAS1yyZN1yYIJMRYjfS1UDTOeYBpU5MqGvvkbutKYB Dl2kqSLjzAQdu14jfo4BVng1eabkABP2RJrxDa83wFYSMVpLPJmQZbDGQ83J ABeVVUS9DmGC0aT6kUO3DHDf6Kve/84xIeYCtbrptgEWkX26enEoE25//ld6 TZIB3uN57YtzOBPO6X9cyJdsgH+tcDQWiSDz3T3ScSTbAKv6Tow4XGdC8OMx xVd1BjhGRX0LfwoTpHb7lyIeLq6t3TVnlsqEG5D2ny8/FwscP/3i8hMmbO5n ZpcLcrHf64alUulMMLmQedB6MRfbWvh3KmYyQUu7fvVOOS5WPFxxbG0B6b+/ /vZTfS7OyHC8drKeCSnP7zz85crFA5YXTQobmBCXIjz76SB5fyLzD08jE67N /KtR7s7FMXjB3ovNTAjK/Lw43JOLfRueMm9+ZEJTYNSC/kAuNvo5mZ3TywT+ dXurxa9xcY1BbOv3CSb0eo3WSRVw8XB7Xrf8XyYE/Ij8drSQi0WDewY3TzFh i3zJ0cpiLt5ew55OmWFC7oV7EZ4VXNzsWKXgxEuBTWLgvgd1XNx9YfZQwyIK vpXdXRXRzcW/P7pNv5Cn4JAiv+5xXhovO3tFoJtBQWdRzY8Afhpz0cvFixUp aKxs1jq7gMYnj/EpujMpaE23UwoVpvEc390NSioUjO/q5D0uSWNhzcaoazoU HHY9cbpBkcaMM0aKXiYUqCo/+yffmMaWd+LD8jZQwGmorI3HNA7LHx/iMaOg uKZAyG8djUfGX7y8ak6B7s0aCWVTGud7sjY/20qBgK/3yf1baLzbWcxvcDcF 3MHxp3Z7aRy9oafW8Qhxv9a5NT40rnAx1k0+SkFI9aOzZb40nghOuDF6jFhb sd7Mn8aOhVbOp05QYJt+99DGQBprcqvH4/0o8Kv4/Eg1mMbVKllKLcEUbF+/ bs2RCBrziYT6b46jwKWx79Z8Eo1DUsx6Im9QwHzT7sK+T2OeDcIW725SsEEr JW/PAxrPn7oitzOBAm2pHsnURzSe+Xar0CaJgm589ZLaExqPNz7jd3lCgbXm sqDXmTT29Tx+5GEa2Z8gh6jiLBr/FtFv6XtKgfl8i1FFNo1/bXid7JZBwSWf g/6VL2k8lltmcTSbgpQAJ/+MPBoPJbRdDSikwKOsI3RxKY3d6YTJvCIyP1fP 3m/Eg032ztPFFLydt/peV0bjAdH/9M6UUaD4VXpJWAWN+86MtJx/Q9rvOJbc 9obGXS68K6++pwAZBXSIvaOxw3x5aEMjBcKP34bXEn+6HT4q2UyBv43997B6 Gnc0ixRfb6VgJ1Nx5lcDjT+YSbskdBC3vlN42UTjJnWN1MdfKFAwyzv89gON DauG3N73U6BWG0fZfaTxgwNpKrMDFFgdfvxjgNjrnlqK1RAFSfrhTdPtNJaQ Vk3m/05B2xeHCtFOGgdkDxzQHqOg0KfPJJK4Z0cKy+4HBd+poW7hLho/j1B+ nPWLgvz0uOPzxNt4WY+cJ8l+uO1e1NxD49zEPteovxQMq5Sd3/CZnE+jR1Te FAWfdEYVsolH/aiHErMUHPS5X375PxpHjig9KOZFUPvY7B3VR+OaNsY9eREE yclLEmf7aazn27XPQhRBIW/8vR0DNE6QSlTwXYzg0zpovE/svlU+6a04ArMu wcq1gzQWKl+RGLQUgdvPYQHXrzQ+7tThkLIMwRXJv3EpxB9mE+SbpBG0nja3 HyJOWSV3V10WgZFuQYTHEI3NMpbf+SiP4LXUugjrYRpnbP5gt0ABgXFnVkcE sfTXmyt0FRF8PHjKrYT4CyVz+yITwU4tBgeN0HhLaeveHIq0zzvpt4s4x/GG XA9C4J6kPxFMHBq/LIFWQaCh+ya3lXiE22LrqopAuZY5MUe8q/m67FU1BBK3 ewJYozRmii+N79dA8K051OQo8eX0pj1SbLJeb4ejrhD/tIhdvlYLwXnp3JUZ xKWhUrfidMh427wXDRIb3hbKaddF8DN2/JrANzKezLl6BX0EWGzVEgVirarf w/s5CMRZmldp4tSuoYVpBgj8AisFtxEz//RQ37kIPLynAl2I74i0Yc4qBL10 wYgPsTSzzu7kagQtWdP2YcTRq8r9iwwROMdkvI0lXrQ9L5bfCMHRjZVG94hD Dzx/bm6MoHuBQUYa8VzQ49qotWR/KkaUsokDYm4PNGIE1sbdt/KIf6Ze41++ DsHYyOySIuIjxRcUHNYjkFpieL2EuL/l9JoHJggcskLlSomdRrx3D2xAsC36 XUoxcTufh7emGYL1BkLG/xBbyTpdPbERwYMRpY5c4nfaNk9zzRHEVYicf05s brblzbQFAu0rLw2Sicvs1/fCZgSWnWK/E4iNvFfNh21BMCC0sDiKOPeS1ora reT/1KNuniHWuYdoie3kOSP6zFHitFy5XdY7EBiGzfnsJUZ1Ep4JOxHkFlcG mRIn9gpGdFsiCPjVGqtFvHxqJhlZIdgkJF+0jDhG4leZuzWC/tTw6Smyn6Iq X7sybBDUrOfd2kXMY9UivdoWQWh/p3YScaBHrd6ZvQjs42XLTxH/Di7dVm5H nt+UPbaHePDZs/CtjghilWXEFxG7VDx8ELMPQZXfiGAPOX+f2uOL2pwQTEQb yOUQNywMH3d2JfvJ03DDhngT45RUyn4EqhoTvCziCo6X1sgBBF9qjCN/kHh4 7ex40O8QgqtejbxhxEkF3NbLRxFw1z69HEfia3mj5s/6YwhybjkLWRPHDDLF lh1HYLP+fLoUcfgycbMkLwRFvU8OXyTxecxz4GW2P4LSez1dDiS+B8M6308G IAhy3v5EjNjlTtOocSCCw1MH7heSfGBTXcyqOoXg6VHEkCZeS92K+xRC1nNW 1DXzC43vGUYIiZ5HABbCPHuJ+S3PBK0JRTB146coL3FV8H7nhHAE6rHeJzeR fLSzS4e9JwLBOZeAzBqSr/bHV1c0XSfreQTjkG4aV774h+a/geDvxipdSWK1 qudpejdJfyGVSUkkP34bj4u+Fo/Ap3pu7NX/86uVi/32RASeqTanWjtoHCE+ /asmhazPcE1LbRt5X/nbwalUBJI+wi0mxDvWfv6olobAzkjGLr+VxkuPvim+ mI6g/cnxuQct5PzUxEaYZSLgpJS+dCH1ICtMkyrLR/DB/uT5O6SefJh2sMyr QyBgl+w3V07yU+QFJb56Mj+RILfVxKUrM8c2NSCI1g1/5UXqV5qxwNVPjQi8 jucG9JTQ+PTZtNr5NgTymRk3UwtJPuCf2GD2H4ItQs+ERnJJPC6KppvGEVjd 3/TcNJXUi4Q8wZWTJJ46UrW3pdDYWqO3Zf9fBOH5AerWyWQ/tnB9xqcRUFoV MY6kfkte+fRClpcF0xfsTPfdI/EkqabuJMKCI+YWI8tv0ZhXtmzlqAILdmdL 83mHk3hU2fldW4kFvQ/danaG0fgct6fUi8mC1/7BHO1Qcp+wmjs4iVgwO7D0 x5cQGgtcNczkV2eRei+sZHKaxoILsk3lOCxQuHhsQaE3iacfD49tNGdBc3Iw I2cfOZ/VYSX3j7OgE+orP+iT9fkgOfTuBOnv0ro3Z/Ro7DF4d8mMFwtCluYU U7o0LliYe9DGlwXuJb0JHlrk/mPWLyoSyILIokOLRlRp/LjczNbnPAuit9ps LZIn9axo4U+zGywQHbexeiRI483Zl6iRAha8qbB3i2vhYrH/NK5HLVaG/etf MvA+Lv62SayiwlYZ/kwq+7T2GuACsx11px4pQ2d4ofkTcr9ffkGnL+KPMtT+ qhwcrOLga7w783XWqUDaWdGKlRwOTigRT9SMVQFRbCdYEKmPo6W07J70qkCQ l8DC6l49/DAxsq1ASxWKt4XcsDHRw6ael5xZwaqgG/AgyTNWFwsEVqaht6rA NxNk7f1NB7+Qca17JK0GhZpnBxq26OCRv3dng9zUgKNt6JxvpI03SMuODmap wTYztsv2KTbW9NcbShdQBxHbwk3n72tiXanIZMGd6vBn8WiR8AENTIGp0efb 6hCnYz5TwlHHj7PudEuNqsNpM76vOj9Vsck+zvr2VRpgya73rn2rgk/s8Mia vKwBwZfuVJfdVMaRzfPTNzs04N3ufxqbTrBwRUyLQJ2yJrTku8m4HUI4Is5i hW2AJnBXtHgfsqSwZ+PsWGCFJnTOm8GaPUwMDyTvyYuzofrA65+Nh5Xw/dxy exknNogPCb829VXECgtyPyQ/ZYOMsbWkoK4C7r+/1ngynQ2Sh0roIDUFnL72 zX2LDDaUby8p/aGkgA0DPniMvGDDYO46nl4pBWw9PDWjm8uGu6F3WK2/GTji PVYqLGGDgNAX/vnXDDxxt9q9qYUN8nV1CXvXM3CRoeU71MYG7fMnls4YMnBo W7ue3wc2vPW59j1Rn4GlJEeml3ewQU96pnoQMTA7VOyKYw8blomeWBy1kIFd PXZlfR0i4w3VLJKpk8fqCz9JrxlhQ1BFjln9v/J47OH+oMhRNlT9DdO+WCSP z3T6btAeY0OsULbS3HN5HL/jVqvPHzZklvGET8XIY6dRxTWV42ywd0kQK4yQ J9/TT5JkJtmgsbB9PDhUHueU5x/Kn2IDvWLyi6ifPA5yMqkTmSHjSU8faT4m j9fP1uo6zLLBIizbMtFNHgslWN3ImGNDZ9CEjLuTPK7ndk7Nz7Ph7xZXIwNb efw/GtBhNg== "]]}, Annotation[#, "Charting`Private`Tag$13393#1"]& ]}}, {}}}, { ImageSize -> 150, DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, { Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], GraphicsBox[{{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]]], LineBox[CompressedData[" 1:eJwVl3k4Vd0Xx6WSWSKV4bruuRfRLUO4J7JWQkiTUihjxpRUklQSGZKMFalE CVEylRKOIVJRkqK8hrekgTdjpgy/8/vrPJ/n2fvs9V17re/eW8nlsJUbPx8f n/48Pr7/f71y16t68Q3CtYXHeG80LlDR85v95yQHoXzbyWWzXyKp/L3utVeI QZgwV2bklUdSLUVTUqt0BkEmqCvoZlokNSES61JtOgiyHtz9VEQkJe9KFNjY 0PPTE5+EHomkoKxk7rfXIHiaUfyK9pFU+MHuG3KXBkFK/Ju0Mi+Synnu11eQ OghrrNTjJFQiqTfyQuvM8unxg8VlD2UiqaWNmq1+7wdBY35jYPZ4BJXBDZV8 s2IIBrw2W6ZVRFD1YcucXNWHwDv34pxqQQTV35GbN2UwBAKmG4JH7kRQ2jEt m1WchgC2Nf3Vi4qgqn9zwoMzhyDR6oCWsG0E1f2wfkpLexhOjvg1npgJpxYI 2pu/NB6Gaf1A97DhcErVaSjJcfcwvNMK1c39Hk4dXiyrE31yGFos2Wn6zeHU rK/34W/UMJSX1HjbZIdTclriPUmWI5Bd+yV5eE84tbt4Z+O02ygkiU3p1VSF UXo+Se/ETo6CW+wjz/lPwqjlqu0fGNGjYFp1hX97XhjVft2lEwtHYf/O4Wti 18Mop9AjA+dnR2Fcyqtb+ngY5W0VKymW9AecbDwiuOphVPDgK2uF+jH4Z3DJ 08TU81TuKqPO9WqTMLuqLfHDjVDqgMH1QyIGk1CZdYf1+EoopWY5Ot22ZRLy bSW7rseEUtnemXJ+RyZBcM2JIv/gUCozR9g258kkPO2an+jpGkqlqb5/L7Np Cjbucn2hzQ2lrrJdXw7s/wvFpcqXlapDqBD58OL0mzPwozHiqNv4OQr6An9b z/BhS0J6QOeFYGpoLvWJ5t75uD5fZ8dT7SDKtenQt9S4hRiQ+/B46a1TVFSb ar3Ln0XYbhTgUtATQFXXTr6f3CqMZqX7A/lN/Kkyn+NGrGBRfFPUXOH99Rh1 YFuHe3q3OHZMNrpd8ThC9f8ZH7OJXoxSnyf6Kjx8qPu6om9f3ZbE0t6ksU02 ByjTRBn+H01LcM2c7c3RDe5U1Rb/3sZfUrhLXLsmsdqFkmE3cBzllyLv54PU xAwHarT//qStmQzy0j58+HvNhiqS+hqk4LQMTZgbOLVXdlKbd0s4Rscux9Ue M8nOl7dQz8fiBmtyViA6vazcWmdCLSsS7MjskMW9ZtqnDMYNqBFnEYcRYXnM 0M+qGWvWoJSrWwr3SMij6eE7v4LuaVA2rNRFZVLyeEBGzJMVrEFVfNEoOC8v j4vsY+AZV4OK2r97gcxqeTQJ2hPjLr2GYrml5/B2yOOjtLZ5nnGrKCtPvfEz SfIYXFLo5ZavQuX77I8TZCvgopCLw9+XKVBWWckJr1UV8LGU5G73YHnqT1fj 5RiuArqKHk+x/SlHrdvBuyatp4Ct73TnbpbJUjXaYreZFgroMyVTkuy5nPo4 8biI56uA29p8ZlZ+lKKmQ4RbPcsU8HZMZWapqAC1KalA4eUuBhr3hs8GwB9D J859I31bBqYJbOodFRs3DCzK9Hhgz0CFTe9iFrRPGOa9vV4Q785A/2+BN//1 nTaUEQw3sQtg4MQdS9Hm2nnQE2B3qO86AwmJ5Uv7KgQhxG5+udhXBnpnZ2rv kJGCCgXrfVZHFLHz8wq/+6GKcLs1XSXvuCJa9PWv6+1ShPD438NCgYqYJr1n 9IcCE7YujLxQFaKIrxpkax1PMqGzv/SxxmVFJE/vHDm1WglmnzElJUoUUbfc XTMongVg11/7eloR9b3Mh1T0ObAk6kZ9Ih8T760ZYIW7cmDBd6O8Kn4mLpwb Ok9d4sCPtNiTCouYuGtzMfG8iwP50isXf5BgohYPKmRClAGn9643VmJi+J7u wkFKBZxeVyWxjJk4/veg6zBTDaKkGS1nTZk40XTi8YSZGhTbBy7uMGPiiw6d zR991WDRoNaFpC1M1PzpeXlZpRrkSWcEiu5h4kW5HJFH+9Rh2j7cfsyLiWsP /yjziVkFSYMWxKtYJpqRfunHW1ZDJZnlqJLAxFk507iY8dXwK2T+jfOXmUim Xw04J7sGDJeWScM1JvalZkX9cVwDPSRXoPg2Ex8WG4us+LkGtEIlft58ROu9 TAhpBGrAm6UteUfamaj+NO6fyhOaUCyUeDqzg4nVbaIKM2GacG1mh0V7F633 J46svKwJrt/efjPuYeLGzszz1vmaMFX8Wn75f0zcX/yC8ee7JijvqomqmGWi vEz4QftdWnAmodBdhKWER6+fPirK0gaX8CNrka2Exf84BHuv1gazQA3+48pK SD3sXFW2ThuWuOTd7FRTQv+q/lCtndqQrZnTUqCthGO8lNFjodrQ0pRuZGOi hOsWX5PZ8a82rJKIZ9z1VEJ2qBR5P2EtmA8s3CjkrYS3fjcxtVLXgvvbQI9D h5Tw1CPOtux7ayE91jVf56gSWp2Kz3GrXAsyi3lGdaeU8Cnx6CDnv7Uwt7jL 7XuMEn7pCa6t2qgDzUu4D1Y+otd/tsik8JsODAynv7tUooT8tSGMXQM6IPpe ZmzoqRLGZk2f+D6hA6aJfFBaoYQCjXJvv4jowjOpliaLenp9yU0ruJq6kCF9 atS7XQkvytTuW35SF07IvNTPm8fC/JjE7RdndSFQ1EN70QIWis+7G2MhoAen +ReqOwmw8FOv7NC0mB4E/0bZJSIsTKx0t9BX0IPIuicTx6VZ2Cx2wERRXw9S /LMfrVdh4f7YS7cu+unBjYOmD66uZGFFi4jhuVN6kOrSkzGgzsLpNwVRB0L0 4M5W5uV0DRaydlRvWR6nB/eVk48uXMfCS3zWzv/m6EHFx4g1jZYsLBIJtdbs 1IPKBo6K8jYW1lBjFW49elBdXcM4u4OFxyoZDjG/9OBF3pyY5m4WnkkZtSsb 04Om8BP9lx1ZKOtmJxUtzoMvuh739h1lYXZsBB+/AQ8EkkyJ/iQW+jt0CgTH 8OC53qb78iks/Gol7zORwIOQtk06W26wUKxc2M0jiQezK8w35aWx8G5YwMaV aTwYu7HZ2/ceCw+zzQ+sL+BB7+3tRaOlLDw6mfL0/jseZGzcYcApZ+G+CYHy +A88cOnZUWtNsTB+4PLLQ5940MnZ2fq4hoXnDefmhP/lwcds678BDSxcnFN8 +PMAD+ry7DbOdLDwycmlfO9FSDi/bW8Dt5vWr/lgUk2CBKPBvdYOX1gobS+5 MXAJCRWa9h5ULwt95ZatnltOwuNix4vnBlj4M8w35TaHhMxS1/cL5xHYUNir Zb2eBNe9bvt05xPo4UwwlZEE1rTbN/eFBJ4RKav/bURC6nqP8RdCBOo3rjro YUbC1UovuaglBLL7BP8dsyIhvM5nvzibwIy9ltxEdxJO7+Rs9FEm8LnUuVhp LxKOdrez3qgSuCzCsTDamwT7KbMvl7gELi18qOfsS8La1YSzmB6B9b+jvG+c JEHt2Sc8RBL4d7ItoOUUCYpmccxGfQI/PLM9MT+IBGGXma5oJHCuvSLSNISE f6+0OohaEBh/vtTfOYqEj6wYw4OWBH48aC1sFU1Cw0NjRsNWAsU2R3wkY0h4 8rKg4+JOAhc1KgoMxJMQM3Nxn4g9gYN7DYYHk+n8RhkZeDsSGLjS+MX1FBIC l03KvXYmUGfBh/mGN0hw03Rvj3In0Gno9IDnLRIM3NBO2JfAY+GZDTZ3SdAa HiMPHCVwvM6wksokQfXsgxWv/Ahc/np2OyObBKlrsp8unCRwn9Sp7dU5JPxq GN0jFEqglkOCTtZDErptc/W8wgi08nnb/Tqf1tPrvOxlBIGO5o2+PwpIqOJ7 +zEymsAR1burhYpJSF57z1rwKoG3eCt+/iyh9VQ56ngmE1haoiD25gmtZ6vM 0voUAjVN3mDOUxIOe4a2RNyi9f5Ml9z8jN7/P2Tx93QCl8xV35IoI8EuZDBx UwaB4TbFFg00m96w37noHoGmzCO2qytovSultT1yCcyeDil7T7Pm41dLXjwg UF4hZ+sRigT5Jr3m8EICtd+zfa5UkrDE/ndBbzGB0bZ3ROSrSBD8lRFvWkJg 27OVIyk0j8xfskOgjEDriIHxc9UkZOirV6+voMcXekZ8pXn3MWPt45UEHkl9 6mRYQ8KiXPuM+9V0/Isv1SbQ/OSL/9Ke5wRWll942E3zAdm4cLkXBEo/if2j 8pwEOat741YvCTQyN+7ypLnhQrVn1GsCp1fMbLtDc1BV+6eqRrre5K/otNKs MTlqMfmWwE2bZ5oX1NL1pSFeptFM5zPMYlyd5gRPFa5nC4GRq/UeWtJsnIap tz4SmPi2g+tB81irrURrG4Hm5mXap2jOkjgWLN5O4LaG84ORNNtsih4y6SDw crx8YBzNwmfvupzpInD30/GEeJrLHle8L/6XwPLQxvPRNB/63Wrc/5XAlwPD eI5mhvLQI6KXQNeOvtuHaW6yF1bZ+4PA0wUqE3toDrlCJCf8ItB47IvYOpq1 Gw2EXvUTONS2bmApzT0LdgfOGyDw6Eqp5j5a71WDw328IbqfatUOP6PZzC9y n+8IgSvuZ/GH0TyZm96Y9YdA5Uc6SWY053wtNewaJzCueWRoIc375FoeykwR uNI4w72czr/4zv+YW6cJrNt9+40PzVSUQELYLIHfZZ8wZWlmTfH8RvnZOBho uNCR3t8WTatv6gvZ2CcqHTZB10OYl/fu/YvYKGBjohlN84+2m7xmETbebC3I TKfrKWVxyT0hcTZ6HZqXQtC82axJdsNiNq69ysy4RddfXgn/zENpNkq4rfMO p+vTaUDO57sMG9vuRzCGykmQVNHpYqxgY/KGObndNPtd9ai6pMBG9uiPUnG6 3snjDWHeymx0cK9I0Kf75df9b2O3Vdm4XLqnLIDupxs9sx6f1dgofb91XT7d b7M7NS3M17BRmNUUJP6YhOdaV8VVeGz0KzlrGVlIgv+Bh2cd1rGxNtGPuEb3 r8rt+sErBmwc4bfYnkH3d5Tk3+YFG9hY9f7Y9Zw8ErYPOiZ9MWdjOC/FxJ/2 h971t9vFLdnY+M0vwPkeCWcu9ijqb6X1hsYd20T7SY6yV3aiFRuLjeIsF9B+ s8D+6FPjvWxUdnO7tCH9/353vj3zIBvbJcpvNl4lYeuyF4rvfdi4810dy+sK Cd9chVznfNl4bTi1fC6R7le+mP49x9lIHFtyg0H740HdpBnBIDaatwgpERdJ YN65p+gdy0Y7TtZbC9qPHw/27U+KZ+M+yYzGlNMkbDFcnV2TyMZArszp3kDa Pz8Vasgn0/rsWP8dPkHvt0TZhsY0Nn6Te55rSft/5Ok3+9cUslHogfVOTWcS hqxHskZa2DjRlm9eAyRUxvYZbWtl44K/SzVt6PMq5uXXjpxPbOQoNhz7sY4+ L9a3SLl0shH0dO9O6ZDgwn50tuk7GwsK65J71en1hv33PJhiY4nCDna3DJ2P 2CkBDyYHc864F5/+yYPwl8Pp1SwOFv1ZpxjSy4Nd8/sMGBwOfhWtngv5yoMh //ajH1Zy0Gj5RH1ABw/UHMo6N2pz8PO56nQt+ny/sSroMdOUg7ndcLenhAdn X85z/+zNQRFv9WNOITwQzNuXIObDwX/4ohTZZ3mQkFBSgb4cFKhfd67nFA8y 9x5aluXHwckR1am9x3nw5r+2+mNnOGj83eMKx5MHjCX56mKxdHz7Gy8qb6Ef AXYOQ1DIwVvd2RNj0vR9pK/09N0JDtZN3p8Lv6EHB+QH0DReGe268qRaA3Sh 7m+j/WtFFdzd/5SdYakDHruGjcNyVTBguZLkq6Vr4U9p/Cfpjaq4erNKyECp Fhxraq+LbFJF/WQR+X4/TegcSXNu9lqJzSyHRLNlGnApLrduO58ajppmGQrH c4H7j9P5omg1XJYteMtCVx1KdeIH+tjqGMT8eOJFrSroGR4sEixSx5OHbt+z uKkME1T0BjvDVRjvofzqUCobMrepnjn3YRXGjPJfrkligUmMj+QlFy6meC2+ lvqBCaKn+Dv43bgoy73qKvaGCS0eV7MDPLhYNNl9N6iOCS4bKsD1IBcTNVUI zxImBI+K+ej7c/EflWdn91xjQpndg1c/L3DRSejvgxx7Jmir9IeaFnBRhGfr WNmkCFNSwdvKirhokhHWvLlaEar5pOW0HnOxe2G+b0eRImz/rF+o8IyLzYtU FKWSFMHn0sXu0edc/N3o/KPcXhFyRtTW32nj4nJn9Zl7fQz6vlMhuKKdi0Zf +rT9OhhANlq1xHRwsbX9p7zxWwbUZwZ6B37hYu+uqY+ThQzotX11bUc/Fx+A zb7iQAbkmTq4vfjNxbEZGe3kgww4rj2ssX6Ii48MUj4ccmDAAjHZetUxLtJP FFMHIwa8nnyQmDpB/3/wk3/xWgYk9G5wlP5Lx1Pg6ZivzAC79x/UomboeHf7 BrYvZ4BSpdfY3BwXdQRfy4wJM+B//EbSow== "]]}, Annotation[#, "Charting`Private`Tag$13447#1"]& ]}}, {}}, {{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], RGBColor[1, 0, 0], Dashing[{Small, Small}], Thickness[Large]], LineBox[CompressedData[" 1:eJwV13k4VO8XAHAkkl32ZXDvHfvYYuZSvKeSEi2ixRoq0aK00Dd9S2UL2SpZ spTKVpKtKAb5VpKILFGiFImSbCF+7++veT7P3Geec895z3nPqHsd3rqXj4eH R46Xh+f/n14Ja5fy8DCgxH+ztE3/Mq40abDEhY8BYpbeuQmZy7j/FcsLlPFj P3TQHnddxtVq+857UIgB2d6Xe+bbpLg/5BL+dEgxQChmd7NxvST3n7SewftM BgSH+BRRPuLcuJzA57tsGbCv1aiGwxHkcqtyQ7iJDPiWR3yKuzhSteL4BkWW uSp8jrLPiT65BI2mHdB/1qIKH+v9+x1vKKCaydunDE3UILB7o/e7hwRS2F3y 3TFUDUo+HNQm92uhGKFFyuJv1CAzoGlmsSILJYz/dFIj1eH9/d4bQXWGKOTo Sv+iY+pwYo/OPJVljBJ06td1VanD51lNwlzNBIW0O61Rq1YHqcpnTjoaJijw /JCld406jJW2gayeCXLtEmaPPVWHCfo20ccxQRqRm6il9epwdjbfec1mE1Tx rZXHvFUdZkzl683/NUF9OT3lyQPqEH7Vn2ehzQQZao7rOkkQYOr6K1IzyBQJ vz135qIkAfZ5Gwcrzpqir8Hib8qlCHimhho3hJii6106AYoyBLxaq2vscckU CcZ4VncrECBkoBnmmWGKesZfO7qTBIhpb7Hm1pqiS7W5/+5mE9AuoJHxQ4CN htx2NR1yJcD/3CG5naFsJHFxKzPJjYB1X2q+811kI07J2qBadwJO7t6XnxfN RiFL9TTlPAnYE3h1dPQyG6k+nD5TvZeAKU2Bgp032chRIkF/2WECFhqU3lyt YqOq2rpLj84R4LFcOb5xnI36Rx5+/nSegMSK2FK5aTYSVsg3Ew0hQN43pd99 lo12Ho7/4hlGQLbkdu9+Xg76reRuIRxFQHhC6LJXYhykdWJq2O0KAZ0+20fE tDgoQVPHblE2AX/Galx9d3JQQ4PDvHUOAW3+dWsSXTiI/8i/hZG5BHS/D2zl unNQwKNmaam7BCyeaf61ZC8HOdkEflB7QED0S3e7Y/4cpHagzs/yMQFOEv0R uRc5qKDAPf6fJgL0TtVfvfWQgwa2RqypbCZg16ry7z4V+PmpBxM8LQT4+sxJ 6FTieNBi54i3BNy7avX6Zi0HnWjOJ669I2Dk1zpTv0YOWjk2XVzymYBz0m3c Q5846KXp5fafUwQsPXFbSn4pjb53lX9U+UPAsv7HC5tFaCQS3DtoO4PPQ1+h dagYjTa/ZM1mzxGQ6cL/dUCKRm/dX6h68JIQcvNbyCUlGn0M/+vTvJQEVduf ci56NBp/t2+2UIWEcwZdegJ2NJI5G8P/kUFCzvIYne8bacSmSkVF1UgoJq0y GzfT6B8/PjVfgoSxR4enIh1oNM+XZqWuSQJ5pMVvwJlGQnotl+INSWhSumOv 5UsjxpmVakfXkOC3V8W9+QKNtl5PDi23IsHWxEIlIpRGoRWTQzzWJASGVS22 CKfR8GRhaex6EhptI3ekR9Ko4jDT9t5GEi63ljNQPI12eIoFDO4g4c7vbZYz aTSKPHug28CJhIVzuxihGTSqSnsBgc4kbE1ebS56g0YaXeeFBdxIKNqnqyNz C7/v1qlM0ouEo0+vLOXPo1GcVW+D+0ESPiz4NbqX0qjOy8LoziES6tJ1xyvL aDQVnJI44kdCqdKCj+IjGrlXOnqe9ifhyzf/VQ0VNNJj108mB5AQt0+vUaSa RvWaReptwSTM2rrZSbykEZ9wSKDtVRIIzRvVau9pdC7bujc6kQRpns8zGh9o xGMlZPP6Gglf3YqqdHpotHA6RtE+hQTxSeaATi+N5n4kVW7PIIHfIbJTtJ9G ky33Fnnl4nqt62bu+k6jE4ePHMzKI+GIyIMTlsP4/YSXt/Xnk7C3OX+X0giN fls9urOvgAQXX32B1z9oNFpWa3OomASTb6wK2TEaDaV0xJ6sJMHYPTKLPU0j X07KdHkVCZrtXIlR7MFWV89ZLgm3sk5qZf+h0YDIJ+MztSTkT19wEZulUf+Z 4bYLz0m4Pu81XP2XRruV7lv+9wLnW1v25b55Gn166J8t8JKEWPB2FlmgUd/o 5MmLr0jwKvqSuInHDPV48SrHviEh8Xxc6kM+M+S28DSkuYWEladdcOOaofep YSOSb0lgn3t9rAe7+60w90o7CeE/7pnP8ZuhTmtZr5RuEoYObCpRFjRDrTq6 Obe/kNCRx2GPLTVD5i+G9r35SoKG/SsPF2EzdHNvnubfARI8NS9m1GIfzdTO dhwiwXvDfdcoETMkIat1Z9FPEvpFxYcXi5mhk8UDew1GSSgRXv96F3bvlmym yy8SUiNEGh5i34/SuF30m4QCN285L3EztImXectzmgQbhyTJTAkzVJbev/vS HxL2ufv2DGEzVt4iy2dIECYZr5ZLmqGRADJL4i8J3DwX0WpsR+nPXivnSfDd d9JrkZQZevLgJuGzQALfm8xuK+zoYfWbXF4K2krMLWqxxy/2eX7no2C+zlJz HttV84a6HD8FKfeO0fQyM6TrpXbDT4CCPzaXW+9gv+xgZKoIU2BRmcjnJ22G jE/07LIRoWBtu/jKVOwUqXTVE6IUlNbN3nyG7btRJeOVOAXuzTZzcjJmqHno vfu0BAUXt5mPWmDTEdcZlBQFb89WSHthL3mqlB4kTYFuTsjYLewjHt1u2TIU vMpxufcUu/NvikqrLAVpDu9Te7Eh1fnDvBwFrIpXVbPY2bRimo4CBVY1Y7Iy smZIrP2d63ZFCharS9/Www44lqx8XomCsj2TvquxeySc3t9TpmBmyN17O7Z1 gfz1dyoUFH6RSvXBLrDtdFmsSsFPp44l/2DLfrumZKRGwYSqf2E49pmwHd2u 6hRs/nwr4Qr2F1IuNYKggEtwCjOw7WranUtICpiGw0K52CXuiYq9FM6PYURm Ibby3LYuYQ0KcpSbjpdhhyTLpHA0KTjPDQmvwB5mtznt1qKg9+HBd0+wHd5e UYjVpiA4cMOBSuwKf8d3FToUBK3ps/j/94S4dPJXXQoeLx+3L8eOvNu6U4pF wfXl1jkl2GM2l+Ut9SnYy5uyqgDbeWBrp68BBWH6RYw72DUhUklXDSnIU7WH 69jmqUtKuowoGNJ5ci32//E/mG9SXU6BCOkwEIyt/2L8+x4TCkxdRA2PYOf0 DAnmmeJ4BvuOuv0/nole8iebguIbzwvXY18X7kAmNAXHVUuHjLDj6KeBVeYU bL8SvH0e12/p5vLLi1ZS0Be6IbIPO2Tv/fvrLSi4azheWYt9MiF1oAVRQM08 1jqLPZYTv0h+FQW71Os8nbEPcsNV3VZT0CMVnL4c22P42I4BKwoEyvs1evF5 7OLbf0zPGjvkxPFibEcFj1j/dfg8W0fWh2Cvt7Z7PmtDQb+BaIw6dq3r6s9g S4FHkOfCMD7/K4/RC6F2FFgLCJwuwzbMpDgSmykQPiGUugY7r0zRYdsWXJ9I OySITTVKHE6xp+DQ6pyxF7i/5Gfm7lCOFDhuPhxpjc3j2CZr5kTBUoPEJB3c v6f2NxifcaZg2a6Zph7c7+PBNZueulAgu25OJR578N69sI3uuL5a13hH8bxo Fgyb9NxNweufdrzX8DzZwDgtlb0Hx29fJ7gSu87kqP7wXgp+D27S+yhqhh55 unsH+FBwr8WhVRU74zG7PfIQBQNlQsWReJ7Jt+iNNflRkHxNqE4NO2GQEJM5 QsFU7PmZEjwPw2TErTOOUpAoG9PdIWSG/A4PlBYHUhA7XxMuuMQMWZJJV9+f w/U5HLJNHM/XTPOoJSIXcD/KZqyIx/N30dYzQStCKHBm8sRLYr8I3uOZEkaB LyM8WhTPb/seQ9bOKApWXTHrHsPzfk9yfV3rFQose1SCjuH74lnhE86iRApU hGPuvZ+hkfaL+3nG1ygoL5lwtsL+MXk1Lj6ZgmqbeG1xfN+cdPRy3ZxOwZb7 nLyESRpFic/+fplNQVPptS77X/h5jR/eMzkUJJwXXpY1SqMtln3vtPNwf4ZN vxn7SSPpQ8+5EXdxf+rKf72E77/0l5ejrB9QoL7RKagI359FoXpkbQXuh5mb 06VfaNQ567a1vBHXT/mWTn4njeyiw9X5mig4sPq8xJMOGtUoPxjd0IzzeT16 W0M7jfIs+GPft1DwISCH58tbGv17Nq9hoYOCCqvg3/xvaEQsmrKy/oTzlTQl Nv2CRgeXxnFaJynYZj2h/eAhjXpTygWUp/F8kmzIisX7xjbdz217/lBQ+3Jv 0kG8j1jasY9PzlIwqG83oV5MI8mY94UKvEwQavn36qkCGpVJaut4CDPBIitX tx/vN7wKtcojqkyIiEi9kB5Ho1pN+58G6ky4gFrkHWNpdJ7dW3OUYILcs4At S2LwfuI47z1NMSHoOiPvYBSN+GPNHyzSYYLuN39lZhiNBBYXr1U0YcJ+lJOz LQjvm7+y/NatZ4I1Mr9fsYdG8vWh1TeOMOHcl1rjquU4P52SQ6/9mZBSmDZn YUyj/YNpy+aOMqHWO477xJBGjwXLvLefYMJ/H8SWP2Thfcr6q4jwKSbUuWb0 ZmjS6PZTa6fjF5jgNPCnHfC+alwlOGadyISxmkn9/3hpZFt8kRx+zAR92mF0 soGDxD7pXrkkqgG+sWN+B2w56McGsbo6Jw2QjEj9mfqMjR5bb2k8fUsD1HIV f7iYs5F8uGF/1IQGrGzleo0lmaJ4XvsKw1WaINiu8mLrrAlKqRZP17usCddQ 65nkDSYoTkrfJfezJkQWXdpRnrQcZaVHdzzW14J/VPqO6Y0ao7WHL3oyg7VA htt0qJJjjPhPPcujXmlB5Q/Pu0JRRqhQbnfjLVltuBLAtVz2yRAN/0n7G7RP Gw6+8M0a1TVEVrIKI4NF2mC0WkvqpqAB0gs0HrrLrwMZ29cd9M5kISOp6DsC 9joQfXNy79R2PUTC2pV9qTrgvv0//wBFXXS76PpHqREdyOV5NqHfoI3W7DJZ 3UXrQlaoQPv+FC3kv2V/0XSkLuSn/m1IctJE0W8XZq916wJPY75hhpYGqkto 42/U0IPCu/nmrjJMFHXVRsnppB7I8UuzjSZIdLjl7+ipOj2Qdvs9OPWLQHBT MlNFnAV+BgVyin/V0Y2yp65yHiwoNNI+/eavGlJdXNZ5J58F0WkxiVsU1NDX G5YW03dZYK/057ivjBq6a/n8hk0BC365lYpckFRD5ic79w8XssByLY/PIyE1 tO37zJxRGQumOM3JO8ZVUdQbpF5ZzQKOGytuf5kqmkqr921tY8HtwIoLt1eo oirzra+pDhbs4Gj6LzZRRSEdXcYBnSyQn3772ltPFUlJDs/Kd+PfX5XZxVJR RawQsRj3XhaIlOUaNc4z0O79DkXfhlgwP9HyckstA+kIvpddMcwCfwXnoucV DDSatScoeoQFC2/ql0AxA535cMLKYJQFvKeF+ExvMVDylqT24xMs0MqNJw3D GMhjRG3Fs0kWhMp9PVt0hoH/3+dmyE2z4Gf8oQ3sQAYqeVrhUzHDAkP5cu3V PgwU5LGmUXiOBRnpmyxfejDQ6r8NRm5/WQAaFdUOTgy0JMUxsWCeBf8a9hf2 2DNQE/vDzMICC6o0SsUObGCg/wEJ5lBQ "]]}, Annotation[#, "Charting`Private`Tag$13501#1"]& ]}}, {}}}, { ImageSize -> 150, DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {1.0001002857122472`, 0}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {1.000100285712245, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, { Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], GraphicsBox[{{{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]]], LineBox[CompressedData[" 1:eJwVk3k41PsXx6eSlKyh7k2oPjOW5luXrEX3XFxRkVtJKkJyyQyFGCEpZGk3 kpSy1LW0WkvloMkY6zT2JESmFUW6WW6/+f1xnvO8nnPez3POc95nuWfAtgOz aTRatiT+nw2+92jI0Qgk2aQr//a5H9PcyLJ2CWcmcbO2/teHtJqDS6/PkrB+ DP17XB96Uw9+8ZlNIIQz8OcbZh82cr8v1p9DwPfc9qgAXi8aTluoTUr4UGLX imHLXryyP0blmRQBbshVl6Tm1zirvk759FwCd1Gur8f7NfoYKCk5SRMIZ6xM y5d+jc1pzgoa8wis+r3s8f47PWg8K0NOLGF7BzpT7NKDc4R6C8LmEziuvuaD YtUrPGhyWMZyAYGW08WrY4++QmFGmbSsLIFhW/p1W5NXmMG2nnNtIYGX5hxH j0fdOLctcZa3HIG3u6Za9I51I8v8xc/V8pL5fZ/4MP7sRjNZt+lKBQI9pQFk pvMltuaGfhtUJjDjWBxrr/IS1ytWjN1ZJNl/V19k6lAXZoVKfQ1RIfApPOPZ 4vIuPGRzYVhGjcAD7tbqIK8ulB3MFzN/IWBWsUjmB68TAzd/eftNwucLL0/Y XO/EzkKTwYpfCQziCNvtaCfeiub1OaoTsEudN/jcoBMtNV93BWsSOCbQGEov 6EDObqWGJ3QC1yenP8952I69Vc51sQwC6alLIorS29FGN6PWQZuAoQvTsjmq HRf9q/e8T4dA3m+FkxZ27Xg3xbpCikng/ZWaK1l9bTgoDL2/xYCAEtefZ6vZ htLuDZcYawms5wfPPSXdhjojWpE0QwLSfMYKteFWZMvV2RUbEWjQ6E3UqGjF CTv1gaVmBCgYm8z0aMV5zypVP/5OIKJrVvJ0cQvqbVOd5oFE7y7vE3SjBbf0 +77J+INATlya3/LTLXj+p/K9bVYESjvcPDW8WnCJ+QHbchsCH4pr2iPVJPqS +eEJ9gTiGG21UydFuMXazWO/A4FQ71dPWYEi9G8p3GixVVJv2q0o7SHCoi97 VL44EijWvP3j7gYRmq++e2fXDgJNqo1L+VMv0OGfbX3aeyT+UaVlx0e8wMNp 6X/W+BDQX7lnM58rRJHfzscXfAmIlUUZKvFCNNigpO96kMDvSa77Q8OFOP4m Tn3cj0CH2lMqwlOIIczAseUBBE72br4Yri/EcLTNjDxCoM1ufZHJrWaMfftt 2vCExA/OIxtabZpwqOx+IO0kgelU1+KP+k1ok+j3rl7Cx8aJWGtZE8qs6W/x jCXQl5a4ZWCsERM5Dfnn4wlkl3cLMasRz8lm7/p0loBn7EvrtLmNmKbvWJyd TsBqxR4H+df1+PDddqbfVQnXPJ4sbKjH9uvOOQbXCCT8zS1lPa5HZfl93KoM AmuuLsrRSKvHxA/s4N5MAihn7BfqVI9Hs5MMl+YSOCJW1+14UYe7VfnFF4sJ /Jpw6L1FpwA5DXXM3SUEaI0elJFAgJdONuUsLyVgWWtUYl4uQNGXNu79Mom/ 3lQtirgqwE1Ng8FN5QQGBHmlDz0EuO7UbKMFVZJ/HPGZURipxaU/LEqiGwko uIMoTKUWxzu2qu5uIlCosWohXboWm0o9jhg0E+DZK0T3fufj8eBYowGhxE/2 cwqiu/k4NNJQYt0q+V/tjVOh2XwsHNpTOq9b0r9O1k3VmI+bWsPKzrwjUCFv kPX3gRrk3Ct5lDaHDj8VcvLqxDw8/4LK2y9Fh+x3eMGhh4e5YzcvU3PpQFug adgt4mGnyaXQKmk6XDp2M0S+gocmlSFG7+dL9EEBmd1cHk4ITR6YKtJBjW+6 Xdqah8FfH+V2qNPB2M1SxjH3GQYYVaSqGtNh/u1extm4arSMsg4YlfBAUrWb UWQ1qgnqbOpN6HD3UMr0QFA1Ptnb8e24GR1yY29YOXtU44KY0e2fzOng1+M+ wTWvxhzRCsVnVnRQ2uXV7zVehZ0Bp+IP/UWHOdsjhL/4VuEf+Y5h9Sw6PNK9 Nqh1oBJFnZrbs9h0SJMJ1o1xrUTPeSPMMH86nKq3KfzkVIkxXmf6GIfoEHIj g9NoU4k1GnUbTwTRYceZnSaNOpW4JdlKzewoHa53puhGdyM6RxgX3TpFB0HY o4KsiQpkO6h/js6ig1RJYaWS7VM0rOasu9pKB/54/IB+WDm2k31JowsYkGmR W5TfWobKzu0luRYM2Kf4PL+noATzHsYFegQw4OLiy+Za9UX46/wqgx03GZC0 x3Ulc+oBMnRPN+R3MODN2XUJLpz7KGfa77teXhvONNel6tDuokNIQFqDlTb0 DaVeu+dTgHoxZ7OqjmiDIGiCF2+ah33HTe6NFmhD3Qepa3Slf1Df/nDKydfa EMZZrfmbxU10lTGKclTVgW9T+tFWAdk48FV/atlmHUBD/bxwUSZK3UHHrZE6 sNCEETZz+Ab+dOrIKy/SgfJlV2qStTMwpSnqVcKQDthXfhKONadjXIhHpssS XRDyPl3dUpiGf8k1+u530AWaSHqmOiUVy4IEsi+O68LZEZvgvOcp+L126wNO mS6MFr2i8SaS8aK9wnutz7qw8kgbl+V0EWsz900yNfXALtinO3b4PHYOmikE OelB7brnA0EK5/Dk95wZ9Xg9cLf1SDe+dRoTzOyO8R/pQUUlP+hmSCL6Hgyd fXtED6bPzeNcsonHwYPG7uPLV0FXNe3cT684NNsdVRWyaxWUxz45tT4mBnV/ cZnem7QK5Ltle+zEJzB4Hktg9XQVGLX3Oj0/HI1pgzJXvMZWQfJOfe/wySh0 uWBs/Z7OBNET/UXMiEgcYw5/+WcvEzga7k7Os8Px3ffX+n9fZAI+VFbMreMg 56L75kQeE8InBbXXh0LwzVKWj3iSCZ6rF+eYyhxBcbDMvlyKAlN/LYPwwCDc ONMj9t1HwU7H22GPZQIxOtgi+EAKBSd6n3qZ3jqEOx9TL3l8CkRRr7KVJ/3R c1tZzc1aCoa5VUmWo/7o/x6K4gQUJOWVqYYO+WPc4h2nbesp8Fz6+emwyF9y j6MbGpooWEf8utVu++MSJj+rpY2C0Vnplzbt88euq+5+bwYoWC2dtcNEwMah tR+cnw1S8K6iIGcG2fi1Lsg65y0FB5Yn360tZeOCH3HLvMUUWFu3nGPlsHGd 053m9x8oyOnd3v8xio1X5CbXfvlCQYCRpRTfhI23ck5qib5S0L8m/lv7ajYW rpeTKxqjoHph/4WPdDbW+WoNBX+jIPBK5N4VKmycem5z+d9/KUiIXphcM8pC GVdhTNcPCjqWBdKmxCxUGXc5XD5JwYTtps9re1nIXMHeFDFNgbJCgXdRIwtN H00Yu85QEN+cLP7BY6G14/GVG/6jgPtRd9T6CQsdxfMVNX9S4J3+I5JbxMK9 x5Knf0pY/e0fCe/yWfg/gpgHuA== "]]}, Annotation[#, "Charting`Private`Tag$13555#1"]& ]}}, {}}, {{{{}, {}, TagBox[{ Directive[ Opacity[1.], AbsoluteThickness[1.6], RGBColor[1, 0, 0], Dashing[{Small, Small}], Thickness[Large]], LineBox[CompressedData[" 1:eJwVyX840wkcwPFhoki2Kz+6zGY2zL4Z/XhqxAcrrbrn5Jxy6Yj21HWpozSl nDR5MGKRXxGRm+PKjceVyofSdupWh/wYSeVIYrlSJOy6P97P6483I/xwgEif RCJ99bn/DZdtXEQi0WBR2wZZImpwKdPFeJc+DQYGfPTNrmvwXq3VgnoyDVLO hr8rqNGgY+drvYMLaZA6ZRd8o1SDWkvZx24qDfblv11lLNHg8aKnI9dYNLh8 kM/TbtZgplysCt1KA9IOTUJfRw9iY6UEL9Bgb2x2joe2G92PbllO8G2hsWln CYXShRNFP65UtttCPiXgzPjBx9j84coJ3mo6GGqTbeNG2tE6ou51YBIdMi73 RatC2jBjocGKJW10cAqFwWH9v1E2+SaYzmTA5HRKfaRQjZJojyjFEQaYzkul Ta33UcZp9ettZECWqH2LYfGfyHOYdA42t4PbIQyL2Uglju4OfRQZYge1YeHL uCktKHPgbDP4xQ4GpYsLqx7dwftrzne9mbIDASt+qWhpM9LiPejRvkw4VbBs tJ+LqG8iEW/NYYLec29dkest7OA4y68MMUGurbFRnb6BzRJqXg7PHuyZvovz V/2Bnsy8nCen7YHuuf5cw8s67Pm0O+CG2h70U2Ri1YQC9azvrBi3ZcGpzLVr 6PM1aNWa1FT6Ews6U6Op1ISruLU2hTl2kwUUH5tbtclVaPbCOTt9MRuelt0d epYrR+0Ws5aWYDbQL24Sf7CqwJub/NUny9lQUWvrzO0vQ6tk3j9p79mQqT97 x7OyFLP0tjfwvB3g8TmDbcm5l7CgaUkx97wDjPj3KFjaQsykrtxVOegAlWPp rKM1eVhWLO2+udIRTAzlzfLJHNx4OGUPK8ERVunY5rV+55F8Qvmr/V+OsIel G+02ysIaywh1uYUTrM+eScr6IgPHPhbNxe1zAjJ9uoLKS0WBhfX4iMIJGpc7 sOq1Z5ErdhutJnPgguOD+eF7Z9CVKq1YsJ0D7b2kkmPM08iEjR7PCzngf8+O ZldxCq8oLg5QxzlwXOEn7uIeR9/Q1T6965xBNW3wdupYDEb5H1BMpzpDYpku sGU4CqWPdZ9y+5whzLFRzC6PxBZZJ1nN5sKhhKSZ6sz9mJYj/DI4lgvz3Gt5 e69H4OH2uYkTLVww4/fFrEsMRbhMKbFZQoDLv6lBM1U7sbT+bohlGAFBgwW7 1G4BaGtY31NRRYD5kRjZ0EshDpd6bpiuJuBhnXXp5ltCrPZUlQqvEpAQaKRT ZgqRH9tzYKzm889POLKML8RvX8/MutYTkPEk6sFU+mZMa/Ni3G4iwMOi9Tcl 3w+nilp/6Ogk4HdTNcVNLsBGfsBD+24CNKbu8qGfBSjp7nU71kOAdWGyVrFD gFTK2CerPgJi+e47C4wESEjMMr5/RoBp9jWvwv2+GHHgG8WrUQLI6UGR37n4 IMfoiYX7GAHvSs4xyox9cKJsb5x0nIAO5aJG8gtvjO+PEbhMEDBZlBdPzfHG fP+8rqPvCdAzn1AGzQKGjdPdlR8IWJ/7ViTqAmSnVl6ynCaA8vWeNGkNYN3d hv0NMwSopmbW2YsA48J81SazBNDKtfJsL0CfuQeuu+cIcJocOGSzHNC4IPDC 1XkCRMKEuZOvvPDR2v4ZnY4ACcck/02xF/4HjP5UtQ== "]]}, Annotation[#, "Charting`Private`Tag$13609#1"]& ]}}, {}}}, { ImageSize -> 150, DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {10.000100102038799`, 0}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> {None, None}, AxesOrigin -> {10.000100102038775`, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> True, PlotRangePadding -> {{Automatic, Automatic}, { Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}]}, "RowDefault"]], "Output", CellChangeTimes->{3.9473279815857496`*^9, 3.951407701534157*^9, 3.953608340716098*^9, 3.9679676110474043`*^9}, CellLabel-> "Out[119]=",ExpressionUUID->"17418925-00fc-492f-b803-16ed1992ebe2"] }, Open ]], Cell[TextData[{ "This justifies our choice of ", Cell[BoxData[ FormBox[ StyleBox[ RowBox[{"cutoff", " ", "=", " ", "15"}], FontWeight->"Bold"], TraditionalForm]], FormatType->TraditionalForm,ExpressionUUID-> "0389298f-a8ac-4f51-89de-e05309b55954"], "." }], "Text", CellChangeTimes->{{3.967967619857439*^9, 3.9679676907696643`*^9}},ExpressionUUID->"855adb39-53b7-4a41-8c04-\ 0735ee5dd17d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Dynamic", "[", "\[Tau]shere", "]"}]], "Input", CellChangeTimes->{{3.967968089303709*^9, 3.967968091018647*^9}}, CellLabel-> "In[143]:=",ExpressionUUID->"68f60677-cc84-4a30-a89c-c4c71496a9ab"], Cell[BoxData[ DynamicBox[ToBoxes[$CellContext`\[Tau]shere, StandardForm], ImageSizeCache->{30.477000832557678`, {0., 7.}}]], "Output", CellChangeTimes->{3.9679680926046724`*^9}, CellLabel-> "Out[143]=",ExpressionUUID->"dbeedce2-f086-46ff-8bbb-b00703d3cae9"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"R4seed", "=", "3"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"tableEE", "=", RowBox[{"Table", "[", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", "\[IndentingNewLine]", RowBox[{"computeDiskTau", "[", "\[Tau]shere", "]"}], ";", "\[IndentingNewLine]", RowBox[{"computeEEvar\[Tau]", "[", "\[Tau]shere", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]shere", ",", "1", ",", "10", ",", RowBox[{"1", "/", "10"}]}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.940934234918816*^9, 3.9409342460694027`*^9}, 3.9409348162365932`*^9, {3.9679678111281834`*^9, 3.9679678297499046`*^9}, { 3.967967931689108*^9, 3.9679679796293135`*^9}, {3.967968065986245*^9, 3.96796807580332*^9}, 3.967969659825804*^9},ExpressionUUID->"b8ba5889-e7b9-44bd-a896-\ 7fba7bc0cad2"], Cell[BoxData[ RowBox[{ RowBox[{"R4seed", "=", RowBox[{"tableEE", "[", RowBox[{"[", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "]"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9409351231087017`*^9, 3.940935139488041*^9}}, CellLabel-> "In[146]:=",ExpressionUUID->"731092de-83eb-45fe-b6d8-e5ecd1b2353d"], Cell[BoxData[ RowBox[{ RowBox[{"tableEEmore", "=", RowBox[{ RowBox[{"Table", "[", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", "\[IndentingNewLine]", RowBox[{"computeDiskTau", "[", "\[Tau]shere", "]"}], ";", "\[IndentingNewLine]", RowBox[{"computeEEvar\[Tau]", "[", "\[Tau]shere", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Tau]shere", ",", RowBox[{"1", "/", "100"}], ",", "1", ",", RowBox[{"1", "/", "10"}]}], "}"}]}], "]"}], "//", "Quiet"}]}], ";"}]], "Input", CellChangeTimes->{{3.9409351417469893`*^9, 3.940935183468504*^9}, 3.967967839060544*^9, 3.9679696531911564`*^9},ExpressionUUID->"afa28d90-e4df-4dec-87ca-\ 9da103366d0a"], Cell[BoxData[ RowBox[{ RowBox[{"tableEEdisconnected", "=", RowBox[{ RowBox[{"Table", "[", "\[IndentingNewLine]", " ", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", "\[IndentingNewLine]", RowBox[{"computeDiskDisconnected", "[", "Rshere", "]"}], ";", "\[IndentingNewLine]", RowBox[{"computeEEvar\[Tau]Disc", "[", "Rshere", "]"}]}], ",", RowBox[{"{", RowBox[{"Rshere", ",", RowBox[{"1", "/", "100"}], ",", "1", ",", RowBox[{"1", "/", "10"}]}], "}"}]}], "]"}], "//", "Quiet"}]}], ";"}]], "Input", CellChangeTimes->{{3.9409350845392356`*^9, 3.940935101821211*^9}, { 3.9409352205861297`*^9, 3.9409352340019655`*^9}, 3.967967848749589*^9, 3.9679696571860633`*^9},ExpressionUUID->"9b7e95a5-2f0e-4326-bbc3-\ 6bf6903ba298"], Cell[BoxData[ RowBox[{ RowBox[{"tableEEdisconnectedmore", "=", RowBox[{ RowBox[{"Table", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"computeDiskDisconnected", "[", "Rshere", "]"}], ";", "\[IndentingNewLine]", RowBox[{"computeEEvar\[Tau]Disc", "[", "Rshere", "]"}]}], ",", RowBox[{"{", RowBox[{"Rshere", ",", "1", ",", "10", ",", RowBox[{"1", "/", "10"}]}], "}"}]}], "]"}], "//", "Quiet"}]}], ";"}]], "Input", CellChangeTimes->{{3.9409360489427056`*^9, 3.940936056950281*^9}, { 3.951408101151143*^9, 3.9514081030424843`*^9}, 3.951408195859806*^9}, CellLabel-> "In[149]:=",ExpressionUUID->"58c5f655-007f-4c00-987e-e5a295db3bcf"], Cell[BoxData[ RowBox[{ RowBox[{"tableEEaux", "=", RowBox[{"Join", "[", RowBox[{"tableEEmore", ",", "tableEE"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9409348193657722`*^9, 3.940934823578718*^9}, { 3.940935250935484*^9, 3.9409352784430184`*^9}}, CellLabel-> "In[150]:=",ExpressionUUID->"a2417a4e-a319-47cc-80a2-c6ff70a70b12"], Cell[BoxData[ RowBox[{ RowBox[{"tableEEdisconaux", "=", RowBox[{"Join", "[", RowBox[{"tableEEdisconnected", ",", "tableEEdisconnectedmore"}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9409360784085073`*^9, 3.9409360913471546`*^9}}, CellLabel-> "In[151]:=",ExpressionUUID->"78ad4c6c-903c-4d97-8624-3eaa4b9e6925"], Cell[BoxData[ RowBox[{ RowBox[{"saveResults", "=", RowBox[{"{", RowBox[{"tableEEaux", ",", "tableEEdisconaux"}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.9536083718136635`*^9, 3.953608385265579*^9}}, CellLabel-> "In[152]:=",ExpressionUUID->"1166e9e6-d485-47bd-a76b-d29423d8ec98"], Cell[BoxData[{ RowBox[{ RowBox[{"DeleteFile", "[", "\"\\"", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Save", "[", RowBox[{"\"\\"", ",", RowBox[{"{", "saveResults", "}"}]}], "]"}], ";"}]}], "Input", CellChangeTimes->{{3.947331585094473*^9, 3.9473316153401966`*^9}, 3.9513885966398687`*^9, 3.953608425874076*^9, {3.967968253705825*^9, 3.967968269298912*^9}}, CellLabel-> "In[168]:=",ExpressionUUID->"4ef3d03c-f07f-4b31-86d3-8ac90620aadc"], Cell[BoxData[ RowBox[{ RowBox[{"saveResults", "=", "%152"}], ";"}]], "Input", CellChangeTimes->{{3.967969618025953*^9, 3.9679696233875265`*^9}}, CellLabel-> "In[166]:=",ExpressionUUID->"a79fb30d-167b-4a6b-827f-5acd62a962e5"] }, Open ]], Cell[CellGroupData[{ Cell["Results and Plots", "Subsection", CellChangeTimes->{{3.9473250764951477`*^9, 3.947325099961667*^9}, { 3.9473254938763566`*^9, 3.94732549483001*^9}, {3.95360832401033*^9, 3.9536083316658278`*^9}, {3.953608410265005*^9, 3.9536084117537603`*^9}, { 3.9679682465741477`*^9, 3.967968248388794*^9}},ExpressionUUID->"3b33202e-4c50-4493-8b0a-\ d1323819cc66"], Cell[BoxData[ RowBox[{ RowBox[{"saveResults", "=", RowBox[{"Get", "[", "\"\\"", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.951388629909545*^9, 3.9513886321650953`*^9}, { 3.9536084301622887`*^9, 3.953608430257017*^9}, {3.967969603318445*^9, 3.967969603464649*^9}}, CellLabel-> "In[171]:=",ExpressionUUID->"51fa5d27-9cc6-48e2-9ba4-111bf9d1b87f"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"tableEEaux", ",", "tableEEdisconaux"}], "}"}], "=", "saveResults"}], ";"}]], "Input", CellChangeTimes->{{3.9536084381862326`*^9, 3.9536084440423923`*^9}}, CellLabel->"In[4]:=",ExpressionUUID->"d529a577-1c4c-4c14-bef7-70df9743d060"], Cell[BoxData[ RowBox[{ RowBox[{"tableresults", "=", RowBox[{"{", RowBox[{ RowBox[{"tableEEaux", "\[LeftDoubleBracket]", RowBox[{"All", ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "\[RightDoubleBracket]"}], ",", RowBox[{"tableEEdisconaux", "\[LeftDoubleBracket]", RowBox[{"All", ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "\[RightDoubleBracket]"}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.9473315778827257`*^9, 3.9473315833069115`*^9}}, CellLabel-> "In[172]:=",ExpressionUUID->"5ccb090a-cfb2-456e-9105-58cd57df65ef"], Cell[BoxData[ RowBox[{ RowBox[{"labelStyle", "=", RowBox[{"Directive", "[", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", RowBox[{"FontSize", "\[Rule]", "14"}]}], "]"}]}], ";"}]], "Input", CellLabel-> "In[173]:=",ExpressionUUID->"947e564a-4390-42d4-b981-1db998a4ccfe"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ SuperscriptBox["M0", "4"], RowBox[{"4", " ", "G10"}]], "64", SuperscriptBox["\[Pi]", "3"], "4", "\[Pi]"}], " ", "/.", RowBox[{"G10", " ", "->", RowBox[{"8", SuperscriptBox["\[Pi]", "6"], SuperscriptBox["ls", "8"], SuperscriptBox["gs", "2"]}]}]}], "/.", RowBox[{"M0", "->", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{"factor", " ", "=", " ", RowBox[{"%", "/", RowBox[{"(", RowBox[{ SuperscriptBox["gs", "2"], SuperscriptBox["M", "4"]}], ")"}]}]}], "\[IndentingNewLine]", RowBox[{"%", "//", "N"}]}], "Input", CellLabel-> "In[174]:=",ExpressionUUID->"0c08d894-83cd-4820-8c98-aead2bdfe2b6"], Cell[BoxData[ FractionBox[ RowBox[{"16", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"]}], SuperscriptBox["\[Pi]", "2"]]], "Output", CellChangeTimes->{{3.9620786998131714`*^9, 3.9620787106892815`*^9}, 3.9679696713193345`*^9}, CellLabel-> "Out[174]=",ExpressionUUID->"15c4f0f5-3a31-44e3-b628-5e2b02df5ed3"], Cell[BoxData[ FractionBox[ RowBox[{"16", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}], SuperscriptBox["\[Pi]", "2"]]], "Output", CellChangeTimes->{{3.9620786998131714`*^9, 3.9620787106892815`*^9}, 3.9679696713223343`*^9}, CellLabel-> "Out[175]=",ExpressionUUID->"ddcfd140-fac8-4b0c-b70e-085fd53b8fca"], Cell[BoxData["2.0425070731399275`"], "Output", CellChangeTimes->{{3.9620786998131714`*^9, 3.9620787106892815`*^9}, 3.9679696713248453`*^9}, CellLabel-> "Out[176]=",ExpressionUUID->"b3d9b288-2788-4e87-be25-f408368404e5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{ RowBox[{"(", "tableresults", ")"}], ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ SuperscriptBox["2", RowBox[{"1", "/", "3"}]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "factor"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "20"}], "/", "100"}], ",", "1.2"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"36", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{ 3.95250574329132*^9, {3.9525057823526163`*^9, 3.9525059562164087`*^9}, { 3.9536090278136787`*^9, 3.953609027973405*^9}}, CellLabel-> "In[177]:=",ExpressionUUID->"cea52c61-07d4-4039-8fbc-2eed4f8da0ae"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], PointSize[ NCache[ Rational[1, 72], 0.013888888888888888`]], Thickness[Large], LineBox[CompressedData[" 1:eJwdiwk0FHgAxkcRU2kRlUQRXZQuSqnPkXRfeh1ilWMrVkSRTqmUc2uGHCGl EjsGmRnF1h8xrppy1hSaxhA1zDgyjZHW7vfe733v9773Gbr77fEaR6FQXMf4 r1clmzcpuymwW29lVeYxGjE+mS0MHvP42MvPqF40Yj39d6czRxQIfV36qHov jbBvqbZEeSjQsLeFKrankc46i1ulYy5ln15rY0cjrduDjM4fVkAl98uZqa40 Yvjw1rJrBxSwiHhekZNGI7eEK8VKWxUQ2Ua6lE6hE/GZlvUeqxR4r2TSJ3xC J+sKU9bu11cgZp3XyEBsHFEYU8ZvpSjgdEQwqT08nnzw0rj4mj+MQKZz/HD9 bbLwTsiFDsYw0qjnYrudE8kw84hbbcgwvL3u9CkZJJPrWvscq22G0aPf086Z mUKiJf7WluOGsdQUx3N2pBHHMH/DgBdyWD9m6h49lE6q6r55Ck/LIZ98+05W 5j1i8nDdDskCOT6Mrk8XUzOIeYLrW6X3PzDTk6VSeOkBWdtm8+bylR9Izbi2 aeeER0Q+t4fbaDq25/YFv0zOJMKOgAqXOhlmq2vESa2yyD5GcXbwKRnKclLM IwTZRPlK0v2LOjJMqe0a0ItikIxpQl4FawhPdb1MdC2ZZDfv3oyUPUN4dT0p i9+aSwx+S5uzVfId0yI4gl0kj6zOCNg0Peo70n31bjpF5hNRXhwP877DpGJe KnXHE9Izy/fHaMkgUlrteFfUCsgJ4+iNkYcG4VFt9vJNYQFJc8vL1RoagKiv 8qD8IItMLRr5VH5zAH+wEh9P6mGR7jUbzlabDoCRY26g6ccmekbVBx0q+1Hq wyXabWyinLq04aBHP5re+RgYreYQtwlkwJjSjz8jo5sdznEIc8PKF6Wpfbi4 4Gh0zEMOqT/Q7LnJug+XrHpt1dgcwvD2COV9lKLJpNuTm8khhYe49kfPS7Gn NCeOP/bn5YUx5hpIEaPO79lrziHSBuJmEiaB7pSqlm0lbKKa21gdVtMLtegZ omYzNjEKqt8XpNML9dgQETWQRWoaBHenevTAL70j/+fNApInOeHsUyCGt554 de3VJ2ROXHl81AQxrKIzFkVvyyc193gDl1y+Yat6pTPnVS55IL7Qupv9FdoC a/PMdAaZ+GxygZrmV/ibO5UZaWaRM2bnfmT5daMI2hbuMx8STmjsRau6LtjG Hs+9+zSdzOhLuvHMogunrETbzN4mEPFhJ8mi1C9I2nxih0pcJHn5RmoTo/oF 7sVq5QWBrqRXxG1rO9WJcxqFzMOzr+H5tpQZ+h0d6FZdkuHQnwDLvZ8dNhzo gIOQQZTNMvDTVNaykyfCiuTqpTaibJSGMm+scRSh8IhOdi0tH38zDa1Hy9rB +RVs0ilnYwpjkkOcbTs8I1zTdmUVQS555vK9TIgKhxs24vsEPTJWoa6jEN71 8xdvP1WGxU9Wa8tff4Zs/4ipwfoK+EjolZH7PyO8kjLIN68Cl3K1pqJdgM6g 0yEnt9QiXXK3PD1AAI1f9vymWB6adTqmaSkLcNweS0ZG36Kl7WvN7KWfUGI/ aOf1qh5N7ott57i2QRD8mTo7rxHegl+6mn+1IpBGvXY/uxliK5WE1ooW+EnT Ph375z1Yiy1K/JVaIHvkF/Ct4wO8dgv82bYfYfORW50xvxWycQyP2+EfsF03 JmdS2CeoNSauG33Dh12hHZ03LAAt2zjxnT4f8tB+++O2QnDDEyeq+79HSPlz 66nx7Rh6enN5BPcd6JFbKBOHRBBuel1safgO+qucN0Z5dkJ75/6jlNBmUMvU xzUJvsB3oapWnbAJfvc9vE18upFADyqib25Cu1E3pXj8Nwjkx8JXsBqxXHYs pTFbDPukgso7Ro0Y1NwQmH+4F/W+TMrTuAasWB5Er9KS4vlGy67AiQ2gzrLo 5o9IUdLo6Ft8pR6JtzUm5/T2wVZlbdFZSj3oy/yS3bv6EbZAp9jlYx1W/J8B /AvbtBJB "]]}, {RGBColor[1, 0.5, 0], PointSize[ NCache[ Rational[1, 72], 0.013888888888888888`]], Thickness[Large], LineBox[CompressedData[" 1:eJwBQQS++yFib1JlAgAAAEMAAAACAAAAFTYBtQdf+z+pDOdDj2iSv7WYq84M W/s/zzwSJ/iIkr/Kbcy9vV77P0BDiXcoa5K/8PvZPJ2A+z/yPQLN7lyRv0Ed Xbfuyvs/jCyEalU1jr8gz2yiT0D8PzESztGHTIe/tGyq53vf/D/IkHv6SIJ8 v5YJKgJfpf0/frQRHd0pW7+weo3nL47+PwTTRRMl93E/sd/SmQeW/z+BGuJE +qSGP09+wLt3TQBA9gX8NZ/ykT8gF1yT3+kAQK5QwCCEyZk/koO1Gd2QAUAY XPL1KwyhP105SuUXQQJAvbdU3hZtpT/QP3mAZPkCQNUUtbqKBqo/rBYSFMC4 A0CRXH/kidiuP239RplLfgRAiV8Hk9jxsT/9KCMiR0kFQElOBHt6lLQ/zS/+ fg0ZBkAsiKFbulS3P4E6yl0Q7QZAqFlO5y4zuj82OCXp1MQHQFmKHt1sML0/ oWUr4fCfCECzdGTmgCbAP6myhiIIfglAWuM2p7jEwT8nZk2Oyl4KQN5wwOYZ c8M/KZpHRfJBC0CO8Tsn2zHFP0U3LSpCJwxAfBjtZC0Bxz8Tzc6fhA4NQPP7 MW084cg/6AOVeYr3DUCGVdtJL9LKPysPLBYq4g5AuYGCsyjUzD/5znedPs4P QBY21oJH584/cMwFrtNdEECatdOp04XQP7vgqpsj1RBAyZcNB7Cg0T+k/z4b Ak0RQPQaTbBDxNI/6XhRjmPFEUCCOYVkmPDTP4eS2Yg9PhJAY40TobYl1T9n pMqrhrcSQDCg9QWmY9Y/bAPbhDYxE0DHjTNhbarXP/m1sXJFqxNAetavxxL6 2D9BmNCMrCUUQES066qbUto/LGusjmWgFEC8yhrsDLTbPyZOe8VqGxVAIA/Z 7Goe3T9cN1UAt5YVQOzyzZ25kd4/ttFRgkUSFkAUBcBF/gbgP05RXPYRjhZA J+jJdJvJ4D/sxYBkGAoXQNMQVc61kOE/HJt/KFWGF0BjkIWhTlziP7Oee+nE AhhAbtsiHmcs4z/8U52SZH8YQFbU8lcAAeQ/D8GLTDH8GECr6q5JG9rkP3dx n3coeRlAdxah17i35T8/QrimR/YZQJqG8tHZmeY/Q82hmoxzGkBtn7b2foDn P1MN9T318BpAlMy786hr6D/VLmihf24bQBZwJmhYW+k/5oF/+CnsG0Dudt/l jU/qP7U5lJbyaRxAvo7a8klI6z94HCfs1+ccQDrrOAqNRew/CIp2hNhlHUAs bPK2V0ftP4tUUAPz4x1AIgsGL6pN7j/E1RgjJmIeQArXlOuEWO8/RXoBs3Dg HkDoSMwi9DPwP4KuaZXRXh9A+GarR+q98D8FtWW+R90fQHvQewolSvE/yrkz GektIEAZw4aOpNjxP17dggI4bSBASamH9Ghp8j+meO8rkKwgQL5t41py/PI/ XQkAKM7DIEAzMzMzMzPzP0mH+JE= "]]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{36, 15}, {15, 5}}, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0., 8.}, {-0.2, 1.2}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.9525057437605658`*^9, 3.952505786142319*^9, 3.9525058196099443`*^9, { 3.9525058497147093`*^9, 3.952505963924873*^9}, {3.953607859607534*^9, 3.953607868912432*^9}, 3.953607899820037*^9, 3.9536090283966327`*^9, 3.962078675671481*^9, 3.962078710945401*^9, 3.967969673872493*^9}, CellLabel-> "Out[177]=",ExpressionUUID->"a3833d16-ebcf-4d53-a7da-c2b09788f5ae"], Cell[BoxData["\<\"Entropies_KS.pdf\"\>"], "Output", CellChangeTimes->{ 3.9525057437605658`*^9, 3.952505786142319*^9, 3.9525058196099443`*^9, { 3.9525058497147093`*^9, 3.952505963924873*^9}, {3.953607859607534*^9, 3.953607868912432*^9}, 3.953607899820037*^9, 3.9536090283966327`*^9, 3.962078675671481*^9, 3.962078710945401*^9, 3.9679696740386457`*^9}, CellLabel-> "Out[178]=",ExpressionUUID->"dcb22f4d-f34f-420e-8f79-b65a54a280af"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{ RowBox[{"(", "tableresults", ")"}], ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ SuperscriptBox["2", RowBox[{"1", "/", "3"}]], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "factor"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1.709", ",", "1.7121"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", ".0182"}], ",", RowBox[{"-", ".0177"}]}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"36", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.962078724392991*^9, 3.9620788745929785`*^9}}, CellLabel-> "In[179]:=",ExpressionUUID->"deb48de4-549f-405f-8ba0-718babf86fab"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], PointSize[ NCache[ Rational[1, 72], 0.013888888888888888`]], Thickness[Large], LineBox[{{1.7106979682518053`, -0.017977353662924248`}, { 1.7108076910145167`, -0.01796355433215398}, { 1.7112963921112643`, -0.017901564410249815`}, { 1.711803302278992, -0.01783722696480512}, { 1.7118545219683425`, -0.017830852154863963`}, { 1.7110558839966565`, -0.017933182005363885`}, { 1.7091113983427209`, -0.018183436578859975`}, { 1.7089835897668386`, -0.0182}}], LineBox[{{0.7473984329753406, -0.0182}, {0.7464924325934541, -0.0177}}]}, {RGBColor[1, 0.5, 0], PointSize[ NCache[ Rational[1, 72], 0.013888888888888888`]], Thickness[Large], LineBox[{{1.710700709390385, -0.017976988334123565`}, { 1.7097290108736563`, -0.018100621590346585`}, { 1.7106301702504987`, -0.0179869006117912}, { 1.7129318218517484`, -0.0177}}]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{36, 15}, {15, 5}}, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{1.709, 1.7121}, {-0.0182, -0.0177}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.9620787248168645`*^9, 3.9620788750180902`*^9}, 3.967969676420477*^9}, CellLabel-> "Out[179]=",ExpressionUUID->"4ed53c05-d9b2-46fb-a604-5a8a6f63001f"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"intOrder", "=", "4"}], ";"}]], "Input", CellChangeTimes->{{3.9620789134414563`*^9, 3.962078921731324*^9}}, CellLabel-> "In[180]:=",ExpressionUUID->"bca1cdb0-a431-4297-9983-1c92c0a779e5"], Cell[BoxData[ RowBox[{ RowBox[{"tableresults", "=", RowBox[{"{", RowBox[{ RowBox[{"tableEEaux", "\[LeftDoubleBracket]", RowBox[{"All", ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "\[RightDoubleBracket]"}], ",", RowBox[{"tableEEdisconaux", "\[LeftDoubleBracket]", RowBox[{"All", ",", RowBox[{"{", RowBox[{"2", ",", "4"}], "}"}]}], "\[RightDoubleBracket]"}]}], "}"}]}], ";"}]], "Input", CellLabel-> "In[181]:=",ExpressionUUID->"39679286-a493-4b28-9524-dcf8a40c52f8"], Cell[BoxData[{ RowBox[{ RowBox[{"Roftaus", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{ RowBox[{"tableEEaux", "[", RowBox[{"[", RowBox[{"All", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", SuperscriptBox["2", RowBox[{"1", "/", "2"}]]}], "}"}]}], "}"}]}], ",", RowBox[{"InterpolationOrder", "->", "intOrder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEoftaus", "=", " ", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{ RowBox[{"tableEEaux", "[", RowBox[{"[", RowBox[{"All", ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}]}], "]"}], "]"}], ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "factor"}], "}"}]}], "}"}]}], ",", RowBox[{"InterpolationOrder", "->", "intOrder"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.940935315287208*^9, 3.9409353487036066`*^9}, { 3.953609072528487*^9, 3.953609076287427*^9}, {3.9536091433778515`*^9, 3.9536091689132557`*^9}, {3.9620789258098297`*^9, 3.9620789269937506`*^9}}, CellLabel-> "In[182]:=",ExpressionUUID->"88fd649b-ff6f-4097-be65-ce92f63a1143"], Cell[BoxData[{ RowBox[{ RowBox[{"Roftausdisc", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{ RowBox[{"tableEEdisconaux", "[", RowBox[{"[", RowBox[{"All", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", SuperscriptBox["2", RowBox[{"1", "/", "2"}]]}], "}"}]}], "}"}]}], ",", RowBox[{"InterpolationOrder", "->", "intOrder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEoftausdisc", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{ RowBox[{"tableEEdisconaux", "[", RowBox[{"[", RowBox[{"All", ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}]}], "]"}], "]"}], ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "factor"}], "}"}]}], "}"}]}], ",", RowBox[{"InterpolationOrder", "->", "intOrder"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.9409364692374115`*^9, 3.9409364827057323`*^9}, { 3.953609080489478*^9, 3.9536090875049047`*^9}, {3.9536091207371206`*^9, 3.953609128961087*^9}, {3.953609178642701*^9, 3.9536091850512123`*^9}, { 3.953609269899437*^9, 3.953609270739691*^9}, {3.9620789304411526`*^9, 3.9620789326490307`*^9}}, CellLabel-> "In[184]:=",ExpressionUUID->"f77de7d7-4ce2-4561-a57a-455122c3c8f5"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"EprimeOfTaus", "[", "\[Tau]s_", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"EEoftaus", "'"}], "[", "\[Tau]s", "]"}], "/", RowBox[{ RowBox[{"Roftaus", "'"}], "[", "\[Tau]s", "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"EppOfTaus", "[", "\[Tau]s_", "]"}], "=", FractionBox[ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["Roftaus", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["EEoftaus", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}], "-", RowBox[{ RowBox[{ SuperscriptBox["EEoftaus", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["Roftaus", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], SuperscriptBox[ RowBox[{ SuperscriptBox["Roftaus", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], "3"]]}], ";"}]}], "Input", CellChangeTimes->{{3.940935286577239*^9, 3.940935295302018*^9}, { 3.940935353896099*^9, 3.9409354362327566`*^9}, {3.940935473757185*^9, 3.9409354776416335`*^9}, {3.940935616517912*^9, 3.9409356211615276`*^9}}, CellLabel-> "In[186]:=",ExpressionUUID->"21a244a4-783c-49eb-a12b-65cc4a403f4d"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"EprimeOfTausDisc", "[", "\[Tau]s_", "]"}], "=", RowBox[{ RowBox[{ RowBox[{"EEoftausdisc", "'"}], "[", "\[Tau]s", "]"}], "/", RowBox[{ RowBox[{"Roftaus", "'"}], "[", "\[Tau]s", "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"EppOfTausDisc", "[", "\[Tau]s_", "]"}], "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["Roftausdisc", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["EEoftausdisc", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}], "-", RowBox[{ RowBox[{ SuperscriptBox["EEoftausdisc", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["Roftausdisc", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}], "/", SuperscriptBox[ RowBox[{ SuperscriptBox["Roftausdisc", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], "3"]}]}], ";"}]}], "Input", CellChangeTimes->{{3.9409364985912*^9, 3.940936524632621*^9}, 3.947315620077131*^9}, CellLabel-> "In[189]:=",ExpressionUUID->"745c4c84-2508-45aa-8bae-e315d4eb853c"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ FractionBox["1", "2"], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"L", " ", RowBox[{"D", "[", RowBox[{"#", ",", "L"}], "]"}]}], "&"}], ")"}], "@", RowBox[{"(", RowBox[{ RowBox[{"L", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"EE", "[", "L", "]"}], ",", "L"}], "]"}]}], "-", RowBox[{"2", RowBox[{"EE", "[", "L", "]"}]}]}], ")"}]}]}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"%", "/.", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"func_", "''"}], "[", "L", "]"}], "->", RowBox[{ SuperscriptBox[ RowBox[{ RowBox[{"\[ScriptL]", "'"}], "[", "\[Tau]s", "]"}], RowBox[{"-", "1"}]], RowBox[{"D", "[", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{ RowBox[{"\[ScriptL]", "'"}], "[", "\[Tau]s", "]"}], RowBox[{"-", "1"}]], " ", RowBox[{ RowBox[{"func", "'"}], "[", "\[Tau]s", "]"}]}], " ", ",", "\[Tau]s"}], "]"}]}]}], ",", RowBox[{ RowBox[{ RowBox[{"func_", "'"}], "[", "L", "]"}], "->", RowBox[{ SuperscriptBox[ RowBox[{ RowBox[{"\[ScriptL]", "'"}], "[", "\[Tau]s", "]"}], RowBox[{"-", "1"}]], " ", RowBox[{ RowBox[{"func", "'"}], "[", "\[Tau]s", "]"}]}]}], " ", ",", RowBox[{ RowBox[{"func_", "[", "L", "]"}], "->", " ", RowBox[{"func", "[", "\[Tau]s", "]"}]}]}], "}"}]}], "/.", RowBox[{"L", "->", " ", RowBox[{"\[ScriptL]", "[", "\[Tau]s", "]"}]}]}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"cDiconnectedOfTau", "[", "\[Tau]s_", "]"}], "=", RowBox[{ RowBox[{"%", "/.", RowBox[{"\[ScriptL]", "->", " ", "Roftausdisc"}]}], "/.", RowBox[{"EE", "->", "EEoftausdisc"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.951408533481866*^9, 3.9514085351013308`*^9}}, CellLabel-> "In[191]:=",ExpressionUUID->"f24772c9-bb15-4d41-a70e-bad8803fee83"], Cell[BoxData[ RowBox[{ FractionBox["1", "2"], " ", "L", " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{ SuperscriptBox["EE", "\[Prime]", MultilineFunction->None], "[", "L", "]"}]}], "+", RowBox[{"L", " ", RowBox[{ SuperscriptBox["EE", "\[Prime]\[Prime]", MultilineFunction->None], "[", "L", "]"}]}]}], ")"}]}]], "Output", CellChangeTimes->{ 3.947315636249361*^9, 3.947315714453447*^9, {3.947330164432246*^9, 3.947330172645233*^9}, {3.951408527080361*^9, 3.951408535514042*^9}, 3.9536090424369287`*^9, 3.9536090966082854`*^9, 3.953609189363384*^9, { 3.953609244974676*^9, 3.9536092732746525`*^9}, 3.962078892325031*^9, 3.962078935489167*^9, 3.967969684996578*^9}, CellLabel-> "Out[191]=",ExpressionUUID->"28ac4e01-1796-4645-bdea-9ede26b0b827"], Cell[BoxData[ FractionBox[ RowBox[{ RowBox[{"\[ScriptL]", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"\[ScriptL]", "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["\[ScriptL]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["EE", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}], "-", RowBox[{ RowBox[{ SuperscriptBox["EE", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{ SuperscriptBox["\[ScriptL]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], "2"], "+", RowBox[{ RowBox[{"\[ScriptL]", "[", "\[Tau]s", "]"}], " ", RowBox[{ SuperscriptBox["\[ScriptL]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}]}]}], ")"}]}]}], ")"}]}], RowBox[{"2", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[ScriptL]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]s", "]"}], "3"]}]]], "Output", CellChangeTimes->{ 3.947315636249361*^9, 3.947315714453447*^9, {3.947330164432246*^9, 3.947330172645233*^9}, {3.951408527080361*^9, 3.951408535514042*^9}, 3.9536090424369287`*^9, 3.9536090966082854`*^9, 3.953609189363384*^9, { 3.953609244974676*^9, 3.9536092732746525`*^9}, 3.962078892325031*^9, 3.962078935489167*^9, 3.967969684996578*^9}, CellLabel-> "Out[192]=",ExpressionUUID->"ba2bb016-9179-4236-9aad-858d4706099a"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{"p1", "=", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Roftausdisc", "[", "\[Tau]s", "]"}], ",", RowBox[{"cDiconnectedOfTau", "[", "\[Tau]s", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Tau]s", ",", RowBox[{"Roftausdisc", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "]"}], ",", RowBox[{"Roftausdisc", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"AspectRatio", "->", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}]}], "]"}]}], ";"}]}]], "Input", CellChangeTimes->{{3.947315722788121*^9, 3.9473157238036013`*^9}, 3.9473301763883224`*^9, {3.962079106926565*^9, 3.962079107086317*^9}}, EmphasizeSyntaxErrors->True, CellLabel-> "In[194]:=",ExpressionUUID->"a675d142-8ed5-4b37-969b-c17eeeac545e"], Cell[BoxData[ RowBox[{ RowBox[{"p1", "=", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Roftausdisc", "[", "\[Tau]s", "]"}], ",", RowBox[{"cDiconnectedOfTau", "[", "\[Tau]s", "]"}]}], "}"}], "/.", "\[VeryThinSpace]", RowBox[{"\[Tau]s", "\[Rule]", RowBox[{"tableEEaux", "\[LeftDoubleBracket]", RowBox[{ RowBox[{"3", ";;", RowBox[{"-", "1"}]}], ",", "1"}], "\[RightDoubleBracket]"}]}]}], "]"}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"AspectRatio", "->", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9620789928270063`*^9, 3.962079088566518*^9}}, CellLabel-> "In[194]:=",ExpressionUUID->"fd4193e6-2b33-452a-b75a-58e9511007b8"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Roftaus", "[", "\[Tau]s", "]"}], ",", RowBox[{ FractionBox["1", "2"], RowBox[{"Roftaus", "[", "\[Tau]s", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"EprimeOfTaus", "[", "\[Tau]s", "]"}]}], "+", RowBox[{ RowBox[{"Roftaus", "[", "\[Tau]s", "]"}], " ", RowBox[{"EppOfTaus", "[", "\[Tau]s", "]"}]}]}], ")"}]}]}], "}"}], "/.", RowBox[{"\[Tau]s", "->", RowBox[{"tableEEaux", "[", RowBox[{"[", RowBox[{ RowBox[{"6", ";;", RowBox[{"-", "1"}]}], ",", "1"}], "]"}], "]"}]}]}], "//", "Transpose"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p2", "=", RowBox[{"ListLinePlot", "[", RowBox[{"%", ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}]}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.9473157374919567`*^9, 3.947315743166114*^9}, 3.9473301807390757`*^9, {3.951408546301697*^9, 3.95140854763381*^9}, { 3.96207890660789*^9, 3.962078907097044*^9}, {3.962078943908075*^9, 3.9620789511327343`*^9}}, CellLabel-> "In[195]:=",ExpressionUUID->"e12b9d8a-47d9-47ff-b4f4-63b7a181d5d3"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"plotcKS", "=", RowBox[{"Show", "[", RowBox[{"p2", ",", "p1", ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"36", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.9409366104158053`*^9, 3.9409366294913163`*^9}, { 3.9409366708966475`*^9, 3.940936706670418*^9}, {3.9473157558632107`*^9, 3.94731578283821*^9}, {3.9473158240478806`*^9, 3.9473158271888075`*^9}, { 3.9473160252241974`*^9, 3.9473160281277485`*^9}, {3.9473302031366243`*^9, 3.9473302055241747`*^9}, {3.951408569618511*^9, 3.951408604016815*^9}, 3.953609207741672*^9, {3.9536092832778196`*^9, 3.95360930893293*^9}}, CellLabel-> "In[197]:=",ExpressionUUID->"a8ebda2d-e920-4794-aa0c-9d9b26835a10"], Cell[BoxData[ GraphicsBox[{{{}, {{}, {}, {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], PointSize[ NCache[ Rational[1, 60], 0.016666666666666666`]], Thickness[Large], LineBox[CompressedData[" 1:eJwV0vs/1YcDx/HjltytogurZDs9+ubWUplL7w+rr6+iDBM9+GayteSQyTVZ dLBabUciWk6tOLFckluiPiPVOdvDOMf9cnJwOOSwcxwH5+DY9sPr8fwHXhah UT5fqVMolJB/+lc/XVOL5ucqCF1ta/srJ0gdansKt1KFymLzBjl/lCxn+eSx HqigbGTK9K8KSBete533r6sQbrm2er14kLSyc3cJi1Ih5YdNvy0U95GF45rB nGMq6K7+hxUY3EPSkmJ25ViqsLeKnZOxtYtcaZj6wlq6Ajat+9uKjzpIeuez ndy6FfASzAOiA7hkWnZ5d0f8Ckq2bWjSQRu5xxfrbu9ZwZ0Ybn7g7B+k8xP7 ixljy2A4+DUE17FJ/9IPxOtvLWPg/9utPrv+muzSCIqudlmG9UtHtsGZZvLr Lx17+SNLUPT6apy88pKc4t1/oUlfwnJIyya5/TNyzJSq97PFEqK719mE8yvJ gAxRu2GjEkXxAXYXxCxSIW2lcXyVcPu+L3StJJs8a7RfYTOpgNfLPW6N5xNh x8kYKUhWQG2H4Hf75PuItixpjDRU4IRv5z0rvXLQewut5piLkOo9YJ0X1UBx eUCWZLOIb52uZ5dONeJkbaLRkRcL4B1ipxVqN2PNmXrRg6MLYGsVZM4+fo1H i4nXmvrmUayduRgRykEaN3V68Mw8HGxZrcm7W6Gnit63c14Osa2hmEdvR77W B6utdDlcQjYcK7nEw/zejSXK9XIkj7oXHErtxMdZpgW8h3Ngrt62yvmpG0XZ sbnx9nPw3i1NsS7pRdd35Lj2GxkuHueYqP/Zj/Sbv9cyA2RQovXOcdUgXO+G HfITz8KOqx5613EIDj8GmR9MnUXyuV9mApsEiDw36B21cRZVuQHb4qeGcfep eeliuRRin28GOsxGUaRxbWjCXQqN4jaGp48QEdWXKzxHJPC3nnpE/WkMnzhw zGxTJChkmLh78cYRm6GZnm8mwYVQE5nMbAKvvoth7oz9C4FZzhRKxCTq42ka HrUzmGs3jM1rfg9B8wT7F+U0lBwiqmWbGOlbg/Y7uk2jcK7qw6tXplF37Gny phtipIU1BUunZ6C4dUxIDEwhvGCdKN1WArpN3EKN1RTkRrU02pQE+2a+KUlI fY/KlJilyl+lYKfSkr7vm4SAevBoEG0WBMM4f9R+ErlVD6kRe2XoamqnZGZP wIJ4njW6LEOrOCI3Ui5C4RcmBW85c5Bu13LLOSkCy69s0vyOHONmTtry5nFk OMVdH6XNw5ifZJZpM46cXTecth5egNMVhvKzgjGM0/aJuNsWcZtWlmhpNAbn hD/i1FSLIIuWes3pQpi+rzQtHVIgTTLQQV0eRfn2qvj+FiXSL01UHIgfRdbC jdVrZUvIkHYcOSwfgdrd0cRX+cuQ5DvuPBw3AqreZlb61RVcepGYYKUcxkvn zUs9ySoknL5nLbk8jF2fE88aYlZhFntlia47DJ7+hoktByhEWdXmr4dyBfDO XTWg1lKICwO6HNnHAsSYasWqHVAj2ohDZETUEE7wXw1V1KsRNqH78/bnvUNV fK3hvoPqBNY/c7Z+w0fNccP07BZ1wm3eo9pB8c9nb7Py2jw1CCE1VUHsGcSi kdW76W4N4vOyBE2byAG0Dr8+OxuqSbyx/apTVNEPJvfdXyMSTcLY92SC/3wf ztMbVS2XtYjMLd4bQ1378OSwx5b769YQ2qzYhVlGL6Lq7NyTWGuIlCd8ulTY gxAv894gZ22i4SzjxH9deuD1W4jAu1Ob8A83+LQ/vxtxKdXnQiLXEp/y3Xfl Krtwiik2ydPVIVKcqKdPn+qCsJ7J1yjRIRbDfgzZze5ETC7FvtpDl9juteZd j30ndjzKFtSJdQnlhITvU9SBst5iieVNPaLpZuTjjM0dkDu+PaDvqE9YPBQN BmfxkPmG+fiqUJ/wuuXu/0qfB/8aV4+6LANC+HjmyIMfuKiUbqivdjUknjad wrgBFztu+R95OGdI7E2q0L2Y3Y6j7wefl/5qRJTL6ns8zdsR/r+wKMonxkRN oLsnw7sNFH8dIz+GMfE3rUMU6w== "]]}}, {{}, {}}}, {{}, {{}, {}, {RGBColor[1, 0.5, 0], PointSize[ NCache[ Rational[1, 60], 0.016666666666666666`]], Thickness[Large], LineBox[CompressedData[" 1:eJwVx3k4FAgfwPFxhtwTTTKYwzBmSFM5ix9eaiNbiZTINRMxMnIWY5AloxXK 8TpWUqSSJKzafh2OtSiVlGdF0egt2d2JzEYP7+4f3+fzfCmhx/Zy5QkEQtg/ /eu827jOYMeyMyczT/Rp6BMeHugXPhtfdt5jY9DRcu01mrQmT2zjrDiX5rsu 7RgdQcbElbrl2yvOTrQZR9XuZ6jZPJm1bzMBJAZ5yrE3n+DVlV+/hl0kwPay n1DC7sfZ/pVXGgw5MMkNWmTk9+L7IcskSqcciJ29ql4WdmFsowK1wEseQjgN b3jfP8TrfVp+Rt/kQd4pmmS/5T6+ymNpFrQrwFhhPfng4F10sYq8FZSmCMfS x+tyWn5G/3EF+jYvJdh6ZaNtiWY7/uKuM7KKpgxSvRor3d5WfOL9NK6LsAoa HjnU9g20oLjJTVzxbhUE2zA2RBJvImGSfPv5oArUT+/z/4VyA1nkXOvBO6rw h8eGQ90p17CuwpW8fF0NPKzutjtQGtHZJ8Huz4urQV+wefmeegNmZ2zVt69S h1MuBrJhzmWcTZ7ozSjXAJ3FgZUccR3el9ZNnCjTBLXv/PRMtS9i0eDuroly LRAYL32Qu3MBB4uktE5vbSgdtSV+n1ODUSrRdzKeaoNKNLNK8rYa3R8GeW7w 1YHa7NNTtA+VWKfMYTSN6oC4K91ARKrARMcy6UyQLrir3uDbp5djwhDR/9U7 XTj7RG+Mv1yKm9TW94RHEcHhkdYMlpVg27Ul61OfiRBXY/XR7OB5DAqUSixO rIFtCUVL7I3n0KWIHuwtrwf83uw3mcbFaLoznS7J04N+HQ9qDbUINcRxtdNE fRgM3iQT2RWiuWCW5FmlDz/p7MgIPHwWu4clwtVma0HbMKDJjVWAJ7ifYig3 14IVu5H7+NYZFGUE6OU4ksBC8a32mG8+1g4/MLHtIYFK8u5IjpYYXxfYtbL3 rAOL8B3Kz1+fxjMHQgLCxtaB7uTZlHnMRemhZysjRwxgvmRtwdKtHOSm4ETW nAHIHdq6LrHjB0z+tS2bl74eikdakvUHsrH5odeDk6sNIevCbYum2VPIPVJe c7/UELRNPQ+wDU/hfnL0UQ6dDCRmTFq5XxYOXDEuf9xMhl2Tayt1KzPRtW3x RdE2I6BazzoOzGRgBUH9S+pvRuAoTruk5p6Bo4XHpXn7jeHNAd7/qPUi/Oqm /rHznTH8EcBzkqwRYZnrlgIlexPYW8ZJ0KwUYpQ/ceFuuglcW6gQHOYJ8b3H lunMHhOQBfqSiqWp6LH9dYOfBgXe05ya+UqpKGAtFtnuo8BxpdO2ieSTaHPU SdG0ggIh/OKONDiBbnFePKNJCnzYuM7/BT8F12gssGhMKljKPvPH65Lx3lj+ ECeWCk6jH0oVJEloZO/60qudCj5VidBumYSKU+d+i12mQvDesXtCYSIqWPc7 VrvTgBKa5ToxkoBKyckPh/NpIPd4PynWJgHbbqh/Iw7TQDZEPHi/Mh7P2vHF Aevp0GoVRzipGo/1qiWkq6F0KDueHuGSehzTo1x3yzfSwSjTIQDn4/Dm+cqp YCkdqhcXQ67GxaF/wVxOj50p3HPt3tP5RYCejxIXOCJT+BTmbVSfJsAzvQsz l3pNwQynf7ZWE+DSVKO5sRYDXghfHqRVxOKFPxePVfsx4Hc1NtvJOhZ3Mnbl 0qoZcE7+dlht0TF8VPPSoUnCgLmMzT3OAzEooib4OFmaQaVcoKeJZgzGL6TW PI83A5fDm5e/+PAxqaLqM/+uGUxPHoocr43GQOVOQw1Fc+i0CWRKZFFIde+b a/Y0B+HOS4sV26Nwp0+H94Fic2B3h7sp74nCW3O7lJV/N4cfmhwKXRIj0SxC +0sblQm+j49SeIWRaDzJlkUdZcLX78w2/XU9As+Lgz/SW5iglkPtS7gUgSGq U9fffmWCET37TSMjAt0C9lJrXSzgv0k0ew3NI6hOqGHyTv/zazYGLPTzkO+x ctnyqQVoib0N5e4cwenWYeHfJBb8HTJnFfxjOH6Lv1zSE8wC8vwT374yLhbc 0HhR2sACmQn5R5kwHFP6GijRf7HA0IQ7MMvg4iqBJtfNjg2htf/h6nmHo07M g1yyiA3Wvg4qXZRQ/D8vDONI "]]}}, {{}, {}}}}, PlotStyle -> {{ RGBColor[0, 0, Rational[2, 3]], Thickness[Large]}, { RGBColor[1, 0.5, 0], Thickness[Large]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{36, 15}, {15, 5}}, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 8}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->0, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.9409366137084103`*^9, 3.9409367069735193`*^9}, 3.9473152723162093`*^9, {3.9473157461876445`*^9, 3.9473157833273363`*^9}, 3.9473158276535826`*^9, {3.947316021391629*^9, 3.94731602841281*^9}, { 3.94733018290415*^9, 3.947330209808914*^9}, 3.9514085510322*^9, { 3.951408587883492*^9, 3.951408604166462*^9}, 3.9536090488330164`*^9, 3.953609193506523*^9, {3.953609276848411*^9, 3.953609309097187*^9}, { 3.962078898110718*^9, 3.9620789517211504`*^9}, {3.9620790926666718`*^9, 3.9620791148517256`*^9}, 3.9679696872734876`*^9}, CellLabel-> "Out[197]=",ExpressionUUID->"23b5e069-e357-4ce1-a8ea-3f1bf2944df0"], Cell[BoxData["\<\"cfunction_KS.pdf\"\>"], "Output", CellChangeTimes->{{3.9409366137084103`*^9, 3.9409367069735193`*^9}, 3.9473152723162093`*^9, {3.9473157461876445`*^9, 3.9473157833273363`*^9}, 3.9473158276535826`*^9, {3.947316021391629*^9, 3.94731602841281*^9}, { 3.94733018290415*^9, 3.947330209808914*^9}, 3.9514085510322*^9, { 3.951408587883492*^9, 3.951408604166462*^9}, 3.9536090488330164`*^9, 3.953609193506523*^9, {3.953609276848411*^9, 3.953609309097187*^9}, { 3.962078898110718*^9, 3.9620789517211504`*^9}, {3.9620790926666718`*^9, 3.9620791148517256`*^9}, 3.9679696874238853`*^9}, CellLabel-> "Out[198]=",ExpressionUUID->"82b5e27d-a3a1-49dc-a4d2-f7010b4d167c"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"p1aux", "=", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Transpose", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Roftausdisc", "[", "\[Tau]s", "]"}], ",", RowBox[{"EprimeOfTaus", "[", "\[Tau]s", "]"}]}], "}"}], "/.", "\[VeryThinSpace]", RowBox[{"\[Tau]s", "\[Rule]", RowBox[{"tableEEaux", "\[LeftDoubleBracket]", RowBox[{ RowBox[{"3", ";;", RowBox[{"-", "1"}]}], ",", "1"}], "\[RightDoubleBracket]"}]}]}], "]"}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"AspectRatio", "->", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], ",", RowBox[{"PlotMarkers", "->", RowBox[{"{", RowBox[{"Automatic", ",", " ", "5"}], "}"}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.9620789928270063`*^9, 3.9620791238030643`*^9}, { 3.9620792583055525`*^9, 3.9620792739929724`*^9}}, CellLabel-> "In[199]:=",ExpressionUUID->"ba979bb8-0472-4bfe-95a0-c700b7636eb6"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Roftaus", "[", "\[Tau]s", "]"}], ",", RowBox[{"EprimeOfTaus", "[", "\[Tau]s", "]"}]}], "}"}], "/.", RowBox[{"\[Tau]s", "->", RowBox[{"tableEEaux", "[", RowBox[{"[", RowBox[{ RowBox[{"6", ";;", RowBox[{"-", "1"}]}], ",", "1"}], "]"}], "]"}]}]}], "//", "Transpose"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"p2aux", "=", RowBox[{"ListLinePlot", "[", RowBox[{"%", ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}]}], ",", RowBox[{"PlotMarkers", "->", RowBox[{"{", RowBox[{"Automatic", ",", " ", "5"}], "}"}]}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.9473157374919567`*^9, 3.947315743166114*^9}, 3.9473301807390757`*^9, {3.951408546301697*^9, 3.95140854763381*^9}, { 3.96207890660789*^9, 3.962078907097044*^9}, {3.962078943908075*^9, 3.9620789511327343`*^9}, {3.9620791316526337`*^9, 3.962079137076933*^9}, { 3.962079268459331*^9, 3.9620792749561687`*^9}}, CellLabel-> "In[200]:=",ExpressionUUID->"7b2bbf64-9017-4b16-b267-f413f209a7a5"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Show", "[", RowBox[{"p2aux", ",", "p1aux", ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", ".1"}], ",", "0.2"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", RowBox[{"FrameLabel", "->", " ", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.9409366104158053`*^9, 3.9409366294913163`*^9}, { 3.9409366708966475`*^9, 3.940936706670418*^9}, {3.9473157558632107`*^9, 3.94731578283821*^9}, {3.9473158240478806`*^9, 3.9473158271888075`*^9}, { 3.9473160252241974`*^9, 3.9473160281277485`*^9}, {3.9473302031366243`*^9, 3.9473302055241747`*^9}, {3.951408569618511*^9, 3.951408604016815*^9}, 3.953609207741672*^9, {3.9536092832778196`*^9, 3.95360930893293*^9}, { 3.9620791395789223`*^9, 3.962079173698618*^9}, {3.9679696973406444`*^9, 3.9679697920624337`*^9}}, CellLabel-> "In[212]:=",ExpressionUUID->"9effe235-c1e3-40a7-8b45-2de6285ea3b9"], Cell[BoxData[ GraphicsBox[{{{}, {{{}, {}, {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], PointSize[ NCache[ Rational[1, 60], 0.016666666666666666`]], Thickness[Large], LineBox[CompressedData[" 1:eJwVxXk4FGgcAGA5sks5kqMoV/EoppQupR9TEpF2bKJlc1YsI5UcITLhSWnk KBsV0bFypBjX+D4sS5sNQ4yhGMwIMeMYZphpd/94n1ffJ4TkLy0lJeX1n/// WUFDv7FGAp/cz2pLiHT40agjtvONBLYs29f1hNCh5Dnp4fN8CaySIiWQiuhg Jfek++kdCZy3ulKWMUsH0512Vn4hElh/bt2bFWI9FHBkPdtOSqBHdeLoFLUe gqOumGQaSqD/YhHTYLIexLWTp834Yggw8/ZhHENA6a4y7qSJIdfAzJb1FMHN 9JJPjHAxeMX76ioIEJi7wLoH5mIgtHEft+ljOFRmcT1xbAU8h3+hHD6CwfW1 6pRaxgpoKBmIJzwx9Mh4hL6zWgFSQP+fv17CcN7bsm+QvQzb+4Q8w0gMk11P 6bKUZUj2Z9W3XsMwpmGk+Eh/GVp9t6LhCxjcErkdSnUi0Im55CJ9AoOQ3x7c 5iICfx+7R7WbMQQo7xUSvgrBkEPRM29CsLMtkZ0bLYTgTT84O29BEGr4qo6s JIS55Lu+TM96oPQVmM4/XoKYEefqxiA6CONYc1GEJficc0mL51QHZysjlR3o i9DcLG2/TVIDqy9Uc/NPLEKlRulBvahqeLEUebuBKYDAewq17vU0uNkZ/23g ggBs09xYtn9VgKIkdI+xYAFi5brdN6e9hWw51e/tlAX458KJ3HnNNyDYrflK pLYAQfXqKd6lr2FrmkZu17N5aIkjt6x6+BwK08Oywi3mgfaPbkFowxPouYE4 8i1zcLyomyT+ToVb999XPnabAxWalmKywAFscvyO/jw1Cx9mguPjPlDR/lQP ncPxs6B4mZLkuyofkX8bOBWiOQvMGxHN20Jfo5xynddLJXxwlnpPnh56iwpl bn8Zt+NDsTI7YrtUDQp6F1fqyObBAaVnnUknMdq1v017RywPHvnTRjy+NKGw RNlb2do8aFYXr5Aq/0JNN648Ng6bAUZVaLpb79+oOjxYxr5yGjYrmnw4ZtiB hhrHW/NE32BPjpdgC6UL3drssdeS+A2UT5HXpKr0INrJ8mitu1NQtvYFkfO+ FwkzTo5asyah/dfG+rKKfkQhXFusMJ2ENcakFCpjEO2ZvvgqIn4C3PZ00gvS h1BrfHBUMvMrRMXN+Q27s5E1VSV7xOIrBHRcMpU9PIp6GjqkktLHIU90k1Zo w0HtU0FZ5AUufKzJeHL5/Dji68kRM89yQSPcLNO0ZAJxtA/KLzRywHJX0fwf G78hlcEo7SQCB9Zv885hFc+ggwlU0ZHcMdg49pHAtuCjB8HFkYbKY+BgSVtL fDmLUOFynw5lFKoq/MpNds2jmzwWw2hlBGTMf9FsYiygWzHjpfvCR2CH/s7Y Y6mLKJHPcLBdYEO0gMQT+QgRL9vS2PYaGxLiXqrvc1lGMfTICFPRMFylZ/K9 vcQowveJGS9uGDxOT2bPpXxH2mEJyxSFYZB23D9bMymFi99uOP8lawikdZZq iQbS+CpLoW1u6xAQPOSdAgJl8Efroygo5Aus5vXJqTbLYoLP3od7H36GTvbM euPdqzGoVR0yaxmE3bvypp9VyGOiwP7dfuEAnAu+0pfi9CMeNYoXWpsPQGD8 5ayZZQX8U3GELIHMAmWqvmCqYQ1u2eHfzS3th8lcFFX6VAmruJyNcBUw4SV3 KKXKUQUnbTyl6WPDhJY/fo+lu6pi+edhi7PUPrB5oWuiFrIOx5YNUvijvWCV UnGbnKWGawOoZ45Z9YIrO+/+3fb12DVw7YH+7E/gH1hA3aeugQ8M2plkiXog xiqh3YqsiWMPGvn6nusBX79+zWimFl7yS/Xa3toNpuV5ocwzG7Ge0+rPvRbd 8DtjZ/XxCW0sGucNkgoZUE7jXm1L24Qb7pOLEjcw4J6l15uLzrpY/xl3wDOt C+jEy9N69/WwU4ada9OaLmhYEc6gZH08WjTtkJ/SCbP5xXo77hjg8oZzwFnb CaladtvVcw3x7qhShevpHfDCptLboG4LLpmr7nXU6YBo84gG1YmtuMLdzpF6 6iPoZhQnvDQ2xv8CdJsgJg== "]]}}, {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], PointSize[ NCache[ Rational[1, 60], 0.016666666666666666`]], Thickness[Large], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 60]], AbsoluteThickness[1.6], RGBColor[0, 0, Rational[2, 3]], Thickness[Large]]}], TraditionalForm], {0., 0.}, Automatic, Offset[5]], CompressedData[" 1:eJwNwws8E3gcAHB55CKv5HG4vIqPYqWk0umXlUSkmztHx+VZcUySPA6RhU8u N3mUoiJ6nDxSzGv+fxxHlwsjZhTDJsTmMTa2ru/n8zX0CyMFykhJSfl8veFr 6a9/VNA0bKmXwHvPs7oSIh02mXQn9LyUwPY1x8b+MDqUPyHdfVIkgQ1SpGRS KR1s5R72PfpDAudtIyqzF+hgvsfBNiBMAlvPbXm5TmyCYo6sd+dpCfSrTR+f pTZBaGyEWY6xBIYuljKNZppA3DDzkwVfDEEWvn6MEwgofbWmPTQxFBhZ2LMe IbieVf6eESUGnyR/fQUBAks32HLHUgyETu6DTkMM31da/Z4yuQ7eY79QjhzD 4P5CbVY9ex00lY3E094Y+mW8wl/brgMpaOjvXy9hOO9rMzjCXoNdg0KecQyG md5HdFnKGqQFspo6rmKY1DRRvG+4Bh3+O9DYBQweKdxu5UYR6MVfcpM+hUHI 7wrtdBNBoJ/D/YZtGIJUrIWET0Iw5lAMLFsR7OlMYRfECSH0u29cXbcjCDd+ 3khWFsJi2i1/pncTUAaLzZcerEL8uGtdSwgdhImsxVjCKnzIv6TNc2mEszUx Kk70FWhrk3bcKamHjRfquEWnVqBGs+KwQWwdPF2NudnMFEDwnwoNnk00uN6T 9Hn4ggDsMz1Y9v9Ug6IkfL+pYBkS5Po8t2W+gjw5tS9dlGX478KpgiWtlyDY p/VcpL4MIU0a6b4VL2BHpmZB7+MlaE8kt2+4+wRKsiJzo6yWgPaffnF480Po v4Y48u2LcLK0jyT+QoUbt9/UPPBYBFWatmKawAns8gOO/zi7AG/nQ5MS31LR wQwvvSNJC6B4mZLqv6EIkX8bPhOmtQDMa9FtO8NfoPwqvRer5XxwlXpDnht9 hUpkbn6ccuBDmQo7epdUPQp5nVjhzObBIeXHPamnMdp7sFN3dwIP7gfSxr0+ tqLIFNkbebo8aNMQr5Nq/kGt1yIemEbOA6M2PMtj4F9UFxUq41gzB9sUzd6e MO5Goy1THYWiz7A/30ewndKLbmzzsrYhfgaVM+TNGar9iHa6Kk771ixUKj0l ct4MIGH26YmjrBno+rWlqbJ6CFEIV1eqzWdgsykpncoYQfvnLj6PTpoGj/09 9OKsUdSRFBqbxvwEsYmLAWOebHSUqpo3bvUJgrovmcsemUD9zd1SqVlTUCi6 Tiux46Cu2ZBc8jIX3tVnP7x8fgrxDeSIOWe5oBllkWNePo04uofll1s4YLO3 dOkvnc9IdSRWN5XAga07ffNZZfPocDJVdKxgEnQm3xHYVnx0J7QsxlhlEpxs aErEZwsIlawN6lEmoLY6oMps7xK6zmMxTNbHQcbyF61WxjK6ET9VcSBqHHYb 7kk4kbGCUvgMJ/tlNsQJSDyRnxDx8mxM7a+yITnxmcYBtzUUT4+JNheNwRV6 Dt/XR4yi/R9a8BLHwOunmbzF9C9INzJ5jaIwBtLOBxfqZ6Rw2atvz3/MHQVp vdUGopE0vsJS6FzcMQoEL3mXoGAZ/O7ocRQS9hE28gbl1NpkMcHP+q713Q/Q w57farpvIwb12u8t2kdg397CucfV8pgocHx9UDgM50IjBtNdNuEJkyThUcth CE66nDu/poB/KIuWJZBZoEI1FMw2b8btuwP7uBVDMFOAYiseKWNVt7PR7gIm POOOptc6q+JUnTNafnZMaP/rXgLdXQ3LP4lcWaAOgt1TfTP1sC04oXKEwp8Y ANv06pvkXHXcEET9+YTtALizC2/f6tqK3YOVDg3lvYfA4GLqAQ1NfGjEwSxX 1A/xtsldtmQtnHDYxN//XD/4BwxpxTG18WpAhs+ujj4wryoMZ/6sgw1cNn4Y sOqDe4w9dSendbFoijdCKmFAFY17pTPzO9x8m1ya8i0D/rTxeXnRVR8bPuYO e2f2Ap14ec7gtgF2yXZwb93cC83rwnmUZognSuecitJ7YKGozGD3H0a4qvkc cJR6IEPbYZdGgTHeF1uh8HtWNzy1q/E1atyOyxfrBpz1uiHOMrpZbXoHrvZ0 cKaeeQf62WXJz0xN8f+I4yAo "]]}}, {{}, {}}}, {{}, {{{}, {}, {RGBColor[1, 0.5, 0], PointSize[ NCache[ Rational[1, 60], 0.016666666666666666`]], Thickness[Large], LineBox[CompressedData[" 1:eJwVx3k4FPgfwPExrnJPznXNyRhDadqW6qfvx1jadbZjV6zIEeUMqWTlWPbJ NhXp2Ky0yJYloXKE8f0ipChCkS1F+D1UzmbXEbv7x/t5PW9m4CFRMJVCoQT9 238u2L+iddWuonnrb5z3zTWgfZ2Pkp6+WkUm+YoMtYUGxLgbP2wrWENLCXHK XQIJMh3+o2i1ag098/7eYFUoQWoVI2nffk4BzvLXDf2HJKh07cFi0DUKyFBE aaJSCXr/aG1A1VQGQmwPV1yYk6CJbstjzDoZ0Nq3oXJF2IiiS2RZmS5U6KdN fvkuqxGVdah7Gq9Q4cXB0kHWVCMaOMVXy6yRhVDLgMBeR4zsNobe8TshB3ks S4ehfIy8XslybF3kwT81iK4kxUjiQHumyFaAjR0TVzuYBD1x64m9T1EE3zc+ 6TvtCRLfshfnvlUEHTXWp0lfgigjRlW9XetAFPrivl80QXyjDKuu+vXAH1ic YR8nqChXaLRapgQZwUOND44ShDyO2ExfU4YHQSb4zQGCfkr9n862PBUwPBHt QXUm6H38cHtqjioEB+7KrTcmiMwWDSdcVgP2eDpjcwtG2V277w/nqEOk0Tp3 dw5GXdmz7Do3DZjPOBM06NuIwtdF1Kf2aMCJUfd7zRES5NDs57zpOxq8uhKt N+PagIoUBKa3BmnQ2kr92ny1Dh3dcXl2ym8DVOuU72Ak3ENHujW9Bt5ugLBM pXrvxhq0RcmgbX+4Jjic8xpyaK9C1TeXrdLnNCFJvs/b+Nwd5Oc7O2aeoAWP DzjnLehWIrtsjr8bVRsiGrXFAeU3kYlTMmfslDa0pUS1yVy+jlTFsYXjmjpQ 85heFNP0GzKLea/nnKcDX5X2iT6tZaHWvrEkZa4uaNToKWdInVBC8LsoZqUu dE5HpqZ0ZuGUVB/tkzv0QDk2/WSQTCEu7GtiWLfpwWByfKt5zE38MtPmrsU3 n4E75WHUh9d38BnvAJ+gPz+DMvWReD6lDs/ufbr27IA+bFO71nPSjeDg43g4 bV4fcoNrRvcOt+D4B9U/hSQbQKv2pxVRdTuuaHZp+kHZEHprY857PX+Egw/k 5JNfDMFYmdfpyO7Ge4wiwgQcI9h6xV/KSX+KO/+g5zyuMAL13VEqZzX6sbB6 qT/b1hgqVG8Ixx8+x7kUlY+JD42hy6+5saLqBR48d3j21B46qHBF4qzel3jR XmWy7i0dvLb2SIrOv8aXhVsz5bcxICFlfv8b7xEc7qUpbUhmQGh3tIXczrd4 wnHr+I9tDChY+rHmd7tx7LjrZbGnKhOe1F34LTbk/ziGv5Rt/S0TdI5ZXrS4 NYm/CNspZ5LLhO2C0oUS/ffYPtYlxHiECVrmAVeGyqaxlqqUz+axQH/sycaR z2dx45+nuwXRLHDaXqMqLJ7DxtuEz11qWFBbtf82T7CA5UYvPIxeZYHsZh/d lt6PWNbq0Y6rDmzYxLRKcjz7F5aPj2/uO82GRKloZilwEVeXq6xo9rEhLaVY 29pjGWfZRIp9DDgQJ7k4G+D/Cd9Yf0mvNJADe7+bypkXr+HkcOFuagkHqC42 c3VTFFJ58cqo/+y/b/h3vZBFJV6Z8yfbbExg415F19AwWeLcclQqSDEBhZkB eVqrHDnTLp36vd0EekamtbhbFMjyaIkZXd0UtggKPlyrUiQF00uHrnqawr7I wwNi1/XEydQ1g33VFMJSYy9NLyuRlvzn22+NmYJ6FlP6rkmFpLCOeOy05MJU Hk4oz1cjcdLE/N44LhRPvBbXumiQY7l5c5ENXGgr+TVJ4kkjvgp1hqpyZmB3 g87TPLSBsBw65iuczcBWXHUq6pImcfKodfM+bwaeIwXZZ7q0yJ15VwWFITMI DivKstbWIdyDGh+rWTw4YZvWZRulS+gjFn+Fh/EgaP8L3cRBPXJR7D/Juc0D i9sFMYN79EnA+tGyN4s8+LXX6t5XkwbE3kfEKrQzh9s1E3Ed54yICiWfF/Kz OWRu96886E4nkY5r1y17zEEijP3AyGaQ8bt9SX/r8aFpZXEaZzDJStz1S23+ fJgrLGNsOs0imeWq/b8U8+Gs3i6+dh6bHO8oZkbM8OGGXXUAq4FDFGPUgu1t LCBxc3wTbdKE0KKaMoxSLIB+oSytmMsl/wAJwuav "]]}}, {RGBColor[1, 0.5, 0], PointSize[ NCache[ Rational[1, 60], 0.016666666666666666`]], Thickness[Large], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[1, 60]], AbsoluteThickness[1.6], RGBColor[1, 0.5, 0], Thickness[Large]]}], TraditionalForm], {0., 0.}, Automatic, Offset[5]], CompressedData[" 1:eJwNx3k8FGgfAPAxrsJgcq5rTgZDadqWavX8jJd2nS27YkWOKGdIJSvHsp+8 TUU6NistsmVJqBhhPA9CiiIU2VKE/VA5m11HbH98//iygg55hMhSKJTgz2Q+ o362YP+K3lW7iuatv3PeN9eA9nU+Sn76ahUZFygyVRcaEPNuwrCtYA0tJcYr dwkkyGT4z+LV6jX0zOdH/VWhBKlWjqR//yUFuMvfNvQfkqCytQeLwdcoIEPx SPcok6D3j9YGaCYyEGp7uPLCnARNdFseY9XJgOa+DVUrwkYUUyrLznKhQj99 8n/vshtReYeal9EKFV4cLBtkTzWigVN81SyxLIRZBgb1OmJktzHsjv8JOchn WzoMFWDk/UqWa+siDwFpwQwlKUYSB/ozRY4CbOyYuNrBIuiJW0/cfYoi+L3x zdhpT5Dolr0o760iaKuyP036EUQZMazu7VoHHmEv7vvHEMQ3zLTqql8P/IHF Gc5xgorzhIar5UqQGTLU+OAoQcjziM30NWV4EGyM3xwg6Je0r7W35auAwYkY T6ozQe8ThtvTcmkQErQrr96IIDJbPJx4WRU44xnMzS0Y5XTtvj+cqwZRhuvc 3bkYdeXMcurc1GE+80zwoF8jilgXWZ/Wow4nRt3vNUdKkEOzv/OmH+jw6kqM 7oxrAypWEJjcGqRDayv1W/PVOnR0x+XZKf8NUKNdsYOZeA8d6dbwHni7AcKz lOp9GsVoi5J+2/4IDXA45z3k0F6Nam4uW2XMaUCyfJ+P0bk7yN9vdsw8URMe H3DOX9CpQnY53AA3qhZENmqJAituImOnFO7YKS1oS41uk7l8HdFEcUXjGtog fswojm36HZnGvtd1zteGb8r6PD6tZaPWvrFkZZ4OqIt1lTOlTigx5F00q0oH Oqej0lI7s3Fqmq/WyR26oByXcTJYpggX9TUxrdt0YTAlodU89iZ+mWVz1+K7 L8Cd8jD6w+s7+IxPoG/wX19AudpIAp9Sh2f3Pl17dkAPtqle6znpRnDIcTyc Pq8HeSHi0b3DLTjhQc0voSn60Kr1acWjph1XNrs0/aRsAL21see9nz/CIQdy C8ivBmCkbNbpyOnGewwjwwVcQ9h6JUDKzXiKO/9k5D6uNAS13dEqZ9X7sbBm qT/H1ggqaTeE4w+f4zyKysekh0bQ5d/cWFn9Ag+eOzx7ag8DVHgeouzel3jR XmWy7i0DvLf2SIrPv8aXhVuz5LcxITF1fv8bnxEc4a0hbUhhQlh3jIXczrd4 wnHr+M9tTChc+ln8h904dtz1ssSLxoIndRd+jwv9G8fyl3Ksv2eB9jHLixa3 JvFX4TvljPNYsF1QtlCq9x7bx7mEGo2wQNM88MpQ+TTWpEn5HDM26I092Tjy 5Sxu/Ot0tyCGDU7bxTRhyRw22iZ87iJmQ231/ttmggUsN3rhYcwqG2Q3++q0 9H7EslaPdlx14MAmllWy49l/sHxCQnPfaQ4kST1mloIWcU2FyopGHwfSU0u0 rD2XcbZNlMhXnwvxkouzgQGf8I31l3TLgriw94ep3HnRGk6JEO6mlnKB6mIz VzdFIVUXr4wGzH6+wb/1QjaVeGfNn2yzMYaNexVdw8JliXPLUakg1RgUZgbk 6a1y5Ey7dOqPdmPoGZnW5G1RIMujpaYMNRPYIij8cK1akRROLx266mUC+6IO D4hc1xMnE9dMzlUTCE+LuzS9rERaCp5vvzVmAmrZLOm7JhWSyj7iudOSB1P5 OLGiQJXES5MKeuN5UDLxWlTrok6O5eXPRTXwoK30t2SJF534KdQZ0ORMwe4G w0zj0AbCduiYr3Q2BVtR9anoSxrEybPWzee8KXiNFOac6dIkd+ZdFRSGTCEk vDjbWkub8A6qf6xhm8EJ2/Qu22gdwhix+Cci3AyC97/QSRrUJRdFAZPc22Zg cbswdnCPHglcP1r+ZtEMfuu1uvfNpD6x9/VgF9mZw23xRHzHOUOiQikwC/2/ OWRtD6g66M4gUY5r1y17zEEijPvAzGGS8bt9yf/q8qFpZXEaZ7LISvz1S20B fJgrKmduOs0mWRW0/l9L+HBWdxdfK59DjneUsCJn+HDDriaQ3cAlirGqIfY2 FpC0OaGJPmlM6NFNmYapFsC4UJ5ewuOR/wAeduax "]]}}, {{}, {}}}}, PlotStyle -> {{ RGBColor[0, 0, Rational[2, 3]], Thickness[Large]}, { RGBColor[1, 0.5, 0], Thickness[Large]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->True, FrameLabel->{ FormBox["\"R\"", TraditionalForm], FormBox["\"E'(R)\"", TraditionalForm]}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 7}, {-0.1, 0.2}}, PlotRangeClipping->True, PlotRangePadding->0, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.962079151402576*^9, 3.9620791738888607`*^9}, { 3.9620792694967003`*^9, 3.9620792773670936`*^9}, 3.962080247671152*^9, 3.9679696898474865`*^9, {3.9679697302799196`*^9, 3.967969792530302*^9}}, CellLabel-> "Out[212]=",ExpressionUUID->"27f7ca44-5a69-4075-8408-9cad2b29d51a"], Cell[BoxData["\<\"fig2.pdf\"\>"], "Output", CellChangeTimes->{{3.962079151402576*^9, 3.9620791738888607`*^9}, { 3.9620792694967003`*^9, 3.9620792773670936`*^9}, 3.962080247671152*^9, 3.9679696898474865`*^9, {3.9679697302799196`*^9, 3.9679697926629543`*^9}}, CellLabel-> "Out[213]=",ExpressionUUID->"52365f6d-e1f3-4265-8b58-90c4989f691f"] }, Open ]], Cell[BoxData[ RowBox[{"(*", RowBox[{ RowBox[{"Show", "[", RowBox[{"plotcKS", ",", "limitingc", ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"5", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "0.6"}], ",", "0"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"36", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "->", "178"}], ",", "\[IndentingNewLine]", RowBox[{"FrameTicks", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"5", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", ".6"}]}], "}"}], ",", "None", ",", "None"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.947315834076306*^9, 3.9473159547590094`*^9}, { 3.947316401318365*^9, 3.9473164017797027`*^9}, {3.9473303251408353`*^9, 3.9473303251716704`*^9}}, EmphasizeSyntaxErrors->True, CellLabel-> "In[628]:=",ExpressionUUID->"976dcd9b-12f3-43fc-baf2-4e89aa65fc95"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["c-holo", "Section", CellChangeTimes->{{3.9473106301562166`*^9, 3.9473106375698495`*^9}, { 3.953611250566367*^9, 3.95361125158889*^9}},ExpressionUUID->"3755f523-3d43-446c-a3a0-\ e8a5401be531"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{"\[CapitalLambda]kk", "==", RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"2", "/", "3"}]], "/", RowBox[{"(", RowBox[{"gs", " ", SuperscriptBox["ls", "2"], " ", "M"}], ")"}]}]}], ",", "\[Epsilon]"}], "]"}]], "Input", CellLabel-> "In[618]:=",ExpressionUUID->"573c6d52-90cf-4a70-bd1a-93c4c3c50a92"], Cell[BoxData[ TemplateBox[{ "Solve", "nongen", "\"There may be values of the parameters for which some or all solutions \ are not valid.\"", 2, 618, 117, 25880979888453314807, "R4"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.953612726573502*^9}, CellLabel-> "During evaluation of \ In[618]:=",ExpressionUUID->"23d831df-629a-4ef1-9d6b-ae21614a72ec"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{"\[Epsilon]", "\[Rule]", SuperscriptBox[ RowBox[{"(", RowBox[{"gs", " ", SuperscriptBox["ls", "2"], " ", "M", " ", "\[CapitalLambda]kk"}], ")"}], RowBox[{"3", "/", "2"}]]}], "}"}], "}"}]], "Output", CellChangeTimes->{3.9536127265843506`*^9}, CellLabel-> "Out[618]=",ExpressionUUID->"d40f2072-41ab-49ab-a8d9-23e2c70b2a1a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", ">", "0"}], "&&", RowBox[{"\[CapitalLambda]kk", ">", "0"}], "&&", RowBox[{"M", ">", "0"}], "&&", RowBox[{"gs", ">", "0"}], "&&", RowBox[{"ls", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"(", RowBox[{ SqrtBox["Mfile"], " ", SuperscriptBox["\[Epsilon]", "2"]}], ")"}], RowBox[{"G10", " "}]], "/.", RowBox[{"Mfile", "->", RowBox[{ FractionBox[ RowBox[{"8", SuperscriptBox["\[Pi]", "6"]}], "3"], SuperscriptBox["\[Epsilon]", RowBox[{"20", "/", "3"}]]}]}]}], "/.", RowBox[{"G10", " ", "->", RowBox[{"8", SuperscriptBox["\[Pi]", "6"], SuperscriptBox["ls", "8"], SuperscriptBox["gs", "2"]}]}]}], "/.", RowBox[{"\[Epsilon]", "\[Rule]", SuperscriptBox[ RowBox[{"(", RowBox[{"gs", " ", SuperscriptBox["ls", "2"], " ", "M", " ", "\[CapitalLambda]kk"}], ")"}], RowBox[{"3", "/", "2"}]]}]}], "//", "Simplify"}]}], "]"}]], "Input", CellChangeTimes->{{3.953612642841345*^9, 3.953612758805168*^9}}, CellLabel-> "In[623]:=",ExpressionUUID->"86e73157-29c0-47df-b39e-5b74aa0465d2"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["gs", "6"], " ", SuperscriptBox["ls", "8"], " ", SuperscriptBox["M", "8"], " ", SuperscriptBox["\[CapitalLambda]kk", "8"]}], RowBox[{"2", " ", SqrtBox["6"], " ", SuperscriptBox["\[Pi]", "3"]}]]], "Output", CellChangeTimes->{{3.9536126609774694`*^9, 3.953612684584738*^9}, { 3.95361272382885*^9, 3.953612762240292*^9}}, CellLabel-> "Out[623]=",ExpressionUUID->"52f6437f-efe5-4223-9298-c8bd88477963"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"(", RowBox[{ SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"]}], ")"}], RowBox[{"G10", " "}]], SuperscriptBox[ RowBox[{"(", FractionBox["3", SqrtBox["6"]], ")"}], "3"], " ", FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}]]}], "/.", "\[VeryThinSpace]", "rulek"}], "\n", RowBox[{ RowBox[{"LogLogPlot", "[", RowBox[{ RowBox[{ RowBox[{ FractionBox["%", FractionBox[ RowBox[{ SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"]}], "G10"]], "/.", "\[VeryThinSpace]", "solh"}], "/.", "\[VeryThinSpace]", RowBox[{"\[Tau]", "\[Rule]", FractionBox["1", "x"]}]}], ",", RowBox[{"{", RowBox[{"x", ",", FractionBox["1", "15"], ",", FractionBox["1", FractionBox["1", SuperscriptBox["10", "2"]]]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Black", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], ";"}], "\n", RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["3", SqrtBox["6"]], ")"}], "3"], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}]], "/.", "\[VeryThinSpace]", RowBox[{"\[ScriptH]", "\[Rule]", "hUV"}]}], "/.", "\[VeryThinSpace]", RowBox[{"\[Tau]", "\[Rule]", FractionBox["1", "x"]}]}], "/.", "\[VeryThinSpace]", "rulek"}], ";"}], "\n", RowBox[{ RowBox[{"Quiet", "[", RowBox[{"LogLogPlot", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"x", ",", FractionBox["1", "1000"], ",", FractionBox["1", "15"]}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "200"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Black", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], "]"}], ";"}], "\n", RowBox[{"Show", "[", RowBox[{"%%%", ",", "%", ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"Axes", "->", "None"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}], ",", RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.9536112572309856`*^9, 3.9536112917346478`*^9}, { 3.953611715305358*^9, 3.9536119851372943`*^9}, {3.9536120527564917`*^9, 3.9536122729830027`*^9}, {3.953612340795232*^9, 3.953612498084086*^9}, { 3.9536125581944447`*^9, 3.953612568736378*^9}, {3.953612629680132*^9, 3.953612635957424*^9}, {3.9536131652073936`*^9, 3.9536131893539133`*^9}}, CellLabel-> "In[651]:=",ExpressionUUID->"5df1678b-e655-4ade-8469-641a48d18874"], Cell[BoxData[ FractionBox[ RowBox[{"3", " ", SqrtBox["3"], " ", SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "4"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], RowBox[{ SuperscriptBox["2", RowBox[{"5", "/", "6"}]], " ", "G10", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", RowBox[{"Sinh", "[", "\[Tau]", "]"}], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"2", " ", RowBox[{"Cosh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}]}], ")"}], " ", RowBox[{"Csch", "[", "\[Tau]", "]"}]}], RowBox[{"3", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"2", "/", "3"}]]}]], "-", FractionBox[ RowBox[{ RowBox[{"Coth", "[", "\[Tau]", "]"}], " ", RowBox[{"Csch", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"1", "/", "3"}]]}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"1", "/", "3"}]]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}]]], "Output", CellChangeTimes->{ 3.9536117394139495`*^9, {3.953611783923467*^9, 3.9536119855047293`*^9}, { 3.9536120772518115`*^9, 3.95361227313536*^9}, {3.9536123410042562`*^9, 3.953612456926152*^9}, {3.9536124877873526`*^9, 3.9536124983528147`*^9}, 3.953612568851572*^9, 3.9536126364825363`*^9, 3.953613168175912*^9, 3.9536132039231787`*^9}, CellLabel-> "Out[651]=",ExpressionUUID->"012e453a-5e59-45f8-84dc-40628320faba"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAjhxFJRaqBcCUw06Ob5UNQNgvFjJ+ pQXAXbYy/aGLDUAiQ+c+5qAFwIU6TRDUgQ1AtWmJWLaXBcBYBvklN24NQNy2 zYtWhQXA6D9tAvlGDUArUVbylmAFwFJms1Rr+AxAyIVnvxcXBcC1s5DiCFsM QAHviVkZhATAZ4RrSBsfC0A5rtsFYkUDwITVXsZLbAhAiktynckbAsC+Eark Ht8FQIN2kKQH+ADAn1mZLuJVA0CBHHdHFnf/v1IIeLoHigBALwhXHFso/b9s VUbGOML7P2fNUOEqqPq/8Q6htw3c9T/vrVmFpzP4v12NY+rZyO8/qUrs/2Hp 9b8V3f3KXznkP+3AmGqnbfO/DMQXXcsszD9k886rKhzxv7kDA0WzP8i/VIIo mLWs7b/GJmA7utbjv/TQ5rgrvui/3DyEH1z88b/5l7iGHSTkv2U56GU8Gfq/ JCR8aUpO3r8Qiob7gsIBwJWFw0ENg9S/aoCdgDKtBsChr2PojsHGv8uxATGh fQvANQN5cNaKl79H1U4rE3YQwH4a7y/VGb8/oJd/27gTE8BLt5c+bMvRP/FB So9H+xXAuDr3tK+h2z9/262reuMYwK3ml+h9Z+I/YF27yn+jG8DqfIAWDmHn P0uE2oPqph7AwppVlyIG7D/jJ7p2er4gwP1ABq3uSfA/HOi/2WwkIsAQ20ce QcLyP86g+Bd7qiPA8Lj/uFUQ9T+laVSmtBclwEa9nWPfj/c/lCK3RomkJsBM piwvvAP6P81WfNjeKijAINMxJFtN/D/8dtuBcJcpwGomHSlvyP4/oU8X5TIj K8DBXr+roowAQJhJY3fqlCzApZxoUzevAUBZUPZfjP8twMTtBIOG6gJATRaz mTSJL8DKYFzHthAEQOMKW/JNfDDAC+emk6FPBUDyqQl/fkMxwDKPrHRteQZA pQMOTIb9McCyqSrmYp0HQEZZZlXuszLAbdeb3xLaCEC0VGNQznkzwA4nyO2j AQpAvo0PSX8yNMDqieeD70ELQIPn47+m+jTAH19/qmR8DECUTWNeKr81wDpW 0uW6oQ1AykUEYnx2NsCQYBipy98OQILsYrxDPTfAZsaMwF4EEEAzmMC62PY3 wLCVyXTslRBAXBCMRcisOMCY7v9s1zMRQP9NsrMscjnAc9iT7zLHEUCyhckz Xio6wA5OnOrEyRFAMQ8rqpQtOsCqw6TlVswRQCD0kCDLMDrA4K6123rREUBS ymkNODc6wE6F18fC2xFAZfVO5xFEOsAqMhugUvARQG2O4pvFXTrA4IuiUHIZ EkD2FwoILZE6wHwBq0sEHBJAmC/tfmOUOsAXd7NGlh4SQLb/0/WZlzrATmLE PLojEkC2t6zjBp46wLs45igCLhJAUwaKv+CqOsCW5SkBkkISQMgB8HeUxDrA Mlsy/CNFEkCqeQzvysc6wM3QOve1RxJAN2MsZgHLOsAEvEvt2UwSQPludlRu 0TrAcpJt2SFXEkCOAjMxSN46wA4IdtSzWRJAtHpqqH7hOsCpfX7PRVwSQPFD pR+15DrA4GiPxWlhEkA4qCQOIus6wHvel8D7YxJA8DxphVjuOsAWVKC7jWYS QNYLsfyO8TrAssmoth9pEkByE/xzxfQ6wE0/sbGxaxJA1VJK6/v3OsA4PVPc "]]}, Annotation[#, "Charting`Private`Tag$111959#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwBoQJe/SFib1JlAgAAACkAAAACAAAArorPk4qhG8BSggOLP3UoQPNL+Ow4 oBvAhkasje1zKEA4DSFG554bwNl/OJCbcihAwo9y+EOcG8AuLPuU928oQNaU FV39lhvAEmMona9qKED+nlsmcIwbwJL7GagfYChATrPnuFV3G8CEwBao/0oo QO/b/90gTRvAhWFTTr8gKEDXog13nfEawP+WQEohxSdASdyijiqcGsDPelBK k28nQKPehr9kSBrAPp8TorAbJ0CkVkg/he0ZwMeoIg2vwCZAL0GRPbaYGcAq yfVjvWsmQGGht4rNPBnAocTcv6sPJkB7yizxkeIYwMNZJjdEtSVAH2Yp1maO GMAaBrB87GAlQGp3AwoiMxjAjMy0+HIFJUA++2S87d0XwEofnQYJsCRA+0cV iGaKF8Dh29S3SFwkQF8Ko6LFLxfA+5NbXGQBJEBMP7g7NdsWwDM+V2SPrCNA 4OmqI4t/FsCoSTJKlFAjQF1d7CSOJRbAlDcbZED2IkBjQ7WkodEVwK6OcKn7 oSJAEJ9bc5t2FcA25SM8jUYiQEZticClIRXAr8rQhC3xIUAjsZRclsUUwIIC mN6glCFA6b3uETRrFMBmy5AjuDkhQDg90EXiFhTAWe+Cwd3kIEAuMo/IdrsT wGu9ouXQiCBArpnVyRtmE8DbCaun0TIgQBbKauRtEhPAOIN+wem8H0AlcN1N prcSwFmsely9BR9AvojXNe9iEsDTaD0Oq1oeQP4Wr2weBxLAAIzbHBmhHUAm btW8+qwRwCEpKyC96hxA2DeDi+dYEcAn3OPWeUAcQDF3Dqm6/RDAzC2cAaGH G0ATKSFFnqgQwIKLEQXe2hpA3qOC+i5VEMDhlbNPSzEaQACU65eDRBDAkvZ4 XWMPGkBs7Cuf "]], LineBox[CompressedData[" 1:eJwBYQKe/SFib1JlAgAAACUAAAACAAAA/CmoeMVBEMDrv90BzwkaQJXuDwNb TA/AnuJbk9fMGEDZn1emNpUOwBXnWUTdERhAMDauRjPqDcAfZtkW8mIXQFhe ohmKQg3A0oZLFyC3FkDOcVGKrYwMwK2RHWNZ/BVAV2oP+PHiC8AjAzovnk0V QC5OiAMDKwvAujFLJMePFEDWw55BbnYKwPAyTmLb1BNAkR7EfPrNCcD0cqqu 9iUTQJpkpFVTFwnAhkMBBrNnEkC2j5MrzWwIwKOQXoJttRFAo0wgNKHFB8DX NquMAQYRQN70Z9pBEAfArO2JZ+JGEEAsgr59A2cGwC+MBpB0Jw9A7MDayA9k BsD+kaHUMCEPQKv/9hMcYQbAeWkA9+waD0AqfS+qNFsGwKKD1tRkDg9AJ3ig 1mVPBsCbEn7zUvUOQCJugi/INwbAsjB4sSjDDkAXWkbhjAgGwLYdBdW5Xg5A 1phiLJkFBsCG4QW5cVgOQJbXfnelAgbAnd0oeSlSDkAUVbcNvvwFwI3/n42Y RQ5AElAoOu/wBcDAVtsFdSwOQAxGCpNR2QXAgBK5Jyf6DUDMhCbeXdYFwBT8 jcfc8w1Ai8NCKWrTBcA41axCku0NQApBe7+CzQXACZGRyvzgDUAHPOzrs8EF wBapdh/Qxw1AxnoIN8C+BcCNrRqYhMENQIa5JILMuwXAopCa6zi7DUAEN10Y 5bUFwGCH9iKhrg1AxHV5Y/GyBcBg2LYGVagNQIO0la79rwXAmIIbxQiiDUBC 87H5Ca0FwJyXFl68mw1AAjLORBaqBcC8I5rRb5UNQH1WBb4= "]]}, Annotation[#, "Charting`Private`Tag$112017#1"]& ], {}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->None, AxesLabel->{None, None}, AxesOrigin->{-2.8604088036984647`, -28.672390753377282`}, CoordinatesToolOptions:>{"DisplayFunction" -> ({ Exp[ Part[#, 1]], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Exp[ Part[#, 1]], Exp[ Part[#, 2]]}& )}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->FrontEndValueCache[{{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, { Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}}, {{{{-18.420680743952367`, FormBox[ TemplateBox[{"10", RowBox[{"-", "8"}]}, "Superscript", SyntaxForm -> SuperscriptBox], TraditionalForm], {0.01, 0.}}, {-6.907755278982137, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.001\"", ShowStringCharacters -> False], 0.001, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}}, { 4.605170185988092, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"100.000\"", ShowStringCharacters -> False], 100., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}}, {-29.933606208922594`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-27.631021115928547`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-25.328436022934504`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-20.72326583694641, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.605170185988091, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.3025850929940455`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.302585092994046, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 9.210340371976184, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.213405830762646`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.300417207752275`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.38045991542581, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.454567887579532`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.523560759066484`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.588099280204055`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.64872390202049, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.70588231586044, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}}, {{-18.420680743952367`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {-6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, { 4.605170185988092, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {-29.933606208922594`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-27.631021115928547`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-25.328436022934504`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-20.72326583694641, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.605170185988091, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.3025850929940455`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.302585092994046, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 9.210340371976184, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.213405830762646`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.300417207752275`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.38045991542581, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.454567887579532`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.523560759066484`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.588099280204055`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.64872390202049, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 16.70588231586044, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}}}, {{{-6.907755278982137, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.001\"", ShowStringCharacters -> False], 0.001, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}}, {-4.605170185988091, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.010\"", ShowStringCharacters -> False], 0.01, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}}, {-2.3025850929940455`, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.100\"", ShowStringCharacters -> False], 0.1, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}}, {0., FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046, FormBox["10", TraditionalForm], {0.01, 0.}}, {4.605170185988092, FormBox["100", TraditionalForm], {0.01, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-8.517193191416238, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-8.111728083308073, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.824046010856292, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.600902459542082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.418580902748128, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.264430222920869, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.1308988302963465`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.013115794639964, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.809142990314028, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.521460917862246, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.115995809754082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.961845129926823, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.8283137373023015`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.710530701645918, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-3.506557897319982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-3.2188758248682006`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.8134107167600364`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.659260036932778, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.5257286443082556`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.4079456086518722`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-1.2039728043259361`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.916290731874155, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.5108256237659907, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.35667494393873245`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.2231435513142097, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.10536051565782628`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.0986122886681098`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.3862943611198906`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.791759469228055, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.9459101490553132`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.0794415416798357`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.1972245773362196`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 3.4011973816621555`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 3.6888794541139363`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.0943445622221, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.248495242049359, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.382026634673881, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.499809670330265, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 5.703782474656201, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 5.991464547107982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.396929655216146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.551080335043404, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.684611727667927, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.802394763324311, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}}, {{-6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {-4.605170185988091, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {-2.3025850929940455`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {0., FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, { 2.302585092994046, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, { 4.605170185988092, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.01, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-8.517193191416238, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-8.111728083308073, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.824046010856292, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.600902459542082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.418580902748128, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.264430222920869, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.1308988302963465`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-7.013115794639964, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.809142990314028, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.521460917862246, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-5.115995809754082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.961845129926823, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.8283137373023015`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-4.710530701645918, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-3.506557897319982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-3.2188758248682006`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.8134107167600364`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.659260036932778, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.5257286443082556`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-2.4079456086518722`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-1.2039728043259361`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.916290731874155, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.5108256237659907, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.35667494393873245`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.2231435513142097, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {-0.10536051565782628`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.0986122886681098`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.3862943611198906`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.791759469228055, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 1.9459101490553132`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.0794415416798357`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.1972245773362196`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 3.4011973816621555`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 3.6888794541139363`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.0943445622221, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.248495242049359, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.382026634673881, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 4.499809670330265, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 5.703782474656201, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 5.991464547107982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.396929655216146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.551080335043404, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.684611727667927, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.802394763324311, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}}}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->All, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0]}]], "Output", CellChangeTimes->{ 3.9536117394139495`*^9, {3.953611783923467*^9, 3.9536119855047293`*^9}, { 3.9536120772518115`*^9, 3.95361227313536*^9}, {3.9536123410042562`*^9, 3.953612456926152*^9}, {3.9536124877873526`*^9, 3.9536124983528147`*^9}, 3.953612568851572*^9, 3.9536126364825363`*^9, 3.953613168175912*^9, 3.9536132045076103`*^9}, CellLabel-> "Out[655]=",ExpressionUUID->"1efbf993-3858-49ee-8eda-912d26c7732d"], Cell[BoxData["\<\"choloKS.pdf\"\>"], "Output", CellChangeTimes->{ 3.9536117394139495`*^9, {3.953611783923467*^9, 3.9536119855047293`*^9}, { 3.9536120772518115`*^9, 3.95361227313536*^9}, {3.9536123410042562`*^9, 3.953612456926152*^9}, {3.9536124877873526`*^9, 3.9536124983528147`*^9}, 3.953612568851572*^9, 3.9536126364825363`*^9, 3.953613168175912*^9, 3.9536132050076003`*^9}, CellLabel-> "Out[656]=",ExpressionUUID->"0ed2b234-6a73-4313-a1b9-1aaabf5f0607"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"(", RowBox[{ SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"]}], ")"}], RowBox[{"G10", " "}]], FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["3", SqrtBox["6"]], ")"}], "3"], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}]}], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}], ")"}]]}], "/.", "\[VeryThinSpace]", "rulek"}], ";"}], "\n", RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox["%", FractionBox[ RowBox[{ SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"]}], "G10"]], "/.", "\[VeryThinSpace]", "solh"}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", SuperscriptBox["10", RowBox[{"-", "5"}]], ",", "15"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Black", "]"}], ",", "Thick"}], "}"}], "}"}]}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"Axes", "->", "None"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}], ",", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", RowBox[{"PlotRangePadding", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{".2", ",", "0"}], "}"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.9536131011572537`*^9, 3.953613142037219*^9}, { 3.953613229845265*^9, 3.9536132768274097`*^9}}, CellLabel-> "In[671]:=",ExpressionUUID->"b0022b20-3889-4e83-b125-1e6d102fba53"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVlWc81X8fh62sUCSrkBEZJytk/T5fDnJURiUUskckI2RWiDIzsiWERBIy k5GQrMxjb5LIznb/70fv1/Xoena9eczvX7MiIyEhYSIlIfn/lgQM5TCkzmBG NvY6Ozes5W3es5BWT7qA914UQaBWQCmo1KFab8QfQvx/2EWluSsZsmjtXCGE gSRvcAvd/Swllqr4UxmD0RCTRKq0HtGoRGJPXZn6Ih427Fbw8lITSvMcngaJ 6ingtRBpOWuxoWQ388Bb0+81PEz9aF51igozUXqvqTGQAVpl0WSCT1mw6y9n 2NUvZEGi7LwWH4Ef01jknMdH5gDx9823mKgEpqh2s1z5dy7oFUQkhGUrYBKp EcGglg/seUHVp2+rYQIbjTeVXhdAibPX0tCQNhaefRid6lsI7ptuevGM+tiz rmSv03kfwVnSNklCwxTzP5A1TyYWQWDCYoiClzXmI9xD4KAsAZLFe5WN9xwx j5tOEolSn8Bp2ED0GPYAc/GnY2czK4XRW1f5OwK9MIeCtyTxEWXgvnCa8JLn CWY9qPrr5Ody+LkUb5I79BQzpZzoiJ2vAAG1yPDt6FDslqRv2QnWKsjnalV7 LROF6Zmwp0WrfoYvz5kHJgkvMZ2QT0GMLtUQ+ylXup49CdMs1XV8kfYFyE59 +JD7JQ1TnVzUO9ZWA/u7wkR/oUyMm+ob1yXfWkjp7w/M287GTnPGRFMy10GK asQJvjt5GIeUGWXjuzo4cFILwkkXYqwEMa+nyvWQ2tsw6sZSjDHf2V9UJdYD 1auXre1GpRij2w8zivtfobGMVVmOqRJjCE3s/XqkASRVNh7rK3/B6NJtCAEp DcDDazBY7lWH0ZRJV6tIfQN6Sw5ZJc4GjLKNXIKs5Rs0dcZGPWdowiimfr6p M20E6+fEqxp6LRjpdhrbk3+NsOCT9+7RVht2wOAYhiKaQCPQY/P7YSe2y69I QnK2GVgD7ev55bqxLXnaBzVVzfC4yzLOIr8X29Ahzvld+w5VDTMkrcZEbNU6 +zY2/x0mL75t6dMdwv76POjYf9QC7MbCe+Lho9ifaBV8NcsPoKaYu29CO4HN fRkVVlRtBctUg+gnDDPYdE/+q93BViAhUmRq3pjDJn97MVU5t4F3o6/KkR/z 2BgJIciLuh18X3nRfXD7gw2zsO7IpbUDR9g1Lgv9v9iA6My9bekOoL2TrPZe bgXrUymeKG/tgFoFJRv32VXMtixn+pRvJxh6bMjcy9zErOsjXnk3d8LB2eOG qGwLs2pzMxg68RP8lLPkRFd2MEuiEZPCnZ9w26y9U+T6PmY+hW9NevcTAibM wjTHDjGzJeGgnY2fkFSxgbouk4LpNiO6pdwFJwy+a0vVkIHxsfFidmIX8CoZ SrIsHwFTNy7vTqFu2Mpb+zzcRwWWQ0Yqwd7/MY/085BRGrBRTqbB2rpBrttL voqaDu7mDHSuc/UALSfWx6LPAPfo2RLynHrAoclg5a3VcXByvXnHvL4HRp7K 1McVM4I7dC92WPWCPmWr49MIZvDMYvwUVNYLu6sMXjacLOBzVMdHiaYP3JZs CcNfWSGgv5U2L78PBgQWAp7dPgVBSke7zA76oGl8632vFieEZBIS2XT64cGy hfiEMTe8uN8oGLTWD81s1jd65nkgppfir6IaET4N6QsbcPFBnAK+dC2OCGxi mQuUFvyQQlWraiY/AH6jBh9ucgtC2r2Do2xhAzCc7n1aLuEcZHQrdrePDMB8 ToHudz5hyE2rMFN8MggHpwYNU9xwkH9k69xa1yAkbWcmKyqJQaG9zHIu/xC8 5ZZs4A0Xh1LZYj/W5iFIYsx7WREqCRWpK2rt7MOQqabd8yxFCj6Ti9M/tR8G nVNnJYIqLkB9R37yKsMI6OZL5iawy8I36QXzXNMRuNZxcumh8UVoThYSNi0a geo97izOD3LQbpNd3qY3CnTus3dNfBXhZ9v0o8CcUWg+a7HWvaMEPVJ8lxS2 R+Fe2rmJ2mCAocO03rcpY0B2Kb1hylYZRq1GU+4sjQFFbU3A9CUVWLFikDx6 Zhzk6r6UPxPDw/qPK9t1zuMgtlZ17D27GuzEfw8WOzkBz2oFaiVMCbDXYrtA i03AK3l/YA7VhP19Ku1Z6wnIk4iXjK29DCSW6iyp5ROQ3FpB43VFC8jiZzwf TkzArZ2KMdtMbaBoCRy5TjsJf25mPCUP0AEq8a9vaI0m4cYl2Rul/3SB2sKc ejZwEvx+6f0xq7oGtHGkDnXvJ6EjOO7Pg6fXgWEPpB4eToJ3wYGnFU4PmJs/ 181kTAF2+xN1XKcBpJtyHKH7PgXpCSH5tZWGcH7bQ0Py7xSorWriQvJugYaw VIefwjSUvjzX45NuBN5hucOsPdNQocmghHc2BeqzVGewnWnwZ5fuzyIzg9hq SwvLMzMgVptSOBpvBgVL3L8LHWZAVmRZhr3dHCZ14v4RjsyCVKdKeaa9Fdyf X5N3EpkF2ss0nrmc1rD3RNcvTncWiv52c5zssQaWYrojU6mzkKhzV81WyxYI JwOYfGTmoOhc8S86b3voez+ul2E0B6HbOY+0rzmAuTqW2Ow/B1EiG68iz98D H49t7pMdc+B52df75qYjFA7cxxXY/IJLyVoOMebOoOTS5tQT/gvmFN89x6ac oYVWpGSn+BesmnzrKLN2gWmFWflLJPOA+ul8ldxdgfWVkcZ4wjwcbsj5l5S7 wRuZylDKmnlg0S0r/qvjDuIdrB2iM/OQ/SMo+PIfd9Ak6dbzlPgNJnnEM5Gi D8HPnGDB1PIblILFgh17vODobnb2xeXfQKGntdQX5A0JMRS/TVgWQOhyJNkn RR8oaqhxyjNfgJFQS+P9Il+YEZDxU91dABvZHAMPq8dwZYE30V10EeZW2eXX iQFAl3+RMKK7CHZN7RlUWoHQ6qC1jfdYBLFJzh22b4FwecnTkLF+ERhMFT00 K56C5kone77+EvgnnzvuUxkMtEWz35l8l+A8+WM1JvQMWlz2PD0zlmDgO0NU Z9Mz0FwXHFRfXIJSShQ1OPIcCP/8kib8/wJlzIhROX8YUJfHamq8/QuYKJUV 3+cwaH74bqeg7S+YjCQRx/XCgX//Lg6jWwYK+nuiti8i4I1fXPhR/WVY9vQm cEW9gMwni1ez/ywDZtsz22oSA2TmW1mGh8ug+XXo3rUvMWCuQn5Ax7QCp1PM L4lwxwIvOXuBq+wKdLYZGE9Mx0JGoCqDsv8KXGn4Wp/zOA4ygpPbh1hXwdQc XEd3E4HMNlsgUngV6F48J+twTgJzjY9+KkqrELMVtqIwnwS8NE3nc81XgTfu 37/Y4WRID1mNcH+/Cq6ZtB7Pe1PhdThBmxG/BqVpf4Z1adKhTvXd3Vv6a2Bh Yc4zcDMdJndpgzLt10A4SNVQPysd+O+2fpaOXYPcwzP5mFoGvFXXFr41swaW NxOLJ19kwsfDG0cyg9dhMY8Y2myQDV2ln878SV6HL1fUjzuVZsP6PRZF6cJ1 AAJ/09mTOSAz3O/SRFwHnWada3W9OVBZfmt8QWgD0JG3tGMWuVDvbFp1oXUD IrciG0ZL8mHqXF2f7/gGVIecMKXlfw8U4zyrjesbcHi8StYw9j2oa02dM+Tc BJUjv55ZPSyAFmHrOF/HTXiW+UIXJ1gIXVP2zo3H/8FsDMWsCXsRTOl5CBro bcFnwT3dUJdSaIGyInXbLZA8qHexKy+FQqF/StLeW2DsNHKn96AU/PbdbzCl b0HZUU0Wg/AyYMtyf9L6Zwt4LZj2mT6Wg9a62xAK3AZOz6iUvBNVUBH9IFKo eAd0Mv/utvLVwmufEg62xh34SKg4+lu7FoKs17MoB3bAS8Rp9ppPLdyQf/B5 6mAHxHtnPaj7amFpwnU+VXMXtJemtSjD64BfwhXPNLkLZfudJlY0XyGyw/nf zvF9eKB2zt5YsRFkXlCpPzq7D8/l+k/luTfCqE5qLLn8PshOGOnofWyE813N EnQW+1AjUpRQI9gE7T3cDpyf9oEldvjnIlsz0A22jYPhAVznVvaqpWuBkGmh lsD0Q+in9NB4Ld8Oklk1bDSlh9By4yhz6uN2GLTSswlvOQTrRD/KrcZ2EJp7 TBG3dggxRWxuzTc6YHrdPq2blwTJStPv2sl3QuC/+oHpByTIgYWJ8YrFT6jf c9KiYidFoelURvbEbuCdm3/BzkeKvh1U2UaQ9EDAT/NuERwpuiKu3Dl6rgdU s28Y6CiTogOe/TdUXj3QpH3RPNGOFA2vnT/hydULrRmHbiKVpGhT+NEx4v0+ 6NOISNW+TYY4/SKt7S4MwEJs3p/4VHJkH9lz6x1+DArYmOf2ssnR28tjHSGu Y+CS4jNhVkiOdObTw6Myx2Ar82qfyFdydP8ixSw12ThQFv+tqflFjgjdogaO FuPA+1MqZk6KAgm3N7j9EPrv5+g/y8m2UKCPChbvKhom4fvT1qC+zSPoLZGf 8EVyFn5ovQ1t86dGZHq6K1qv/uuU090wlylaJME71+jaswa2Jz8YcF2kR6vZ mu/z27bANbog0r/mGHoTf6KCqe0AOC5omrXQM6LNfR8NNm8yRBfKUSimx4QC tpjlSXgo0Uu+fMuEuBMIxKYq3ClpkecvcVaDemZ0kufyhvQKPbrPfuLQlYoF sVNvkkkhRlTj/mt6VoYVOWRQJT8MOoF40SmS0kdsqEjo9ZC/AAs6ffnYk2f1 7CjfRz2WZpoNOflvHn78y4GcCFm5A/GnUP9ZhRJZmdNo88teRGUBF0rYcLFm tuFEkXbfqOuHzqBlSge/9SgudPW9VWLQXV50O7D+h3gfNxIz49W+IsaPjrMG HTX3P4Mk5uuIX3+dRXvpAz8MBXgQRd4XwekhQVTSRg/Xm3hQmteZz52DQigx UkHioTEvkua0PaBtEUHBVGzYZRI+tCN/n97zHw5lnFz6TkjgQ6bCfl7eNOLo ecMbak0cPzrBmN05ySGBPIVozbfa+VGHotHHpKuSKI7fTr7L6iwqnWW0lXaT QtW97rhbNALod6qZzGrNBcTI6ZdGnyGAOD5V0zkfSCPxI9YN9bKCyFUsJLEW ZJFh5h65wKAgcqHPVrPPvog+9IfVlzifQwnHrrZ+OJBDDPU/kldOCqFbNimM fH4KSO7qgqB4mRBSzX1xjINUCUU5UkglXRVGq605F9xcMbSq1mpQtCyM7O12 HTOoEHpcHL6/8UwEqXNexeW3IjRYJ6anwCWKrlHTuupHKyOloMdN52tF0Wba 0XfEeyqobbyl/Ko+Dp0xp79kC3hElvblybIhDj3Wa7PkwOPRReMizRgjHKKZ eTLSqo5HGQOJw0QzHJqd2h2T1MIj9y5bEksHHIr2eihMboxHXA2UGl5PcKhE kX6oxAuPHHNU+rPzcIh1qCbGqBSPMq1kXhMKcOgVTouFoxKPiHzCdn8K//Nl TKz1V+ORymvGXYlSHPJYEKm98Q2PWBLHuaprcYhZoDH1Wg8e1YT4WXf34hD7 fczpzioerWu4iLkTcUhW8mgW7yYeCVNZb7EN4dBYzznp2W08ig24GmIyjkPx L2/bOJKqIluf0wXzv3HowfcFhoDjqihV/rhH2CIO2UqwnCYwq6KuLXIktoxD FvbRgcfYVJGi28LPBxs41DmmbJfKrYqcpcaSWLdwSLGia9KSTxVlr3RZVO7g kAL7SLmooCoa+tAoaryPQ5bdV+bXhVXRccfKjcNDHGIYEnWrPq+K/gc2vQ1i "]]}, Annotation[#, "Charting`Private`Tag$113631#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0.000010306122244897984`, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0.2, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.95361310151941*^9, 3.953613142336367*^9}, { 3.953613218731835*^9, 3.953613277056147*^9}}, CellLabel-> "Out[672]=",ExpressionUUID->"f7b9b3fc-8314-40e0-8d24-76c222f439da"], Cell[BoxData["\<\"choloKS.pdf\"\>"], "Output", CellChangeTimes->{{3.95361310151941*^9, 3.953613142336367*^9}, { 3.953613218731835*^9, 3.953613277153967*^9}}, CellLabel-> "Out[673]=",ExpressionUUID->"aad4704e-648d-4ea9-bc54-8d00b007e264"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"(", RowBox[{ SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"]}], ")"}], RowBox[{"G10", " "}]], FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["3", SqrtBox["6"]], ")"}], "3"], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}]}], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}], ")"}]]}], "/.", "\[VeryThinSpace]", "rulek"}], "\n", RowBox[{ RowBox[{"LogLogPlot", "[", RowBox[{ RowBox[{ FractionBox["%", FractionBox[ RowBox[{ SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"]}], "G10"]], "/.", "\[VeryThinSpace]", "solh"}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", SuperscriptBox["10", RowBox[{"-", "5"}]], ",", "15"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Black", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], ";"}], "\n", RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", FractionBox["3", SqrtBox["6"]], ")"}], "3"], " ", RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}]}], RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}]], "/.", "\[VeryThinSpace]", RowBox[{"\[ScriptH]", "\[Rule]", "hUV"}]}], "/.", "\[VeryThinSpace]", RowBox[{"\[Tau]", "\[Rule]", FractionBox["1", "x"]}]}], "/.", "\[VeryThinSpace]", "rulek"}], ";"}], "\n", RowBox[{ RowBox[{"Quiet", "[", RowBox[{"LogLogPlot", "[", RowBox[{"%", ",", RowBox[{"{", RowBox[{"x", ",", FractionBox["1", "1000"], ",", FractionBox["1", "15"]}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "200"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Black", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], "]"}], ";"}], "\n", RowBox[{"Show", "[", RowBox[{"%%%", ",", "%", ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"Axes", "->", "None"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}], ",", RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.953613085088378*^9, 3.9536130964190884`*^9}},ExpressionUUID->"b49ee71b-21ca-4e5e-a425-\ a65eb2199e26"], Cell[BoxData[ FractionBox[ RowBox[{"3", " ", SqrtBox["3"], " ", SqrtBox["M"], " ", SuperscriptBox["\[Epsilon]", "2"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "4"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], RowBox[{ SuperscriptBox["2", RowBox[{"5", "/", "6"}]], " ", "G10", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"2", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", RowBox[{"Sinh", "[", "\[Tau]", "]"}], " ", RowBox[{"(", RowBox[{ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", RowBox[{"2", " ", RowBox[{"Cosh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}]}], ")"}], " ", RowBox[{"Csch", "[", "\[Tau]", "]"}]}], RowBox[{"3", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"2", "/", "3"}]]}]], "-", FractionBox[ RowBox[{ RowBox[{"Coth", "[", "\[Tau]", "]"}], " ", RowBox[{"Csch", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"1", "/", "3"}]]}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]]}], ")"}]}], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", "\[Tau]"}], "+", RowBox[{"Sinh", "[", RowBox[{"2", " ", "\[Tau]"}], "]"}]}], ")"}], RowBox[{"1", "/", "3"}]]], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}]]], "Output", CellChangeTimes->{3.9536130773571444`*^9}, CellLabel-> "Out[624]=",ExpressionUUID->"fd68b603-1cb0-49e7-b008-d18a8b2bd7e0"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAjhxFJRaqBcCUw06Ob5UNQNgvFjJ+ pQXAXbYy/aGLDUAiQ+c+5qAFwIU6TRDUgQ1AtWmJWLaXBcBYBvklN24NQNy2 zYtWhQXA6D9tAvlGDUArUVbylmAFwFJms1Rr+AxAyIVnvxcXBcC1s5DiCFsM QAHviVkZhATAZ4RrSBsfC0A5rtsFYkUDwITVXsZLbAhAiktynckbAsC+Eark Ht8FQIN2kKQH+ADAn1mZLuJVA0CBHHdHFnf/v1IIeLoHigBALwhXHFso/b9s VUbGOML7P2fNUOEqqPq/8Q6htw3c9T/vrVmFpzP4v12NY+rZyO8/qUrs/2Hp 9b8V3f3KXznkP+3AmGqnbfO/DMQXXcsszD9k886rKhzxv7kDA0WzP8i/VIIo mLWs7b/GJmA7utbjv/TQ5rgrvui/3DyEH1z88b/5l7iGHSTkv2U56GU8Gfq/ JCR8aUpO3r8Qiob7gsIBwJWFw0ENg9S/aoCdgDKtBsChr2PojsHGv8uxATGh fQvANQN5cNaKl79H1U4rE3YQwH4a7y/VGb8/oJd/27gTE8BLt5c+bMvRP/FB So9H+xXAuDr3tK+h2z9/262reuMYwK3ml+h9Z+I/YF27yn+jG8DqfIAWDmHn P0uE2oPqph7AwppVlyIG7D/jJ7p2er4gwP1ABq3uSfA/HOi/2WwkIsAQ20ce QcLyP86g+Bd7qiPA8Lj/uFUQ9T+laVSmtBclwEa9nWPfj/c/lCK3RomkJsBM piwvvAP6P81WfNjeKijAINMxJFtN/D/8dtuBcJcpwGomHSlvyP4/oU8X5TIj K8DBXr+roowAQJhJY3fqlCzApZxoUzevAUBZUPZfjP8twMTtBIOG6gJATRaz mTSJL8DKYFzHthAEQOMKW/JNfDDAC+emk6FPBUDyqQl/fkMxwDKPrHRteQZA pQMOTIb9McCyqSrmYp0HQEZZZlXuszLAbdeb3xLaCEC0VGNQznkzwA4nyO2j AQpAvo0PSX8yNMDqieeD70ELQIPn47+m+jTAH19/qmR8DECUTWNeKr81wDpW 0uW6oQ1AykUEYnx2NsCQYBipy98OQILsYrxDPTfAZsaMwF4EEEAzmMC62PY3 wLCVyXTslRBAXBCMRcisOMCY7v9s1zMRQP9NsrMscjnAc9iT7zLHEUCyhckz Xio6wA5OnOrEyRFAMQ8rqpQtOsCqw6TlVswRQCD0kCDLMDrA4K6123rREUBS ymkNODc6wE6F18fC2xFAZfVO5xFEOsAqMhugUvARQG2O4pvFXTrA4IuiUHIZ EkD2FwoILZE6wHwBq0sEHBJAmC/tfmOUOsAXd7NGlh4SQLb/0/WZlzrATmLE PLojEkC2t6zjBp46wLs45igCLhJAUwaKv+CqOsCW5SkBkkISQMgB8HeUxDrA Mlsy/CNFEkCqeQzvysc6wM3QOve1RxJAN2MsZgHLOsAEvEvt2UwSQPludlRu 0TrAcpJt2SFXEkCOAjMxSN46wA4IdtSzWRJAtHpqqH7hOsCpfX7PRVwSQPFD pR+15DrA4GiPxWlhEkA4qCQOIus6wHvel8D7YxJA8DxphVjuOsAWVKC7jWYS QNYLsfyO8TrAssmoth9pEkByE/xzxfQ6wE0/sbGxaxJA1VJK6/v3OsA4PVPc "]]}, Annotation[#, "Charting`Private`Tag$105641#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwBoQJe/SFib1JlAgAAACkAAAACAAAArorPk4qhG8BSggOLP3UoQPNL+Ow4 oBvAhkasje1zKEA4DSFG554bwNl/OJCbcihAwo9y+EOcG8AuLPuU928oQNaU FV39lhvAEmMona9qKED+nlsmcIwbwJL7GagfYChATrPnuFV3G8CEwBao/0oo QO/b/90gTRvAhWFTTr8gKEDXog13nfEawP+WQEohxSdASdyijiqcGsDPelBK k28nQKPehr9kSBrAPp8TorAbJ0CkVkg/he0ZwMeoIg2vwCZAL0GRPbaYGcAq yfVjvWsmQGGht4rNPBnAocTcv6sPJkB7yizxkeIYwMNZJjdEtSVAH2Yp1maO GMAaBrB87GAlQGp3AwoiMxjAjMy0+HIFJUA++2S87d0XwEofnQYJsCRA+0cV iGaKF8Dh29S3SFwkQF8Ko6LFLxfA+5NbXGQBJEBMP7g7NdsWwDM+V2SPrCNA 4OmqI4t/FsCoSTJKlFAjQF1d7CSOJRbAlDcbZED2IkBjQ7WkodEVwK6OcKn7 oSJAEJ9bc5t2FcA25SM8jUYiQEZticClIRXAr8rQhC3xIUAjsZRclsUUwIIC mN6glCFA6b3uETRrFMBmy5AjuDkhQDg90EXiFhTAWe+Cwd3kIEAuMo/IdrsT wGu9ouXQiCBArpnVyRtmE8DbCaun0TIgQBbKauRtEhPAOIN+wem8H0AlcN1N prcSwFmsely9BR9AvojXNe9iEsDTaD0Oq1oeQP4Wr2weBxLAAIzbHBmhHUAm btW8+qwRwCEpKyC96hxA2DeDi+dYEcAn3OPWeUAcQDF3Dqm6/RDAzC2cAaGH G0ATKSFFnqgQwIKLEQXe2hpA3qOC+i5VEMDhlbNPSzEaQACU65eDRBDAkvZ4 XWMPGkBs7Cuf "]], LineBox[CompressedData[" 1:eJwBYQKe/SFib1JlAgAAACUAAAACAAAA/CmoeMVBEMDrv90BzwkaQJXuDwNb TA/AnuJbk9fMGEDZn1emNpUOwBXnWUTdERhAMDauRjPqDcAfZtkW8mIXQFhe ohmKQg3A0oZLFyC3FkDOcVGKrYwMwK2RHWNZ/BVAV2oP+PHiC8AjAzovnk0V QC5OiAMDKwvAujFLJMePFEDWw55BbnYKwPAyTmLb1BNAkR7EfPrNCcD0cqqu 9iUTQJpkpFVTFwnAhkMBBrNnEkC2j5MrzWwIwKOQXoJttRFAo0wgNKHFB8DX NquMAQYRQN70Z9pBEAfArO2JZ+JGEEAsgr59A2cGwC+MBpB0Jw9A7MDayA9k BsD+kaHUMCEPQKv/9hMcYQbAeWkA9+waD0AqfS+qNFsGwKKD1tRkDg9AJ3ig 1mVPBsCbEn7zUvUOQCJugi/INwbAsjB4sSjDDkAXWkbhjAgGwLYdBdW5Xg5A 1phiLJkFBsCG4QW5cVgOQJbXfnelAgbAnd0oeSlSDkAUVbcNvvwFwI3/n42Y RQ5AElAoOu/wBcDAVtsFdSwOQAxGCpNR2QXAgBK5Jyf6DUDMhCbeXdYFwBT8 jcfc8w1Ai8NCKWrTBcA41axCku0NQApBe7+CzQXACZGRyvzgDUAHPOzrs8EF wBapdh/Qxw1AxnoIN8C+BcCNrRqYhMENQIa5JILMuwXAopCa6zi7DUAEN10Y 5bUFwGCH9iKhrg1AxHV5Y/GyBcBg2LYGVagNQIO0la79rwXAmIIbxQiiDUBC 87H5Ca0FwJyXFl68mw1AAjLORBaqBcC8I5rRb5UNQH1WBb4= "]]}, Annotation[#, "Charting`Private`Tag$105699#1"]& ], {}}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->None, AxesLabel->{None, None}, AxesOrigin->{-2.8604088036984647`, -28.672390753377282`}, CoordinatesToolOptions:>{"DisplayFunction" -> ({ Exp[ Part[#, 1]], Exp[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Exp[ Part[#, 1]], Exp[ Part[#, 2]]}& )}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->FrontEndValueCache[{{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}, { Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledFrameTicks[{Log, Exp}]}}, {{{{-18.420680743952367`, FormBox[ TemplateBox[{"10", RowBox[{"-", "8"}]}, "Superscript", SyntaxForm -> SuperscriptBox], StandardForm], {0.01, 0.}}, {-6.907755278982137, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.001\"", ShowStringCharacters -> False], 0.001, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], StandardForm], {0.01, 0.}}, { 4.605170185988092, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"100.000\"", ShowStringCharacters -> False], 100., AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], StandardForm], {0.01, 0.}}, {-29.933606208922594`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-27.631021115928547`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-25.328436022934504`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-20.72326583694641, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.605170185988091, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.3025850929940455`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.302585092994046, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 9.210340371976184, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.213405830762646`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.300417207752275`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.38045991542581, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.454567887579532`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.523560759066484`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.588099280204055`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.64872390202049, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.70588231586044, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}}, {{-18.420680743952367`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, {-6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, { 4.605170185988092, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, {-29.933606208922594`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-27.631021115928547`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-25.328436022934504`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-20.72326583694641, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.605170185988091, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.3025850929940455`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.302585092994046, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 9.210340371976184, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 13.815510557964274`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.11809565095832, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.213405830762646`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.300417207752275`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.38045991542581, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.454567887579532`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.523560759066484`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.588099280204055`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.64872390202049, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 16.70588231586044, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}}}, {{{-6.907755278982137, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.001\"", ShowStringCharacters -> False], 0.001, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], StandardForm], {0.01, 0.}}, {-4.605170185988091, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.010\"", ShowStringCharacters -> False], 0.01, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], StandardForm], {0.01, 0.}}, {-2.3025850929940455`, FormBox[ TagBox[ InterpretationBox[ StyleBox["\"0.100\"", ShowStringCharacters -> False], 0.1, AutoDelete -> True], NumberForm[#, { DirectedInfinity[1], 3}]& ], StandardForm], {0.01, 0.}}, {0., FormBox["1", StandardForm], {0.01, 0.}}, {2.302585092994046, FormBox["10", StandardForm], {0.01, 0.}}, {4.605170185988092, FormBox["100", StandardForm], {0.01, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-8.517193191416238, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-8.111728083308073, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.824046010856292, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.600902459542082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.418580902748128, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.264430222920869, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.1308988302963465`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.013115794639964, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.809142990314028, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.521460917862246, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.115995809754082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.961845129926823, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.8283137373023015`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.710530701645918, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-3.506557897319982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-3.2188758248682006`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.8134107167600364`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.659260036932778, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.5257286443082556`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.4079456086518722`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-1.2039728043259361`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.916290731874155, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.5108256237659907, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.35667494393873245`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.2231435513142097, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.10536051565782628`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.0986122886681098`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.3862943611198906`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.791759469228055, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.9459101490553132`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.0794415416798357`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.1972245773362196`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 3.4011973816621555`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 3.6888794541139363`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.0943445622221, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.248495242049359, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.382026634673881, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.499809670330265, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 5.703782474656201, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 5.991464547107982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.396929655216146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.551080335043404, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.684611727667927, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.802394763324311, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}}, {{-6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, {-4.605170185988091, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, {-2.3025850929940455`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, {0., FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, { 2.302585092994046, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, { 4.605170185988092, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.01, 0.}}, {-9.210340371976182, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-8.517193191416238, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-8.111728083308073, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.824046010856292, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.600902459542082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.418580902748128, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.264430222920869, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.1308988302963465`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-7.013115794639964, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.809142990314028, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.521460917862246, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-5.115995809754082, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.961845129926823, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.8283137373023015`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-4.710530701645918, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-3.506557897319982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-3.2188758248682006`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.8134107167600364`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.659260036932778, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.5257286443082556`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-2.4079456086518722`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-1.2039728043259361`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.916290731874155, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.5108256237659907, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.35667494393873245`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.2231435513142097, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, {-0.10536051565782628`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 0.6931471805599453, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.0986122886681098`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.3862943611198906`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.6094379124341003`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.791759469228055, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 1.9459101490553132`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.0794415416798357`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.1972245773362196`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 2.995732273553991, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 3.4011973816621555`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 3.6888794541139363`, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 3.912023005428146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.0943445622221, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.248495242049359, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.382026634673881, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 4.499809670330265, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 5.298317366548036, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 5.703782474656201, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 5.991464547107982, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.214608098422191, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.396929655216146, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.551080335043404, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.684611727667927, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.802394763324311, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}, { 6.907755278982137, FormBox[ TemplateBox[{0, 0}, "Spacer2"], StandardForm], {0.005, 0.}}}}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->All, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0], Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> MachinePrecision, RotateLabel -> 0]}]], "Output", CellChangeTimes->{3.9536130779474373`*^9}, CellLabel-> "Out[628]=",ExpressionUUID->"8db71c9b-78bb-4016-80ac-67c25fba8757"], Cell[BoxData["\<\"choloKS.pdf\"\>"], "Output", CellChangeTimes->{3.9536130782976675`*^9}, CellLabel-> "Out[629]=",ExpressionUUID->"28fb4b52-98e6-40aa-a588-a823e6f347bf"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["c hol anisotropic", "Section", CellChangeTimes->{{3.955521332244622*^9, 3.9555213354592276`*^9}},ExpressionUUID->"5f75b587-81a0-4e5e-b41b-\ 545054adf474"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztvb3L/M6737fE2OvG2WAXKpcUibqoCSidSCV8GoHDOeoibHwi0hzBcUD4 L9gmoFKlSpXClcCNygU3IpXSbanGIDiNfhwId+ZB2tXD6HG1q937837B7/f9 3LsraZ50zXtmrrnmv/93zr/5P/6bw+HwH/45+b9/82/d//Xv//7f/sf/7b8j f/z13/2H/9P+u7/99//67/6vv7X/9u//l3/3T8iH/5X87/8j/6D//vkW8muS lXsn4pshBXhDAQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYmfwaRVHo ueFt75SAlRRZTOrQd71ruXdSAHgfsF0AAADAIsoiD/TDQfZuSy/LEt+SF18I NofUReKcDwczXnrZLY1cXVp6IQDrKGJXVVTHj3xLORtB9uTtVtouAAAA4M/l ah8PR/u65JIyS6IoTn0Dfe5HkAfa4aAF+aJr0iiKktiVF48XAFhBGVunw9lN +V9FqB+OZvzk+tQK2wUAAAD8wdy81cIvNiH7P4L1FfFE7QOwADY0bTS1m6cs Hqp2QesFAAAApilvsec4rutcfEdd3ftC9u9JkQau7V5c17+Yq+c8IZzAe2At rdnUqPVY0/S2sV0AAADAn0ERW9JB8ahnLV1qXy/dIft3I/PUw8mMC/LP1D2v 008UyH7wJhL7SJpaVP+ZXegwYKlo38x2AQAAAH8CbLFd9avetuMcWxb5CEXH Exeyfyeu9onUWsL/6Dj2L6tCyH7wLorYPB30oOD/JvL9IftnNtpR2wUAAACA DqkrNURiR/XdQscawelEyoPs34WSTnM+9E67FsqrN1aFVifKJ2Q/eCMPB50o C817K57ZaEdtFwAAAAC6UJEo1eE06oniMkvSFR6ykP27wPSOHlbyvZ7zzNMk Wx4XBdoJvI+yfLRQquHvK1bz2NJ2AQAAAH8AVCXWUv3mk55TvmRlqN9XzpfA ZP/l2ejbYCFM8FRSvUzsE/OYTl15mYbicNkfTf8QgOcoI+NwOFi83RaReVzs 2L+l7QIAAAD+BKhXrWR4ke/ohuVoJ8m82Jq1MIB2GliWZapEcR5Oqkn+HaQv Si4QkHnqUbHD0LN0y7HOB9W5GNrCZZc8vpB60+l24MNZJ/+8xFBP4IXcfPWk +WmeZ5ElS7q/fHFqE9sFAAAA/FnQHXT1Pjny7+4+T/AFNOoNVQi+A3YydJo9 01xhuwAAAAAAAAAAAAAAAAAAAAAAAAAAfhdlARcQAAAAAAAAfitsx7mhHBFe FgAAAAAAgN8NjU0K2Q8AAACAP5abpxy2ZOGJO2ArWMT9rfiN8nh72V/ekiiK klvtOZRfr4h5OhtYHgAAAODdFLF5uvecZlTMu4qGzcvzjMge3zU1+dTofo0Q DtR7QKskS0JXl1qVkY9zdZujBUl3wyTLf2UYxI1lP3lvJFm3TJUUt6Q6nmfI sp3MfH3ADywPAAD8GRSxo6oGPRpIPh4VM1h+Sssvp8x8Q9VNev6VdJQ0N361 lrjaj85TWSmMyiyuBSdOyXx/FTbJffVendXhvcM0Fwl+d8VtK/tvoV9XanmL Pcfx4ttXGrJdzTEsz1Kuzul+tPHn8IGpqg6BTvZOh4APThoAryBzz3pQi6Ai 1En7X3om+++mDI2zc6373tQ9Hw4n+/rih2aNBXfFy1bfp7i6Cpbbd6nCBql7 n/BfIvvly/qK/wLg2y9gd3MMy7OM8pbE6cetKX1iqoosTj50JP7BSQNge7jK eMwLROYT8zy/krhdItmlXWCvotn9nt30yTu9ebl9n8iMg0/dqQrvNKT8Itm/ 3Wu4cYU8e7sySyLfVo6Ho2L7UfL29cW56X97O/4Ec/zVlmeEPzhc7Oys/8Fl 1OCJUti1AFF7YCb5NYrirJ4YKNn8kv4xpvoDKLI4ih5bA9nMrfRUbzj3wawu OCfzGbcUIibet9xeZp6qvMipukgD13Yv7oALB3my0J17tyqs2Ff2v6JChkr6 GygiS9GDefPYb8/nR5jjL7U8Yyyp9Lnk0cVxbMe/7vYe5JEXpGX3s36qitiU tcncv6KMKOWNJIna7GS/liAqqZ+hpM0rrj6vKsDZz1+ZbvDlXC/y+TRPX4hg XsgnK/71qn91OSX28X3Tb809ds91v2+DhgPRw6GUPtM889CQJM1nM8NlbB15 LWSu3Jy2p/s6p1wT3lqFjD1l/3iFrGe4pP/yl7/81035h3/4h1lJSj1d4d5U x0EXLtJyToumsOe0qCGetMY7muMvtDwjTFT6qmoi91TJLelC4l6L4yz0Urup D6cq8xRprCInyigPTVk6rrFKmadbUcH95/da+hGU1ETSpoqrz6RlyULnEk8P fMrilsYRIU5vwsn7sqD752nIsqz//fJ0g98B30G4oqOha7KnP2e0OFhOeeQ6 oqkB3hme3zn7R21Jw9X29rYHr4Oa1ylX5HXNkzrkH82HALoS7X60k9RVOt7D RWQeR6zv+6vwZ0/ZP6dC1jJU0mEY/qtN+Zu/+ZvZicoDjZZyJP6Wvk6Ld3VM tKipBK21xjub4y+zPCPMqvSl1VSEpkHeq4SboSdTuIp6SaaZ5tFUUd/GoQmA eS8GmzBZZpVIikz2TLrEOjwafymikppO2lhx9ZksQOY6N1V2ReIoiuXT2G15 FhjkBZTMsGm9yYeK4UbpLc9vCds8o7qdxaZl6Qa/BubKvLSjyQJN6jWh3424 nMqBfXRFYsuSES6WUOXVc8Lb6kRutsfu9VDzOkNUrWieZWh0tgcydaxqmto3 pBkZIYjt615VuJfsn1khqxku6XYyqI+V7y0twVWeqqxxDQ106NhxzSBoZj5H UrRY9q81x7fQ8a4bTal+j+UZY2alr6kmZpbO7h4lU96XY3oNczBV9Ivm1MmD mWXEbNO6F4Fduovz8EhJcYaSNlxcfaYKsHqVxsuOTllIZnB38eNtslGVNM6W 6jz8kaq+orNQsSTd4Pew3IJlnnq2qkDNZWSZf8ZgUVxOV9GURhFbZ9Wrth5m F/0yf/KPvpvr1vhrtttj91KoOJrTB67oYPuWmZ8tJJ6FpDN3/cmuHatwJ9k/ t0LWIy7pPrS2Zucmjy+WbWrSmjly/vKKIyAxObTOzWBuPkWsaO5PmGPytA13 gn+J5RlhdqWvnYygWxfy9N3Hwl1tSQt8pgq7rX0sVXS6vr/XYnYZrZf9bC5t lwiBIyXFGUmauLhEtxgvwJunqoo8adG5ym/8qOoL6l6u7hoerbS6ohudYm66 wW9ioQWj29asKGOHBd3S2NXeGtxwR4TlxMK8tJf8qGDULld+nFKW+OZ5iQF7 XvZvucfuddCl0ln7ZNd2sE3ZX1ydkR6IeXq0nrBvFe4j+2dXyBP0S1oIqfKl C/y0lSwuc1Z4A09i3fva+caZ+RSxtLk/Z463lf3fYXlGmF/py60SaxMa86k5 O2/tMUkfRSVsZSraiR5PFR0Wd9vH/DJaL/tp6b4ziELNWEnNSJqouPpMFCAV /d6Nta+Je2WhY1nuw/+fTWI0kl0kF8tq+B9zj0bBXeelG3w5ZZaEHmkyjhel eTlowdo/Yx/lDbNe89Fx+8s8jUgeqlAu5TI/gJFyoiE0CKFNDYTihPQPNlty daRuAS2SMFvI/pfvsSMF47vE5AQ02PMq7woWHmcgKOaM5smOWCIJ8Hn85OLq N/76YV6PMj1mK0ki3zUMO0ojSzpotq0K3Hy63pp7V+Eusn+sQn62qPH7U4bK klSiZZi2ZerKcXH5rZH9vBvUg1tlIqJG6HLWNwtWh/KE/rSKe0IjRVmWKEzU EtfkieZeZPQhbsSeUbf7gCf1aXO8tex/8+7ejVrl/XYDlV4/a9Qq8arpBuoh V9VGiZoV1fEM9b1bhUgrl1hLrFRfp32MpkowtT1eRnka0wqhpjgrs57snywj zk6O/RMlNZ20WYsUowVYif5qWLns1aSrtWOrbGwy7CBy5N9vcQW8CRrh5HC2 6l4kMBTpJNIXdI93FQiFvJcXoVz6cIqrqx5ORkCzWgSGJBFhc5o70TJRTlz2 hw5d1ZbtkG+l38KabyP7O3vstnylWcEozI+4vBJxTYtFCxZm/T7JJLz7RPNk ESapoOAReixLVS+kkwm0zlGTZZHnTSVA/h4QBtGmATa+UfYPVsjPRjVeMVTS VC1WPRY9MnRxg10j+6s1b6m2EHpDp/I94F1bcbXPZlTQrv9kOJZqBBkR5fSI 2d6S/cwWNdncSb0ol4xNoiuWo+tukucJXbraxh1re9n/QsvTptkqSf90os98 MvSLuNJ/5lglYpOYEbrIzS6m3vh1j7A6aIFeBWk5p9pxm7f3fn2PpIotZrcm AwbLiPe2mleNiMlfktT2f51XRpVNe3sUnzklNZW0fnH1GSzAH/a2q3xXzFLZ T0qVSBGp9vXrU0R0OH53W12ebvC18KmYtinmc5udLpPtSqt92/jgd9V72OoC JlD8Tf2KmaNpY+zLzz6dt2w/t5yEjv3PsZXs/6nPmaoKd5s9drxgHhMG3GYv X49lSetlc1ax3zzl/nwuepkC4t77K0+qZfW4mdn7RtkvrpCf7Wq8YqCk6ctZ pZ9am0dWyqtviWnvml4h+/ma+CNnrbB9VLb33RsMZk+4JeFNbajZzWlRM5o7 PYWXWCxe6EeTdeqxRWvbiLaQRa+Q/T8vsTxtNm6VFaJKn1VNua8y5+juwQkv 6B8WQbpf6VFI1enfS+wc6/pbw1dxGfHetu1fRsfRjd9OlRENSyPbRHfT/a5v D0M7WlKzk9Yvrj4DBfjTFP0LZH+RuLqq0GipZzMQTTxmgaGqLOSs6ohOr5mb bvCt8GWgjvLlwqHdZfIe0Ky3iWWht+fZGWvgWW0OVXpBO+iExFl1/Mi3FNnw GguPc8uJWYeNVyM3lP3tPXYrFXETvkzYnGcc844eQ7xPYk6xX+3zY7Mk6zLu nX1Zru0q2EM2K/VvlP0Dnn7b1Xjz8v5zqJStPuWO/Tff9m8L7rtc9vcy0tz2 LXRLji2ma6qgn/eHCZvdjBY1o7mTJDGL1ZGP6xt6lxfJ/s0tTxu+g2CsVQ7p GBZz/WAlwtuKfdEXVBN/Wx59zCv6hyWkrtwsg9plfSBcrZC4I1LFZcQz3h11 taTrZBnR108yLq5+Vqzo3WJjvKTmJ61bXH0GNzzwdb3mjZa9mnx0OhJ5jr+S 4nhf0+kG3wpvzN2XUyT72UI74yjJmtMIErULeaBLc1DqcCt3N7aHrW4rRN4x PNYC6Gb2zhzydDl1+//FpBelnwk6BXnqf7xy+qNyUzwcNhjN8w6wWS6Vd/Ty dSCRmVnQPO/fKQtnrwbg8T3XBDN4RRXuJfv7N9iwxiuGSjrzVMmM0sjWVfkk mbahzc5NnkahZ5CEng0vjNKZldjPCJ/9b8h+ceEPRextM92iFjT3TeRjEZr9 JnliJr6HusEM/ZaWp82cVlmkcSKa2iwy8ecUYaUvqCbeMh5TTSv6h8Q5T/Zy lDnRmmgaJbW5QKZKi+0Ek5+NYZL4xeBOMV2rIJKuG5RRdd1CSTDGJiXF6BaX +FmC/JKRrNIcHa/w7a/fuGHv/mrPr8C7fzrd4FupFqeFaqvvcJEGrq7wk/a+ LhwbXwdvds3d6aDuDsam7JlZTvP6/6VsOtvPb8gmMZ8/Y4HfqKU+RsOej8HN jEDczG2elO5y8Xow2y+qkE1r/H7L4ZK+78l8fnPmNMxE9Gf4qsyyP8RqdZ7j xnSLmt/cn55eGOZls/2UzSyP6Labtsr6xoJKn19NXXO0nXlaw31/agPeLS5y hRLO9nfLiOe010IF0vWzyoizUUnx6+bN9vcL0JCdJG/A5i1llwWTGzKGvT0Z lW9d/Wr092xEfDdT/03BbP/vhXcf3VmjvgVrNZcyZ3tBVraJkkZUmYm+aFV/ jP4MTWM6qMjSnP/dzBPrzKtFvZnl1O7/2W03SvuGPTz3udwkokZ/SqexgpKn jRUhFrDBcS+u7QrdDevibmdzbvNsJ6hhQVtpWIQoOev5RtkvLIEta3zsOTvA yq1lIdi5q7XjSM8+3Jk58z6dz9nN/TXTC5wXyv4NLU+btOd101rJLa6+6zi2 2/HGKG/RxSFfjHirCit9vlXqjj32dOwvIvPcP4JpLDClmF6RiF8MPo3cbaIC 2f9JZcTZqqQYw2Zj/CdllkQtfJMONiXTp38IhUU1td/aadCK1F85bLRGGL1Q //PTDb4W3lQ6S88dC1Y1p+aP6Bhxfa9D46nMYcMJPt5RNrPwMDek07Divodd 64M55cSH1nVfQ4fr25x0tKXs5+5+W+2p4/NejVOIHisopMBr80J3TBzPNu/t b57KDRMpn1YoKDZj121Tc4q9vCVVpNSu29YzVTC8zWoN3yj7hRWyZY1XbFvS 6+l2dCxnDZFKp/tE4r6aeZ90j56Rz1lW5mf8TLFneZXs39bytOGz/Y0iYuOA +zKNaoQFK8Xm2lXm6TTICXPtH45NIaz0udXEP3o8lL08ewSf/2GHTgk8Oeq+ fYHPVX+nv/jFoAfC9k6o68v+TyojzmYlxRgMjNCAFeC//8/jgocXVNdBqhmZ rt41b/TcFKvLqpn95g6Y2u+uH7ZxRrrB99LfcF81n/vkCTsh03yc8cD2T33b iVy8U697yjqUNG3XmSvTF2Vc9s8pJ74OyPt/8gB5q2mt7WT/5tNtzLbfFU/j APGH4mab7RrlWsWFzEJda/eb4jBmk8XOF1+ZKUuYjbs/K3XV1VndOH7ZN8p+ cYVsWeP8Fh8TKY46iN/zy3LW8kYZCGg6d+Z9Xj5nWJkX7wt9jex/2UQ/h9VN rcN5YMK6yNKL6lz5yk1DqBehyZ3hJwLCD1T6rGqq9pPdg7/wPmcPKZWHxmng wdHI8bNC+nFoB8qoH+6IVAw10C1R/zFlxNmypO5XTQ0VWAEyeT4STLyS/c3H 8x0tj4uIUDvq7fBS1Frf3zsaRPHsXBst9D6W6WVq2wDW4APJI0s+ni0/ybLY MzXD0vnhRCdFD+gbWqYXTbH8OL3R80kdTVactx4vsg00nLZkBGkaOJrmxBk9 rUl2Alflu9V6sp91ri1rNlVOrDeQrDAJLM0INpvW2kj2v2S6jR6CdVTcJGUF 4qeppx6Opu8b9aCHmabWxBhzGtQ0ubedNRk4GXC82G+kQ5eMME08XbXjK3n+ 2YxIJT9VBcwcbhgn+itlv7hCtqzxn+1L+ikyT+VZczViKvxOQGsmHXvFz1bO pwt6fj4nrUzxOsf+n5fI/ldO9N+fkTiKpOiWqWvmxdE6IzHWJkWlz16WMUdy caX/zKgm9lz6cmgX2qKM87E3Lng9qa/Jdbzs41lvBsQmJlJX7rG0Jc20LjN6 dToX0D0gYrCMiqtH+lzNjdKM9bqWqVYpIR1wXTu7lxFn85JiiIqrT+7/z4fD Px2aPcjjS+P5J5k8vzIEfJDUuIi+BTQUYZLRA7p9gwbyMZuBfIgIOiumFxEp l2exTaMzCgP5zEs3+Hoqzxu2ZMT/3V5yqj1z3ny4yLawTDR2KTTXyLqTmwNn bk+UU+cJW7CJ7H/ldFs7z+2/+qXIpueFoY6pzBwKdTJa7GMJWJWhcHTlfznf KfuHK2SrGt++pJ9mpPVQedN1W5h54NLSfE4295eZ4c1l/4sn+gV0Q7RV6zjJ T5ld23t9ZhxGKq70+vqJTvOn8TlzcFkVG+yDoCXZl4OjZdQsmD+ijBqIi6vP eAEuhB6MzPcDJJnITJRFvW8gTnOxGZmbbgC+Hboi9jA5n9Pyc+o+8dSKPlu6 fPF02wC0GJs9cHkL9MGtjVSxfkCZUyO8baCqZ6twJ9m/qkKW1Pj2Jf1SiCw5 rhqkfFE+r9TncTPd9R7LU7bUTc8Hqp7QyX2tI/EHpnbaN19X6Wz5QTLq5zHP t2N/p+h30Ypq3QBlJGSouPqstiwvYX66Afh22E5ExU1u+S1xleMWoao/AL4U +OR02y10wpWlQZ2rZCtIkjj0bMP0rtwRxzFETh9k6LW73WdpGDzSfBf2kv3r KmR2jX9gSU/QPjB4Lt+Xz014i+WpTn2/63nuQN5yS6aVJpkXW9c7bn8Tjv3N 65dWOvdZr5e4WEm8dcXjFbByGPBtRxn1GCuugV9/hDP9snQD8P2URX5L0+y7 fZkaZNVBo0+9xcQQnJ5bgux4Qow4RqTueVfbv/fzhewn+1cXyHSNf2RJT0Kn JJe9Tt+Zz6d5k+VhmyZOBg3OWeZpYJ0Pkt7dlfEjPviBvSmzpliXVzrdX6k4 SV6WRRYY0kl8FOo3MVUGKKMWy4tjRQG+gM9IBQBgJZvspSuurvLWkGok1dJO hocGYNK224y9GXvK/tdUyKeW9ByIoJXm6vhvzucTvNXyPJyZB7yZ23dNHEW2 45JF+RTvOBGxpNLrdHEf6kEP6m8i81TZntrI+oeXUYNZxSW6bHEBbsvKdAMA PoMN9tIVV0+jS+jvdrgvsnibo86WPjYZPVlqN5qyfypA/Pay/2f7CvnYkp5J fk36M8oCvj2f6/hoy0PjUUvGxdXPihUtatNzK/0XQrJ+m5X1P7iMGswuLuGl +xXgE+kGAOzNU9NtdK+/72hSLR9/UWyF76Q6aIVJ+Smvy/rUlllLAwBsDCwP AAAA8FbqY5QMawm6IhGOhy7oe/ekzALj1KwOxU2GVsTLPHGV5m8lI8DkG3gf sDwAAADAO6mPIN6Kj4kr9odx83WBErpzkpzk8ePEkUYq/Sjp/m2vfIA/BVge AAAA4M0U9w1umwBfzZ0o61NVhmh62+cpahHsDCwPAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyiLPEt+SNzztFbwXUoW3NHJ1 CSd3gVeRBxo9n+s28bMyMg6Hg5UsvDusEAAAAPByWPzIOPVJX40O90thYT2T 2JVxYC94HUUaJ7fpYJtFNutnLWCFAAAAgPcRm+hwv5ybB9kPvhpYIQAAAGCI 8hZ7juNeXNsN0uKpW6HD3YkiDUj1XVzH8eKlc6RtIPvBiyiuPmmgthvlY78q b9HFoQ05Gf3ZCLBCAAAAgIji6qrHsx0ztX/z1MPJisufMjRU1m1mvnaWxpDN sNk5o8PdgTw0JEnz2SmlZWwdued05soWFe9lYsujVXiWL9fG3SD7wUsg1sUI C9a8rOHmlXm6FRXctd8I+QAWVggAAAB4niLUWx0k226nBVmoa/6qqTZ0uG8n dc+HoxnfZ/iv9vFwtJPUVexkzf0g+8ErSC+qc/3JffVwUAeNSxGaZkinIFJX Iq34OvCzCWCFAAAAgB4ZUYztPph1mJomW/E6RxF0uG+mDI0DVfmPT5hsVzVN XVkNkP3gZTCLU0/ij8AaoT79OzGwQgAAAEAP2j1Kbtr8xDocuJ8Pp8gC1xrD DbOyc0d0uG+kr49unnJoRUjME88Zq8KOEzVkP3gVVPXTMWqZXbOxTUQlXYXU grpZwgoBAAAAT0N74absL2+BfmxrvrLIxylaM3Ksw71kb8vBHw+b7W/K/uLq yG3RM1mF7Trksj96XxbAnwL3P6OePlql6YvEUWQj6BqM7nwErBAAAADwPFmg S7IVJEkcerZheterpx7OpmMsdvNJA8uyTPVEVwtUk/w7SKcvAs9DlJMsaW6c JJHvGoYdpZElHTTbVpe6+eTxhdSbfiZVeDjr5J+XeG0sFQD60K1Dknmxdb0W +tmFjDE7K47POPbDCgEAAADjlEVrtqzzJ/gC6HQo6hB8PmXRbZjZRW/Lfrbe NGMDAAAAAAAAAOBLSF2VTewzfx87LlloqtPamAIAAAAAAACAT6NMbMWqDw1R DpJxcfWzYo2f5wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+KO4 OqfDwYr3TgYAAIDfBboXAACYQ1kU5ZuedEvitNjhwQAAAN4PuhcAAPggishS 9CDb59mxKWs7PRsAAMArKTNPVeykmP7lKyAPl3d7OABATB6a8vl0oJhYnHs7 ZWydzm76jkfl0cVxbMe/tq1w5imSGe9nmWkDlI60/cnebdUdrhflyTv8aeTX KGrOym17c1iUXXmmcue+jM+/tK9mIIXtwvk2y3G9qKoqn6UGsqKql+vQBTdP OejhW4z7QPdSxKakeJhYAuDTyC4yOukdoKL/ZA8a7W2fpJLRRWweDkq3h6O1 /6a+YYjEPs7tevM0yQQrx5H5NZ33z2Am3gPVAhQjfF0SYFF2YoPKnfsyLnhp d6KbQmHhrLIcu77A1dt1MKLxJNDsakH+hgSNdS9FZB7fNLMFAJjNzUMnvQOp e36TWS5C0yAPot3g0U6635ahcTia8Y5umKwBzut6Y1P4u/irZP9AJt5EFhiy pDivXHyHRdmL5yt37su44KXdiV4KRYWzynLs+wLzt2vi9SpC/fCeOaWJ7uUn I/3cR7cTAP5A0EnvABXbL51xFT7w7IoWXKnBVv13DEDEzFcQqSt9v+wfysTv ARble/nFsl/EGsux0wtc5mnkWbqmSGzRQlI0Vbe8SOjRRbW22Ni/KnHD3Uvu q8LxAABgN9BJv58y1A8H/d2qn2r7PL32BP6V6P4de/C5CqKMzYF0fpHsH87E 7wEW5XuB7J9glxe4iB2SmbMd52Vztr+8BcaJ2HW341NPBiYH6Z2uNaPdSx5o sAYAvIo8jRokWZa2/ixbv6j9E++dNJtOcCzLcv3k1lOkRRq4lmVYlu14UVaZ mTJLyJ1CctWFWKRbTP7heHHjYvaZbZqmbbt+3yIMQe7rk6e5AZ3L+LhIYE+n jqn+nh/kT5HRInYjVn68NKuHTN6QF31nSxVJZ1WRzPJqbCn27PSWfllyZjkc 0UZg2xZvBK2E8ZYQkXIhLWGiKdGvY1qC9OuszKb757LIYkdlk1ymX7Xf9JHe e+dd1YzVTR2/ybK2yPLq0kw4jh9HjnHJ6lxG7ST0XyrRtVOZGEjgZMEWo0Xd hqeUvq/BQxSwxzouqVby3Cj2DXvCbXikGTB6sn/8CSwD5DuW7ek8NO44dk15 o03BNEzL7r9Eo18Opqddev22xu/abX2tq+qLXD9O826qhzM16+0SVi7PkMB0 P+699GVk1KK6TovjhQ+H924/VDby0G/2PSaa1yBjORkoHIHsH6mFqRd4sOlM tZxRitikm+TlC59L7zj5UGfRQ9uhh6p+UQD9PGl0ErxRtHvrwRSkjY7pXhp5 mlTJH+9eWHqO7/E4AuCPg1iX0NVodIKj5oZM9oc228ik2GEl+32LmglJd6OW 7NdNSzED9l6zPUMtO1LElnQ4mRF7ycvsohxOWnD74aY8tOn1smnqRnD1Nfq0 yuRkHrGRyqVSQhExXsQoTBqZPDSkg8ImMMqrI0vSiZqUT4kDtknqrswPsmMH ie0kZVWwEYHl6Lqb5HnCJnmmVmtJOauklGm9nR5Wl4n5Om1XRzqojmeowohq rMYnD1rJPEW2Yt7NsUZwOD/uxlsCbWuy4zvaYFP6Ka6uSpqPV3U+5C9Jmtod yBWDb0qjst+0NI3Pe9GNZJ2BzMK2yKJgBI/M0XzQkTHN5eMNq2V/4mqsY7ao 3Bi7diQTQwkcLdgoshRjsKj7PAxErRpYNKlHSbCSG1d9o82gKjx57hOYZVHq 2Uo2e3maDCpLdNBZ9SrzxYqqe00WkAqpDRa5ra8fHxFFxr4cTQ8Vbx6dXj2Y l8AwWm3Nj8lLKGx9j6vOZ1m1mcwSTNOOZmrW29Wv3J8R082/XfEyclgdH0mG rHqWguZIstiDaJZ9k/Yzh7Pp32V/WHc94Yjsn25eQqZyIiycvuwfq4WJF3is 6Yy1nKnplozp+rvq7/n2V1t8H73EXYS3udpn0gyoBD8ZjqUaQVZkgS5N+prS OM/kwpLufm7clY0t6u5mvHthG6f7s1wAgK3gZuJh3FhEg4ZDCTEbLbNemZFW zAP50JCBzIy0jAO75f2D6gbs71toEu3F3v2rfWpLVurkN6Vh+czGI7QM167P LlhmPg/iMIOTNbK7davUUTPY7VpJtdFK4rc88n46tmbEbCDFyjzz+ZWPir52 IlmURT60LsFqeMous/s1Rivs73Z1Vi1BGWxKtFPvjQMCfd5C+/CqPeu8WxuT 2SePdCxti7RPaz2JFu6jo2VvWPOFIF/fMzV+7UAmJhI4VLAPMdAv6iFaopw1 mpYQmvJcnt0MZjyBtYb2thLmLjD6Elb2qKGru/apKsz7W8mbR/XMsS/npIf/ vv/JsR5H/PRaX/1Je+c8n6atczGZqTlvV2+hZdx0P/0yNka39xzd78dKrt0y yA+mVO6M5iVgXk4Ezmcd2T+3FvoFNKPpDLScCbtbByBqW5D+351xQNephiSG NXqm1iuzwW/dMCEiEvvMHPPZhY+ujpdMc0VvuHvhlYjzewF4HdwO1LaKW9+H HKxVYufnTUPWNo/cELcd0Vncs/qjqgdozxlws9BWxMwejYnkfk/BJ5U+Y4Fw s9SJeg5iglln0xHrZTm1OlJfyFP36FWZmZ6btlgwDulSXh2lGQhD0IlONSWe xm4LmOtfOyX7m0lp3XN5W2SPOmlecnfEuIWX+P7WME3e6ORJvuR7sxi/VpiJ yQQOFWyry2Yv5bQPbbtKWEGdrejuoFFePX9sGDu7GUw+gbeGrurgo9fR5nAL DFk2HvP77QbUL8zi6juWE2YTX85Lz0BbO5jR4xNWd3JP9ncyxVtR/YqOZ4r9 YuLt6n8yaro3eBm7rY1PPN9tEBtiNHZzZq48GcVgRvPqXzMzJ9Oyf24tdAto VtOZsFJD8Ep8jA4GZvsfpj4W2YHYYqOirlqf7F+q6/hUx+MZ9VLyPLddlmR4 9wPwQnh/wi0seT9lnS7lVa8o+a7zsk70HZWVUZ2muybzcKztlVD8chv3WAyN 6vXRkdefz6I2zTe3Uu/c+zrMdqkbsYKLxHoTbocfvWpvNmYUVltWMutBeRqH nmM7NnNsGdF7/U94o+gW2Eayf1hmrWiLbMW+4iRrVnfXRGsE2BlJj14rzMRk AgcLNureZbocO/dizkWco6ToHQfeQRY0g6En8LWs3uvDC2PaJ6AssoR6u9uu 2ZLD4kb2M/3lvPQMtbWm5OtXl7BuqpnX1srQQKbEd33KdG/wMvben6itbNvL YvW88RzGmlePuTmZIfurp0/VQu8FntN0JqzUINV8f72y0pH9vLNvKvCROZxl ar0Ba6qNGa/uUvJUDuTuUggAYFu4KaBWiKg/8rox88teO/ICdo3TrL5jbCVw RMm0ZMkU3Ly1NC+7y3ui20+xYepYgQl1zTKx3qDr4dP9e4I5s/0/ZeYbEvVg jzK6nDs5zdv7hCeqPxH1Htm/qC1S2P48XZH4obOH9nGTjZlM0STm4LXrXpY5 im+l7P+ptqKaWnVm6eE0fm7zmmYgfEJ/9vORjfF8FLGjHA+SXq2otDJerW6K 36HRL+elZ454myn7KwFXeT+MZWrgrs+Y7i1eRvHVDdPWWBZrrYiNMN28Vudk zjszrxYGXuDxprNW9lcbFw4nI8x/2rKfb3443HcjPO4qdqlZptYfdDx8en9P gNl+AF4Pl49akFbzkLXuFymUdVqte4MZM1lT9CdtmJXi1iVPGyEoqsggF9ee F+jm5uvSTGQnEUvl+anjYVwurjMUJoHVjqhoVk/G9EYgy+z7YIIa9BxBH63k HsxontNBN3+rZD/54/GciQ51eVtMAyds/Jp0u0r3HahnMovuJOb4tcJMTCbw ZbI/jy9eY2dztdV0NCULm8HwE3hr6D1rdLb+h28RFrjSs/vQJAzcljP25bz0 bCj7+Rwxd9GbyJT4rk+Z7g1exu6tebfTnBq5L4v1fEuHbjvdvFbnZPKdmV0L 3Rd4VtNZL/tZ2kifZ6qyZlgaW0uUDcdQFc3yH86EzeIQVvrateTuev7S2anh FAEANoO/mOdzvYWKGyvDEDhXTvUmYs/JPDD0ys6KZ2G5LOr23ldHcZKBNHPx 05BQD2tDOrB6ConOfBzPNp+QvHkq3yNFEqmOmc+yyGcxHIxzXupooB9J89nk C+lEjnzmi4y2WrMvtL8XWV8u1gcWVmgWhpLX3du3cDZGuAlM8JPWEsWjldxP rZwUJmw/ZffslkVKo+HtPlv2L2+L5PLONsL+0fN8JlNWFLn3y5FrxZmYSuDL ZD/9o20S2NeD2++WN4ORJ3SDDzD4ezbiA84dSZopvGeclydrZP29RtxejX05 Kz3byf6koVYnMyW863Om+/mXsVtWLEedaFJ8WYy8JXMOJ5zVvPrMzMnkOzO7 FgZe4PGm85zs7+RixFyzoZNo7qhS6+JFxbHupbP1eOFSsiCEBeuOPywsNwBf TzXT09zJO2As+l7C3U94ABvNv/00PpHvrgB8A1tfrFbhFRqz5zTSpNf73R1m ve+PzbhLIzUXjwViFt+yYUGqYGVZqGuvdh2ckToayqIZroMH6kxSV2l3SQMh 1sYmY6owbgMRGnn/XvdXVaDn+dMrMwKs8Wm4hoLgy8u0gT1GPbObUiPrPIzd nDFKs7ehW1YeCe57V3c/WdgW6eXNST/27G48kcpjpDuJOX7tUCbGEzhdsLP2 wjavfIjydsnRRjis0JY0gxlPYLluek+x9jHuZdT1o2ZhFnmayPtH3wHeyBrR en7KxJaqAFyjX85Iz3Rbq/Vef9tv887cgNQ1PJ2peY2gq2xHTfczLyN/UKtk WI4kq1t33HLNO6d1VvMSMC8nk7J/Ti2MvsCjTWdOy5nBpOwXx4ceX0se717Y t0orp0tGK9340JXh/BDvXQB+D+zdavTfTPd3F2Xji8mXDOmEjG4FaeuTs2bW IUiK2FWlo2zRTYe+oylVsIPuzzsHxZRZYMpHGqiZnlViKo0IDUKKxJGPipuk sWdqhp+mnkoUlO8bdUf12KRQw7zSNU0eDfm3DVOpYyXe6t74ViZN6y1EiCrj pxhbOq1Cyw2qc7pv8qhdSOJc43xs915T0G5i+ij3LKA+t2dSxVkauTT49JXm 4iQrCunqFzSlq6dLkuZG5D6Bo2mWqda/ceLxfoDFmT4ZXuTdW0QaWLrCPcYP EntI85MTSwm7dlFbJK3qpOoaXULP8izxLVnSBdHk6UxmTyJPXSvIxFgC5xRs Sj/htd4q6i6de5Gf0RZ61nXNINVxu5F61aib29hLurQZTDyB5fokm15IDYsq Sao7urPgh72HpH5PmhtntHg1M8zYJuqzomj3+Pu0kR3uhUle14b389iXY+mZ 09bYJ6de62MCT9J0Uki04AJLPh4VK8pnZmpOI/h/epVb3VlsuhtFseZlJNVK BqmkMSgGSfKN5ugkGd5VUHfU2E2bl4rx5jVy4XhO+i1fUJvzmtb4CyxuOrOt 1AjkCotcU22PodvjZdLhCi9MhMeuX51h/72J7oVFKTibEW3evHUviFrN7t0y k3zgIAlO9gIAPEXXGfL50265q8zSu1QONnMvay8Atv+ivWfb4LAJmvE435sy kjom8ltim09eiUwp7Qp7E2Bj66yckYXun0f1MI0xP3ACHUvN7ZZ7dbm2UTWa 0rJW9dz68My2WOdq4ufC2CRzrh3OxMKX5Wlm5rR31fxmMLs8luW6e4koBaO3 3Tg94zR9xEfuPCdT65jx2BUv4+PikUtmuvWP3XJ2OTyVk6HHC57+OS+wEKr7 +2U+FlqfMdq91OWZcefWZG5auvOPAACwAKpQm7K/vAX6x+wWYvatKfuLqyPa 9cB/HJuCmeIJyDBCkFU6RSVJRr1iyvyg2icDjUK7iMcJZGCcxtBsbmwSAFZ5 cX8xDYU5J1o/2Bi2xrbUOIm7lywwZEm+z8yzM9kWtGS+1vPccZsAgD8ZusIq W0GSxKFnG6Z3vXrErJiO8Q43nymoG5CkuXFCoz4bhh2lkSUdNNtWBfuN6drn MiFwtWWB7yX3lKwXPGY4R/dTsdC79M+ljJhXKvNTzS4KRktgHn+W7G/szC0i U4Ho24GrfVow98OvEHUv/DDpesW6t4NhVjIimEkAwHN0VisnFy/fStdVZzh1 dF5+tglt7aJucfOoH3helgV1jD2prsjBduCmS1IAuNvW2UryPLbVcV9jABh5 Gvk2d+M+G16YZJ9jql4FC4Sp+lmR+roO87ITRLDPn/8Z7F5IXZ71ICvLMk9c 9SSZ4QJ/rUVJAACAP4DMU6SZdnHsHPUyS+gJnHHajeE88XBVtsc3WYMeRRqT ok7mHWYL/ng6sYM/aILilZS3hBkkWJcdIVpemjurM9K90COTafeSZIsaLx1J aIJACAAA8GeTX3eaACQPhnYFAIDfSpHF6T5hMosswaAPAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDHwkOQ/yGRxwEA AAAAQIvrRZXP0oOzzA/yI58rsuBzQuI0L9CDfQILryW/jp5Dk4emLLFDOeXq RPP3cL0oL3xukTjy8WxFkXM+HFR/9AG0BM4nmpKDGQ988gIm6uVrn/UKXttY AAAAAPCLKQKdiTojak8FF6H4c/JNZB4PyuXrjqq/eQrPUTiW8sQ+vlZR5anw kK/IfImSu3kyFfv5Tx5oNPPWtHbPLnJH5Pc/2TaJc+pl52eVWbLT4TkiXtRY AAAAAPC7Kbm+l9x03uc/P1f7bCdvSt2WZIEhS4qTjE71Mp38SkUVm8K7xy9R ckzmyhd2znpZzPPyYSXQEvn9TzZlVr3s/CxSBK9b7VjMaxoLAAAAAH47Q/r+ ah8HPv9O1T+PV8v+1JXeKvuX5+btsv8LoO/IB+Ufsh8AAAAAq6j8P85u1vyU qPujSPenrvyLVf+LZX8Zm0fx3SH7PxhWAB+Uf8h+AAAAAKxDpPvpnH4U9NcB Uvfc1j9FGriWZViW7XhRNst5orwlvmuZhmnZlht09lcWaeQ5tmWZtu36ye3u llJmSUQgF17i/KfM6c8sy2r9ht889hzHJXcgN4hi37DZ7gTye0JIrgm63kx5 GpO7sltlZSYSysI88jvSK8kd+S96mWk+pshiR2XlafoRp+EufldyJJ8sNeRJ /ZuxzNmmyQrnOupszpLnm9LjeY+nsQqwbZNnqPOYmbJffI+qlmrSrPU3TUHz F+TvXr3MrWdK8fgyI+UbOIauKsMuPCueVRa31DckWm2qU6W6tTdjtEZ4Q+d1 mZd54lm6pihGkPEH05SQB7NbkN/EjcbOGnH/JaiA7AcAAADASvq6n8/pV583 dH9b9RexJR1OZsRkVpldlMNJC27jz8oC7XS/hugbXz8qXta4n+Je6+8C40Ru yL+kSim06Y5M2fEdzQyYGGK7TU/2tbp5GVuns3OtZRLbfczlEZF0oasdO/K1 uLoqSbPHn0j/kqTOlt7BPFIRedHpHXXT0t1rZNOIN8qAGONCryXDBbLftDSN Z58l/aA1YyVlHhk11HupyfenQyOrPQZlP73NyQgqLUnyrBzOdkMpz5H9g/eg 2fTNM2tN5LFM9nsGLZiT4VWyP3I1+oFs+Vz2t+tlVj036iUviV4PaWGRoiEJ U46S0/hZp0iWPouPFNhwTSD7R2uk+jIlf5dptSm6JA30eNTDG3uwzKrc1I3g 6jc2XBexeVa96iHsrveXoAKyHwAAAABr6er+Wt0Pfd64qBkUhYXBGY2ScqXa +PwYRjABUymYjO4/pVFnHpShQRSYFdd35AK0qa35J1WAGrZNoTUr3XKl78pX 9sCWlqwCGz0umcojTz8rn/J60TQzbOmzLsNON/xGR/OeVf7JI6dVyT1un/tq zzNr8nlEUp4Ox7aXVuaemw+alP2T92C11ixEmtLmmlFsNjM6+MTBev6pIy5d 6tyzjSinIb3fYM2zeFX0nHxGa4T9+2BG9VesHbVGcfWDWVu6hSYZ8LHBV/XO 3X/bb4KQ/QAAAABYT1vfP9T90Oc/9ZZfvSXyWWRBfVD387s1BWBx9R3LoVq5 0oqXtozl+43vCocrpabgacs4pofOVnSfjy2vnp+Kf8sf2N2x3FZUk3lkPxdE OxpgSvY3pWUrJf2Sq2alx5/dfR5T5w8xWkHGRo1nT8n+Offg9VArYn7FI6VJ Z1P40BOH67n3g/4FYyWy7Fli2T9RI9367Ndv9Zj+23ILDFk2HvP7fZEP2Q8A AACA9fDZSa4lmuq+qfszV35MOlZzlXfXh+juDTGsR7j2EQ8LYkv4Hb+knoqd nIlmnhWco6TobtT0ixYMEXoPbCmq6Tyyn2uzjy2bkP3D2o4n9uEeFNUePOM7 TTvP42HreyOFKpvV9PZEGc+6B5+MfwwWdZ2M3o7VugpV/df+teNuRZ1PuoPE 2UcLrHiWWPZP1Eh3cCQItc8ec7QHVijKgvpLuZbtmr0RDWQ/AAAAAJ7gofuJ um9InIfub6n+epK0Mzs/CtdqA+JMMB36+FieK/t/qn2UpladZXo4mXEh+m0V t7T7QIHsH8uj2P1jkCdlf3eKfenzBubEK8luzpT9M+5R6X42OGABXwta9dwx KDbPnTHDKimeNY8kuM44gviJZw3L/uEa4a5Q1Z4Q5jsmWQ3Hpp+RxlDEjnI8 SLqX5OUPZvsBAAAAsDW17jcMueVIPPD5gGwehfvMiPXKwHftOfkJiZbHF6+x yZXtCe65CNVX8wd2Z+pbimo6j8/I/tYRUBPajvvQLFZ6HWVZDeG66eXlUk/g T5XxnHv8VMVLhH7l0VNWup/of7m7H2GVFCdK37z4jqGpqqLpYzGUnn9Wq5ar 89amaoSUk+aQ8adOEqjqVjNOT/MxvRvQXemH+3jh/nT2u7LgB65B9gMAAADg KSp939uUO/C52Dc+Dwx92OeF7YLsOtZUl1RuEW05ycXV/cEzZqLbiWRf154n natZYjpbUzuKajKPa2R/Q1/Plv1V6XRdkq6O4rTTL3he467dzbbVh/qh4Yk/ JYPn3IOljen+87n26GH50Q29p/pXSXHy96KVpmeeVSX9vp2j2oE+XiPkmonF GbHsZ95Azf3Ej4ZwbzCQ/QAAAAB4jmZokSaV7u/53TM/hoPW8K0gn8gPpxoB /JKml0eZ2JIeskuY38Y9mmf964aXTi3IGnKq9QkXUk01SIcNg4OGKv2NUQoP m9nU+RN5ZCJtvu8NV8e8IMm/G8qNK7lm0rufVHGHkkclZJ6qeqPSl42aWnft FWmv1Kdl8PQ9Hg9v7eQdWOsZfOJQPVNo8Zythmd9khWiPSNbPIvlpMpIY+PL aI3Qm5w0N7ynL05v7QSy/Qi9sUt3jwuL4MmfTh5tQfYDAAAAYAuY3hEE4GS6 X7gTt4hdVTrKTH75jqYYwagMZZdcPV06SDpVRKFnaob/OP6ozAJTPsmmF9Lb qZKkurW4zOOLqUl82eGo6FaQtj45a+Yl/i8k/Wdd1ww3Sm+3NHI1SeaHN3Wu pqczPRIjaeT3WRo4mmaZan0/5/4bcR7TwNIVvn/gcCIJut9zlCwgmacx7D2j Hjw0byTRbOTdW99PlyKlc7yX3MjBVPVdT9U9ZM18HFPG8iOpjs/uQos7qGpg oowfKRm5RzOv7rm1AEB1f0es9utlTj3Tgi5T6s9/kjhVRg+SGQ7Wwvpn/RSJ Q94MxQ5DuzXSGquRnLk1VemrNpocjio7lqH7mOYZcuRZpO7JiCHOssS3aExY ekTB4awompf1G8tgCwAAAAAAGKbI4qQv34Y/ryiLnDBnsrVzifiase+m7sov WniHRvoHs7Iij6OPW32n9aWz+W2m7kG+b31XV8/TEEl9OnadyYgGp1s52ic/ bMhgtQmKISUjHtm5tkZlZZ64St+tbORhjXtuVnQAAAAAAAB8CWxVSqSe2ReL dpm/BuqFIxx+0C/gnQMAAAAAAMAMytg8iuKqsq0Zygeoajr8aAbjqaHu/KdO HE8AAAAAAADAAHloSifZCqp9smWRxa4unbjr/AdQXF31JOlunFXpu6WBJZ/G 9h4AAAAAAAAABLCTbIcC5XwAVOzHyyINAQAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHg9WaBLsm6Z muYkxd6J+dUUiSNLqmnqmhFkeycGAAAAAAD8QZSxdTqc3ezmKQeCFe+doN8L K2IjzGmJHw6Kd9s7QQAAAAAA4E8hc8+Hg+rnP1dHIlr0ZF/3TtFvpQyNw+Fo Jz95qNMBlhbkeycJAAAAAAD8IST28XCQMe/8enJfJVrfxGIKAAAAAAB4O0z1 S266dzp+P1z162G5d0IAAAAAAMAfx5Wqfrjzv4E80ODODwAAAAAAdiF1JcxA v4WSufNjWQUAAAAAALyfmycTLSpfEEny5cQm3cRrRnunAwAAAAAA/HFwvxO4 +LwB7kwFFx8AAAAAgDdy/R/+xb/8p8d//gn85S9/2bEgIjYDDS36erKLjAHW H0j+v/9P/+Kf/LO9rcwq/uqv/mrv0gMAAACehU5x/4//9/9bfgS7lgSfgT5+ d5z+IoujKPJd7/rB+xOqZZU/I07/N9RImSVRi/QlNXO1/9t/9tf/qdjbyqzi H//xH19RJAAAAMAbSd3zwcAW1p/7DPSX7+ctizxxzsvD4ZPrbmnk6tI7Aunz ZZVP3c9bZoGpKIYXhq5+VpykePJ2K2tkU8rMN1TdtCxTlY6S5sadTJFE5rfQ pMFrrfiW58ULXoIi1Onh19vfGAAAAAAzQE98p5qB/lQtOh+WkaUT6XkaRVES u/I75ClfVvnQAdbNU2jSKllMR8VPn922qka2pAyNs3NfbKB5Ehw+XRZXWv2y e32F5scEAwAAALAvGemJ7wpnG8pilmiY+bM3EluH3xFbhsbIWalUWSSjl8t+ Jqw/NWDStXNIM20Wz/p9PVEj28DCJj32rPB1rfvGiuLqGbJsuFHoUNnvhJFr yIrpX7c0DGTkcTi/ZUhNFy44z5mYre4DQJtdO7/P63kBAG+D9sT9Sb9nbph5 qmLPc4ogP5Vn/vQt8Ij9H6pFpynSwLXdi+v6F/O4Wqe+RfbziP2fOsBiCrmh 0VmRrNHs29TINrDtBdf7agNr69WyFluJOJoRfRMbeS0i6vCj+reNUkAnGN60 3kFr8KxZhOCpUUYa0Htoe7tngd9FEVmKHuzXyxSxKWs7Ph8AsB+0k1f9bk9c ZonvmposSZKsuSJdXt6I4VIuvS6VTuIuWTog9kdSvA+xP5WLz4dq0TZFZKsy G6RUSooMoQ4nk7lrMweO1TrlLbK/cvH5mAFWuzhzX22ljW1DWCzaN6uRV5DQ Cqjm/vlot0pda4jDxj8bubyVsXk82snAt3loyhJvE1ssidCEb1fc294N/NmU sXUaXfPKQucST4+Oy+KW0kABUZzeJibvi+TSHf9mniKZ3d09AIBfD+n8Oz1x cfV0SVItL4x88zykgplo6PfhVPQvnc6jU4rvWfifhJ8e9TladBLujEKTe7VP j/rouJE/HBVE9DqMd8h+fiTapw2wHsVJO8VD7QlP5XtD9s8szrEa2ZiFFcwG 26fD+b7Oxoe71S6LpuznazLbpJsOpfoTDG2SjnPVNGWWCOMNQfaDz4SK/tHl dWp6Jl+CInEUxfKTjLzgWWCcyODcDIdeLva69xswdfPb2LsXAPDh0J64ZV+I BD8dlEtWCQUuzgQzdHwS0OnYLro1eI2/ULbFjskNqFx8vqeDZ/VD1SiTZ4/Z 6LYbeXn1rDG6MSXfIPtrF59PqPUH9+LkPBx0rgn1g6/U7y10xkrTCW/0V6M1 sjELK7hIbFky2hohC7TTQXaoI/9D9hdXRz6cNvIFoBMMZjzhULzcmYpcIWyq kP3gI0knHN2yas/T6EtAx+mSGWR3yc4nrMRxObjoFzVg6uA7/VICAH4PdD6y GVWD7bJ8iP7aE6Nngai1OPS35lH1vi4gEB1+DC//v4vaxeeztOgIXDzTCXMm l+4xcWi1UcWZp0m2wqS/QfZXLj6fJaUexcn+apwfwb6Zmqlus2mNbEgRW2fV qxKRXfSHm16Zk2GOqRsGGQAQsW8YuukGab5Ncum7NcM2LJb9tGYg+8G3wLrO kUhWN09VFXmyE6qXpe8/qlZPBYdMlrElK4o0YGzp8toywwYA+F56YTvLLEmy pkdANSfbNRdc9ffm+ulc+VovYKa49+5Xqyg+33NqLDP+bOaoWX5lYp+Yek1d edVQisv+V3rfVFF8Puwo5EdxVmFu6uTRP5auYm1aI1tBNb92uXLfnyzxzbNg 3nH19uUR5obtXPrs4REqZD/4PFiPOhyymIp+79aNJyAio0uO7sP/v5pH6bVR KvqtOGWDAmEDphd+zTwXAOApZvTE3JboQcf7T+zhwzxkBIo5TzzHcqo4gNRv wrIcL76V/atHt0wWoSnNRXbXBEypDur6MC3aoczTiJYnLcGGJzrzPz8qdhh6 lm451vmgOhdDW5qTPL5YlqWzHR1nnfyzt7GsrsAopfVZ3qLGX/PhB3V9wABr sDhJdynJdnzLb4mnSbKzYuvbZI2Ut7jxatw/JYPv7tvR/jokV60o9J+rw33Y GrRfuV71PxcE587YuSCkBmKfNCLL9ZOszESyn7c5w7Jskunar4FuZ/QNliHV qQ4Vbq6kDAt1Fq6APC+g5TczkCFkP9gApvoH+xcu+vthxGaQsYgBvfV3LvrL ai1A2IBZkv6Mg9IB+MOZE0Cbz8n29reKd/MO7Fm82mczKqioPxmOpRpBVmSB LvUXOqkS3FVw1+7m+2vRIYqrq5JiDKgoLALjdOzqtrK4b99s/HO758eWovtU Wt1oiBrDMmRSt0VinxdWXb2HYt8B1pzizNLJGBmjjNQIGRWoFyJ06UrCYwhd 76EVKfoiZq72Hhsm0As3jbv7OgbPBeE1UGWI/SVJnS29pM0R08Eji9I8K3Sv Af2anSwXOeoy2Z+HZKSguPSB5Gbqifo8z1mFgOwHG1D7+okgHajKI9otlf3s tThIVtR9xa62zEP1jMh+Ptv1sX0eAGA2RCIoVjTYn00G0CYi5eZTBXKy4nZc kMg6Mg/ozr2Z9RC4A7GxBdd5fAAxMJhgc617Wp/a3fxTZz7YVq/GSK0Kuvi2 SDhlbCr3p3PfUiaYuGuUMdzWetR7KHaNYr9zcea+ylxqucx/LPt3zwl7XBDS aB3NULfkpx+xMFVmvqENx74aPBeE1UD7myLQW4qHt5SmLmdzDo8PWDuc6+TD tzY+BiC87Gf5JUL2gw2IBjf2P0T/AtlfJK6uKjTs7dkMemt/d9E/LvvZO/YR hgQAsBo6bcYk7NBenfEA2szBoesN0KHn+CPugGOLdeu893582dwtWfOeo2GH qd3NN4pRvjV8FbcpgJqe6G+A9kv35tQK+CiszjHqPRTDPq4vZ+/iJK2NPYtv k3k8lg0+BMMhXuCNUUp5C/TTB4xQ89CU+BAuEf9AfC7IfYNQ521rK57KybDV TJh/2P2jBbK/YCK/6WvUDNxUXD1Tp0GLQ3o2sRXlE3cDYDGDO1fI6608Bs7L nXz4gLYVnYsvszcfPNSAdz89HADwHOXV1Z24SMXOfow5AbTrPrc7q88NiODq EeMxK/g3u/FIqpb49gtOEZukdjf/rEDyFVwjtQRQyxP93TDhvnaGqN5Dsd/p CB9TnPzNeIw+uuPjGj5KOeiXiPr126ah6VZnS8Ae5IFp+FlRl6YoPf1zQSr4 elF35NdSPFV0krsPT3R367kbmvmynxdhc5jRGLuSfzZMJT9IJBu7GwDLGZja IgNSpWl5Vvj21yuodStOXcVs+PxMyv6DlSx5GgDgE2HnjAodV2cF0L47PbR/ V62Ld7fz/tTGQ2hYBh0Xmuw827+/Fh2Dz483B06dEPPvhbWN1csi+w+wPqU4 ux4+3b9reJ++q0/UKMzzRrRpt3cuyJ2BIGEC2T/6Rs6W/Xwxr1WEjfUd8s9j QyYRY9ApbMh+8DysQXdnS8rQkJ2k6UbLhtGyex04ao9f1d27VXVgrN1mrqz7 WeOOV1dmWkB4R8z2A/BbqKY0uxPoMwNoc9Xfm8EbduRm2l7YMw45Lsy9/h18 9n5ern/6M5VMOBeZ8JTSlyfnUVLLUrD/ft6PKc6uY9HQ+Jgn+IP9b/lUem9a v3suSPu7o2AJsCX7B4YGvd/XP4jNRtl1hDpf/eyt71SNoJorla3oVrJtv6rX tpCQ/eB5WDPrvt9llkQtfOY2J5k+/UNojKrmerIak3f3Y8/jert7d4msWjbr HhwiTBQA4DsRTcKN9cQNsqqX7Kh+PmcmmuznX4kceRqSaozh3U7voNaiH+At LYDrn+YA7iEYiZ55y1ClSOMoZtET2479bG5pTjCUinqAtePc9ScUJ6U7fBpe RGk7tNcUycW/zi74lyJaW5yYYKCWqDdSaPs3iP3/88DQ69c0bhbMmOznlqs7 DmicyHz19GpD01HvGwHIfrABdNZs0vBVi1ztvrAsGvP09dK00R3FDnWh3KNu JJIP2jYAvwTeGTe61rEA2k2Y6j9aPU8gbj4q08KCtj8iew8EJ5vl2D8jjFh5 9ay5OOFtMost6tgyH7qft5qRqb0dmoetL9Pcq6k2PNNHVQqv7iiK0OhOjY5S B0zacT/v/sXJ4aq2bvRVMsTBtWPr1JHIRWwriwr+xfA5hsZYavJcEJ7hpmWg TvXtt7D6jX9rXnUPUNIeKZEHNgqvK9RZndfJIw86tRohjYJw1l3frbQ/ZvvB CxiIct1G4NtW7e25B/ol5rgzOGWD6MPJFJ8vUsl+4dTb7pGzAQBbUjn61L3v YADtDtwtp6/665laI7zlKY0VTHrHdmy9/mTD1TnNmMZn9nBccNH5jrksDbVe a9GP3M/LoIcdSEaQpoGjaU6cRZZ0kJ3AVd8j/Whwp6PiJmlkqXpwJU8/aZck jV1Dc5IlW0vrAdbOeyh2Ls57Mjz1cKwK8nwcGw2V9PAvyfDTGz2uy9K0T9jS 26I+MYiX35xzQao5dklzozRjNWGZKp9wP5NKqVRNEbuqdJQt6vPgO5piBM0a KhKH+kvbYWi3664v1MlPFUnRLVPXzIujNSYj6KD2bhdJmrRTd5EUsh9sAZsz GWxI9Lg8XTnxRafDSdbMalqtmhJoDBhoYz6rjp9keU7PraOBfMywP55IA8vU uGkhrxVt/p0TGGnXN2cmEADwLTQm4QYDaHchil42PJGquJ/zSQyI6Sd5W6LQ Z/Vj8cw5OIoNT943zdql1qKf6eJzhw18HmXZWvd9++P5KGzx86sB1idsT925 OFvJIE9mM3LjAbaqke8eqZxBc21x8lyQJo2mNNiqRptbpyYZ40K96djPplfb EYmpnWvNgEL2g02gL8lI7Oxl0BOu64PqVhoF+qJC9QPwu+CTcETuZwMBtDeE 9p9rbAi1hdNTg6+jCiT/qS4+v4j6dIQ9XXw+Azb3LBm1NGZR5WcE2PpkqrVF LcjGzwV5Cx2hXrZkUTvKAE13O7lE9mO2H7wCembOjjNcHehM3Zz1fwDAN1H5 Yp9O7+iJr/ZpuXZhF/VOFn8ftRb9XBefX0M1wPrMMKnvhEvkOhYHW8Qfcsz9 Ivja4ul0evUEwzQNoc52RjTW8vgWguZsPnXtP8lWkN7yWxq5htL1l4DsB1tB 15Y/I3IOS8kfb4oB+IVUk3BvMjWpe16mXxZfsDmVFv1wF5/fQDXA+gQXn70h RaE4SV6WRRYY0kl1P8xVfx3V3sMPWLZoCHXmw3cy6Mm7ZZ4G1vkg6X7WS2BZ EM2fZkJXIsh+sB10aU/ZfTv+Z6QCAPAS2Db/ty0sFrEpzTUnNC6HFuxreiot Chef11MNsODiw6gidsdp/nuKg0nsT3AWpkKdBypP86YX9FI3aB4D3RnbiQnA UjJPkXad7Mo8VbYXRWMAAHwTZfHebYBFFs869KjIknR3y8Ojm33mQV2/i+pI GYSL+82829YM8Diy6Lnj17a6DwBt8mv35Kz3Pvz2Ca8pAAC8nUqLYgb69fAB FpZVAAAAAADA+4nM9218+LOpDpeEswQAAAAAAHg7LJafaJNpfh1f3b9/H2e7 +yl9BdVhb/2d00X28LsWLbk8vr/CzwIAAAAAAKyh0qKCGWh6BlCgD60E8MPQ j2Z4+9TTkz4OPsASFSYp6sQ5D9RDdZaafEk/9qAqAAAAAADw6fBTYwcc+4m2 l2VZEND/6uiaCn+VRXD5PuDYT75kJd2LIp0HhqbJcMICAAAAAADPwN3NByL2 3zxZD0OzJ0aJ6PcieiG2AS+A7aEYitgfm2c39HojLCL6rSgwsQ0YAAAAAAA8 A3fxGZhJpjPQ3u3WEaNlbOnejU1dYwZ6AdzFZ2B55GqfyDdxZ4R183QrLtl6 DJZVAAAAAADAelhESdUXbxSlM9ApP2LqLka56OdT15iBXgAbPR3tZOhLunDC zk27j7C46OfrMY9llfKW7n/SAwAAAAAA+CpGVT+fga4O8eW6s6hE/8/wDDSL OuN74W1hUj7kkKNXMar6+bLKDx9hVYOpjIv+n86yys1XDwdLfJsGaXCJEfQH AAAAAODP5epId1/+gnr4nAaczesZ6J+HGL2L/u4MdPdCZYH7Tx5fLNvUpF/n x5Iz/ynJYcWbuufBHRT3ZZXGCKsW/SuXVcjj4IAFAAAAAPAHU4XrZD47NATn yYwHPEbuM9C1GPXDWvTzGWhlSFfG5uDG1UHossMvk/3cl/9gRGVdXtnAL+tl lZ9qhOUEd9HPl1Wse8lkoaFIkpNUf5jqWdIcz7Wdi6WpVkSHFVlk00HUSbMv l0s09EwAAAAAAPC7yQJd1twwdDVJMsNBR5AyNM73OWYe5PMxWS2agS6uvmWY tmXqynG5gv+Fsv+nSBxZNv3It+ST6l4HHfIz93xfOKmCfDr1qKm/rEK9hR4l RctND4r6n9X4gP4Gs/0AAAAAAGDUkZ663eg0rOdJNb0r/R0Vo1z00+8snR4s dVQMy79Wdyli81SNEq7OadibZZDfKPs5o0WdBpap0kWBs+7w3RBkhFW5XZHv yJf0TLSzZjnRrbqkL/urvxr/hOwHAAAAAAAvgPqzVDKTjhAeirO8+pYYp73n 9/fK/q1ZIvvJf1GoAAAAAABgK6hH+kN8Hu3rzbf926I7QPbPocwiVzsezmaY 0SA/qW+eDwfZjrI8C+k/qy9ovJ+jYvv2fYsAAAAAAAAAz5N5qmRGaWTrqnyS TNvQ5ruY5GkUegbVrIYXRinCTm7EL4+ICgAAAAAA9uEuM6E3AQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAMAv4P8HhVI/tQ== "], {{0, 176.97787776527935`}, {765.6542932133484, 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{96.012, 96.012}, SmoothingQuality->"High"], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{Automatic, 132.83344760039176`}, ImageSizeRaw->{765.6542932133484, 176.97787776527935`}, PlotRange->{{0, 765.6542932133484}, {0, 176.97787776527935`}}]], "Input",Exp\ ressionUUID->"7ee17385-488e-4b01-b7b1-e5e3ab361e31"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnbur/EaWx7WzQW+mzTpsJtLABAq1mVhYEBMJZhnkicQM4xULxsKewWL+ gg4VKuzAgUKFwmwgZwqVDCgZkMH2T5GtxCCc+G49pG49Su9Wt9T3fMDmd+/t h6Sqc+rUqVPf+vWfzd//z684jvvrv6H//f5P1n9+/vmf/v7f/45++MOnf/1f 49OP//K7T//2sfHx5//x539Fv/wj+u+f/8Jx+N9vAFAltsWj5mdP+/7M1wT5 Ej/t+wEAADZGGgZx/qTvzuIget6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAsDJ5liIy9tmRaeh5rn0JJ54smWcdnwcAAAB0kQWm rFqe77uWzHOSzTjoPPc1jtP8sZ8YXXRdV8UDJ9jJHS8UAADg9UlskTvoPo1o PeR7xbYjTWyBky/pxM8VwCcDAABMJYv9IKEuOXcV7uZ888QzFdUwdE0+TXev 4JMBYFWQ5Xqe51j21KwisBcyX+N5+VLkLmIUPytuhn9/UbiDEU78NPDJe2Bs zv/11gY2fEfjGyUNzNOUrGL5tiTyLOU49Y3AACMbbmz7pq4qKnaYlW/DEXPR ZKFxqLQeCp51NvXhGnzy5sk8XVQujPUDBrEtCUaQDb9wF0y588eDgiNBHnV1 6UXmpmYV0wgF14FvCZOdOdBDjixEHGkhI4wpC8+q6sTYoyJfTJoYZ5kLj0qT yYlvWMGUawSfPJMsQjNSPypbLIuDeA1XmPs6f7KiCdfla0eRtQK8N0bceWQr 4unAIaZPEKeBM4dxO2pCs9Sj5g+2O157n2dk2DzBJzfI48CxNFk4Ho+CbLGc Zp6g0Vw8tzpPcs0qjKPfmFAPPXIVik6YoV9L5yCwVdQ7Ockw5HIdcBh0a55j iAfuIBqOx+pyQAdoBD1Kmq4gg+EEzbZNaWTENBHsl/ip7ibztMMkN75FRt85 iUE5zVvrOrIkuuiknZlONT4LHVaeRRfLsM6W5Zy1w9xBA3xynSy0leNR0m3X c7QT8YSMpg+MA/aQQePX2CNPrYGYa0x5mffIN5t7eyny8HIpRzBsebp1iVZJ F0TWaXInwsTWjNXeTTH+znEMOushDZP6Z103bRdFPJ0+GU1ZVe6gNQMhNGhz PI2g8a3M9qvgkysg/8hz4rk0PfJsGK6Xdomj2RgEM1fhJsc3b69gTMDdwNbO qe6cYTZ1JFZn3QsT7jyy0PRROK+bqyFG3mmXOCqTnOqgEBr87fE3ksl021cX zaAKfPIVHOVWPDJdQGM0C+k8XCu2xa71ZM3pJ0xj+uqrr/7rIfz4448zrhlY BbJ+q8xyyYUj2KstT7hz4rPWTiYP+GTiHCp/JZd/u6Z6MjkP7Y61d9YKPPjk K3kcBHF1yCKPuf1wqEtuRcl47D7OTOixjOnDhw//9xB+/vnnWRf9TkHdxLVN PL31ovTeWSPS5Rgbg7L4Yum65ZFa9Tzx8QUwcie4D67uq9ah686vf8dLPPSm V04mlwz45Pp+AepHr0MKdti4IdJozooN+OROaJisXBo9n524INMpvf0c0wDZ j+nQQjaSh0TW7Cd5+92LjalXFwNYTh47ypETrYD44iwwhB4nMovSlusgJ4Sm bxnxWrqpKOgC0sAUuPa0rGOv5w5g3zkldVX82LEN5aEpHA6rJZOrDPhkstB3 s/hqWJUHBk8GjcgS5uSSqE9ee8y5B49W2yGpjHbWir2811GMGBonzcuwx+VV U5fUS4wiHmTXrbzZUmOKL6qsO77vO/qJO+rDlTrAVMiyzbU70GDt3tGMx6qf iq0TDsDotO2A+hP6na/jb1e9RtcmYQQjMtg+zDvH4N1SXKXKgT6GtZPJb8M+ mfSAis3GtnQQDde1dUU3kRVK5lmVJ5o0WWDUFVJbcFLQP8/+2kPPMqap7eDb MzT5OMtu8HYaB7c9r/v1fLynH8jEqbnkemZMN3JXJVlnEkMX3ajD0y80Jmyi ZUldffwG7gKu0qoNxSRFaLoxLfP3HDSpnvR5ceDhEMOu2RwJkJpuAPUYMtiT LlLJUeaMUGO3s17mnb/d1m7i+isfkaAZ8smsAmTkN27lUO9hyjpHbWeaaBqh WRTMoJXPoA3Y/CJkx7jvFPmv6x9Z1rTUmNLwupNhx0nFzRKT0ibmckGeJa52 mLGJNjq33FBfLyAD+1C7kg+olwPsg447bz/3oWRyiqahY2DsLWgwyidzejB4 b6uSJ3hwD67J0DQM12/9ZWo7M3wyhSaTm/EwrY5jdPqeTTt0sjUwmNzNmLAU xul1NtpuAzq56XSIMwfUdp8hH8ROYTUH9rteyfNh3znjua9YmdxgTpz8YPCO M0HRNQkN10fJtG1VeMAm+6VqO3N9Mk03NF0yda+t9b23csxkflFjzsnmLsaU hZYk6t7+oqStQ1q3u1Drbj6ZOF5mVxk1sBd9bY8+mX3n7edOjYlk/tJolX3t 9S8fyic/1ScnrlMuHJFaHEbxwP1ZrrYz0ydTl9zaPtmxsvLWZwyj5px3MKbU 1RWTNhFe7oXcxR2h8VqrebLg7ODeVqyTJ97ZtCzTKKtsyldFl7OmqqquNsrX GHEW7mDMvlLxRX10rpRtHuadUzOsrKffksnINaxcYDKq7mKP498ylqvtzPPJ NI3VcsnUNFlhMv0TK4wZWUy50JgSR6olvB8yuXtHMGKizDfE4uAXmtGixVq0 Ka9ZKDzPu+qZ5KF5qhwWw/DJXVpi4wb2PS/vsu88LIrKKDGxP/LMclcVZu3P mnZBfcPgzuoO76b8ukRtJ40811aRcz2ptutFE5wUccmH9jfRqVRhRnniWfpt sb2jvnLknHPHxvROyAJTOJxQgyd4z4guy/otGq7vF6hkMvAGzdrUuzZ0s/KR 5B3tgHxUMpm6kXn7sp9Px53jxy5aQeTbmqw6UWRL3EFzHFUYocw27zpwOZom C3yp+3UUFVZNGjb4edt2H88UrcpxYqSPVtuhQUnbJRf7+lCvT9LojIwLhTy3 1wQG64y70ORHBMC7NqZ3RCFb0K9PUPmpXY1T/Q1zjYgtWoG/eLDzL5DK2ALd ch3ksV9vv/7Ts5ivpHBPMs+QitGjO+6bqlU5Voz0gSB3K6h2yLik0Dxex07N CRo7a9uqJJgxZYo7N6Z3T7dP1ht5q5oqAnvdPve1w6zOgH3artU6Z9/5E8DG PsnPrUj/WsMcrcpOMdJvv/32H3flhx9+mHHH48HGOGfo3L0xvXc6fTLJgFZi v6wm6tBVS4VnTdPXFkKDL/b47Zd5d/54yHWuv5NwHL2baOZqVbLFSN8+++yz 396VL7/8csYtT4HYxeiEd/VNOzemd0x0oXtheUk7+yn6Sb799FbocQu6gzft qeKpODIGZy01iac7aNs7ALElTTs2JLJO/Lamm/OYfuePZ1vX2FtEsCDDwp72 j2JjwjuTbeNVjAnoY1Q+uMaUnN74M+L2wPaymTW2dvhh3yaaJVqVTTHSkWxS eGfK0WivZUzAfUnDcUKPWRysc+LJ0xh7508AXdr6+zImQJLJRytMqJSpU726 ZVqVDTHScWxWeCeL/VGld69nTAAAPBBaGs8dpFLJ9HRLqyzVqpzlU0F4BwCe AxXKG4fowFRwHWgyuVIgQCp9Cj+8VKuyKUY6DRDeAQDg3dFKJlP1B72jOv5t klblfJElEN4Bevjkk09+A8zi66+/fkADffHFF8++0R3APqCtSCY3lUwrPnmJ VuVMMdI7Cu+YpvnsB/9kPvroowXPb6N89913MTCLn3766QEN9OHDh2ff6A74 5Zdf2o+O5hyqGV+q/lD42qValXPi5PsK73z//ffPfvBP5ptvvlnw/IB3RR6Y wijxeITiJM++3JeEON2qnAo5l+66VrdUq/L5YqQAAEyhUP8YZDObB16NhtMl e9Mru1mWalW+UzHSvbAN3ZfdMft83kezmwsFKhCdnNLpkrNkedWtuOBlWpV7 EyOdw+h+P/aF+CBvz7UtN1lyWWMuiBxUCarM08g8XVR2siHoXW5eKuP8qrXt bHDCWsZH9RJFF13gRbO5a26JVuWuxEhnMcVAxxoI6lMXZXrGB70tDhxdmPDG UhBvjxOZ8CyJtcynIJ6roUPqqqfbH0+1QKNJ6mrCiR/zKHD5LktXCl2NJJTf J/fkWfFXFZckSJIVrO4pNr6l+X7kaeBoIn84iIppu/jIcUUUiA5J5mn8/vKn feoS87UqNyJGWiNPI882FZGccau5rGvLQlsVtKqiXRb7nt8+JazLQLsZaSAd k5M+yCH2fuSo05dUbWGPPplANjjVq+urIGM8cLzmpWM8H0mz9ftk3OA9alyl EHf3h2TlKx6pB9kl0PhCIJOVcZCoe/WdxKgDIDvnO44m3zFztSo3JUaKST00 ExAUy/FcSz5w7CNgyLkI9UGInnXNN86GGjDQDsYYyIKDVWeUufjanpNLxSbU jntGj2O0cC/9pL7HHqEQoy/P4+ucJIndV5O5qqwqB67nWNZV6BBofBXiC/bH PFuDkZrzLmeC/czSqtyUGCmKI89itd1oxV87/qeWqVwq7Uu3KzZDsSED7byQ DgOhJ9Ralnl2TGl2jneyT0attO90cmF0rKABP+rxxjjkkwdPKED9RHFd7Vbc XwfFbOrFJ8H4wwfBBQKNG4csgXE9Gpv1A7xeicnSk9sSIyW7+KsjabExpmWB jFNUadGfUs9HLjlChGEgOKdfPC46vZ2b/prok2NbkjbTSDMpMgbtXA9qY/aZ Q2wGfDL5mj7bTmwR+Vr6Ke1hDrWwYie02z1hIj1PoHHzJLfTVTvxtFe8c8IU rcrNiZGmkR/VkoqFVEezrQqXXI2Sya/4xil+gwbaS9NAiKVevXQjmdxfLdrM 6U/0yczt8HujKB9p+l8UQDedX46VDw1D03XDtL2Gdl+/T85rR4mwX0C+ztMY ObEce+S4+OMzJtKzBBq3TlaOxkH/i5gn0r8IY7UqNydG2qKIV5ptxUhckF81 x6IuA81irFlq0YUGkoxAP11aup0NAyHjw/XHRjI5cdFndGM2CuZmy4vsGrrP qT5vQWNpPZ+B4gSOVy9Fx8xCq6Fv1e+TB5ddfZ1mLOhoX/+Y0JCJk6YLE0+Z SG9K9PY+FFkrkI18DajMkubVjYOxvEcO3VWadVRsA0WOXjzH9Gw23VQUK0jT wBQYuc66gWA/eo3oSnHUPA7GjX+NG3uXPpnhlJFLrjYkSTs2AioyA7qNrP0+ 2Rt4sCSZjL+dDvfVl4aGRFuXVnZ0fwou78E1XHZ4f6e9TKBxixR5C3DJ+wfn AgJSlyvZcS0PgAOpxrQT9+ST0TIRpoEiE8dWSdObxUl81PerDd/fMJBqKiNx ZHIJ6FNmrckQn7yZhdXHQZNOt/EUOenq86N/bu46rYe0vT6Z/LHHJ9NkMvln VVaRfIlUeI3BZDLqmgGu7ZuY20BvSyLPUo69b3y50Zqu0k+ddXRX8WMhypNk Op6jdx1wD6xAU96oTT2fkSeB1w5XmQaKrJLkHxrSTOyMbd1A6K4d23NMRdVN mT9qZ0PWJ9a5RBdd1+n5nLykoX+3j+h8ZepOOTD4aiKDhlQtb1jU0RXuc9gn 99VkKNdPr63yxWf5GseNSCZ3HCHRSxqh4DrwrYH6yXkCjdvluorQCpNjRz7R qmQKfzyVq/vdVfwk+rp2kK1V8b48xeyyGU2STjtqob7PQMdJM7UNpHra5qj9 OECdSk0cNtdabpm6yVZkVPhkbaxP7p76l8lk+oNWDgCxrdyG1jHJ5PnB7GBN +4vGyd2TQpopYj6T9rNoHnH3ck9r29DkQqst6US2tr7XRY+BNnX+O4Amvz9F eePRClylMbR2VD5SL1wGuL0+uV/f8JpMJhQbAr3YlivVl93JZHyapWGdLcs5 a5P3b9bupaffvZ5AY9moHTJoRYkkc9LRMr/W06HSbEMKa8B9oG3V2ozbcXYV k+7+PVKa6fUMZAuUs1lE06/RPzWeeNkTiibvX+PDWeIud4neWf3oYkWBP1V3 lnUlk0k1CK38j2jSe15txJBPfkGBxqK92bsEij+yjazlk1vZyKH1A+CO0LZq 6yPQlZlRYXKPgdJk8qBjf0ED2QKlzh1rTx+VPKxue8KHPVarHPt9ck+mF7dm LaQqsxSVvlREbc1PD41KNUjjK6YVpg/55JcUaKSb+Bi7qrHqUE9RBvjkLUHN Vmo97HpqMQsd8+x3B7tdBjoumfyiBrIFgr6zbzLfko5HvLLuubYm8IJ2ialn S/2zJlOJPO4gKszlUZKvrju9xDNkoVxK4kXlXFQ74+5R9g700bp2e9VR1vRr zyKO+tZd6p4iD+2+wnS9UTA34JNfVqAxC1Cjouem2W6Ay6jiwDFlAevBJagV Oh7IsE+u7xkAVoSGK22XXGSTOcEK0wSPsUedqWhSwjBQRDYumfy6BvJ80ogl 4FelCD+nL6KSUvUJe7WHqUsxlEXvaRTE01d4+33yBgUa70me4XoKShAPN217 Oae546C2ZwBYkczVjmJTz4+QliKKHC/IpjdoFGwDrRZPdPPiBvKykDN4Zmqc MCHTrcKP5oHBk1UlfCZwMP2zqE/uWJSC0q46jCp+nEW6VbSDie6R+QYKBrJb iNThPXNOsS0dRMN1bV3RTf3ESeZZlSd+Ac6O6LpCdaQV9M9m1m1bAo3PpbuK H28ZOYhWkKRJYImH3UtzvUvmGSgYyK5ZQe6wUo2+RmH6tgQatw3ZERnFsDtg v0zv7mAg+2dXhyltTaARANZmkoGCgbwIaThnGe4JbF6gEQBWYLSBgoEAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCQ/wd16M7B "], {{0, 66.7416572928384}, {356.95538057742783`, 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{96.012, 96.012}, SmoothingQuality->"High"], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{356.95538057742783`, 66.7416572928384}, PlotRange->{{0, 356.95538057742783`}, {0, 66.7416572928384}}]], "Input",Expr\ essionUUID->"72211c76-5659-4742-9395-2569fb2473fe"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztvb3L/M6737fE2OvG2WAXKpcUibqoCSidSCV8GoHDOeoibHwi0hzBcUD4 L9gmoFKlSpXClcCNygU3IpXSbanGIDiNfhwId+ZB2tXD6HG1q937837B7/f9 3LsraZ50zXtmrrnmv/93zr/5P/6bw+HwH/45+b9/82/d//Xv//7f/sf/7b8j f/z13/2H/9P+u7/99//67/6vv7X/9u//l3/3T8iH/5X87/8j/6D//vkW8muS lXsn4pshBXhDAQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYmfwaRVHo ueFt75SAlRRZTOrQd71ruXdSAHgfsF0AAADAIsoiD/TDQfZuSy/LEt+SF18I NofUReKcDwczXnrZLY1cXVp6IQDrKGJXVVTHj3xLORtB9uTtVtouAAAA4M/l ah8PR/u65JIyS6IoTn0Dfe5HkAfa4aAF+aJr0iiKktiVF48XAFhBGVunw9lN +V9FqB+OZvzk+tQK2wUAAAD8wdy81cIvNiH7P4L1FfFE7QOwADY0bTS1m6cs Hqp2QesFAAAApilvsec4rutcfEdd3ftC9u9JkQau7V5c17+Yq+c8IZzAe2At rdnUqPVY0/S2sV0AAADAn0ERW9JB8ahnLV1qXy/dIft3I/PUw8mMC/LP1D2v 008UyH7wJhL7SJpaVP+ZXegwYKlo38x2AQAAAH8CbLFd9avetuMcWxb5CEXH Exeyfyeu9onUWsL/6Dj2L6tCyH7wLorYPB30oOD/JvL9IftnNtpR2wUAAACA DqkrNURiR/XdQscawelEyoPs34WSTnM+9E67FsqrN1aFVifKJ2Q/eCMPB50o C817K57ZaEdtFwAAAAC6UJEo1eE06oniMkvSFR6ykP27wPSOHlbyvZ7zzNMk Wx4XBdoJvI+yfLRQquHvK1bz2NJ2AQAAAH8AVCXWUv3mk55TvmRlqN9XzpfA ZP/l2ejbYCFM8FRSvUzsE/OYTl15mYbicNkfTf8QgOcoI+NwOFi83RaReVzs 2L+l7QIAAAD+BKhXrWR4ke/ohuVoJ8m82Jq1MIB2GliWZapEcR5Oqkn+HaQv Si4QkHnqUbHD0LN0y7HOB9W5GNrCZZc8vpB60+l24MNZJ/+8xFBP4IXcfPWk +WmeZ5ElS7q/fHFqE9sFAAAA/FnQHXT1Pjny7+4+T/AFNOoNVQi+A3YydJo9 01xhuwAAAAAAAAAAAAAAAAAAAAAAAAAAfhdlARcQAAAAAAAAfitsx7mhHBFe FgAAAAAAgN8NjU0K2Q8AAACAP5abpxy2ZOGJO2ArWMT9rfiN8nh72V/ekiiK klvtOZRfr4h5OhtYHgAAAODdFLF5uvecZlTMu4qGzcvzjMge3zU1+dTofo0Q DtR7QKskS0JXl1qVkY9zdZujBUl3wyTLf2UYxI1lP3lvJFm3TJUUt6Q6nmfI sp3MfH3ADywPAAD8GRSxo6oGPRpIPh4VM1h+Sssvp8x8Q9VNev6VdJQ0N361 lrjaj85TWSmMyiyuBSdOyXx/FTbJffVendXhvcM0Fwl+d8VtK/tvoV9XanmL Pcfx4ttXGrJdzTEsz1Kuzul+tPHn8IGpqg6BTvZOh4APThoAryBzz3pQi6Ai 1En7X3om+++mDI2zc6373tQ9Hw4n+/rih2aNBXfFy1bfp7i6Cpbbd6nCBql7 n/BfIvvly/qK/wLg2y9gd3MMy7OM8pbE6cetKX1iqoosTj50JP7BSQNge7jK eMwLROYT8zy/krhdItmlXWCvotn9nt30yTu9ebl9n8iMg0/dqQrvNKT8Itm/ 3Wu4cYU8e7sySyLfVo6Ho2L7UfL29cW56X97O/4Ec/zVlmeEPzhc7Oys/8Fl 1OCJUti1AFF7YCb5NYrirJ4YKNn8kv4xpvoDKLI4ih5bA9nMrfRUbzj3wawu OCfzGbcUIibet9xeZp6qvMipukgD13Yv7oALB3my0J17tyqs2Ff2v6JChkr6 GygiS9GDefPYb8/nR5jjL7U8Yyyp9Lnk0cVxbMe/7vYe5JEXpGX3s36qitiU tcncv6KMKOWNJIna7GS/liAqqZ+hpM0rrj6vKsDZz1+ZbvDlXC/y+TRPX4hg XsgnK/71qn91OSX28X3Tb809ds91v2+DhgPRw6GUPtM889CQJM1nM8NlbB15 LWSu3Jy2p/s6p1wT3lqFjD1l/3iFrGe4pP/yl7/81035h3/4h1lJSj1d4d5U x0EXLtJyToumsOe0qCGetMY7muMvtDwjTFT6qmoi91TJLelC4l6L4yz0Urup D6cq8xRprCInyigPTVk6rrFKmadbUcH95/da+hGU1ETSpoqrz6RlyULnEk8P fMrilsYRIU5vwsn7sqD752nIsqz//fJ0g98B30G4oqOha7KnP2e0OFhOeeQ6 oqkB3hme3zn7R21Jw9X29rYHr4Oa1ylX5HXNkzrkH82HALoS7X60k9RVOt7D RWQeR6zv+6vwZ0/ZP6dC1jJU0mEY/qtN+Zu/+ZvZicoDjZZyJP6Wvk6Ld3VM tKipBK21xjub4y+zPCPMqvSl1VSEpkHeq4SboSdTuIp6SaaZ5tFUUd/GoQmA eS8GmzBZZpVIikz2TLrEOjwafymikppO2lhx9ZksQOY6N1V2ReIoiuXT2G15 FhjkBZTMsGm9yYeK4UbpLc9vCds8o7qdxaZl6Qa/BubKvLSjyQJN6jWh3424 nMqBfXRFYsuSES6WUOXVc8Lb6kRutsfu9VDzOkNUrWieZWh0tgcydaxqmto3 pBkZIYjt615VuJfsn1khqxku6XYyqI+V7y0twVWeqqxxDQ106NhxzSBoZj5H UrRY9q81x7fQ8a4bTal+j+UZY2alr6kmZpbO7h4lU96XY3oNczBV9Ivm1MmD mWXEbNO6F4Fduovz8EhJcYaSNlxcfaYKsHqVxsuOTllIZnB38eNtslGVNM6W 6jz8kaq+orNQsSTd4Pew3IJlnnq2qkDNZWSZf8ZgUVxOV9GURhFbZ9Wrth5m F/0yf/KPvpvr1vhrtttj91KoOJrTB67oYPuWmZ8tJJ6FpDN3/cmuHatwJ9k/ t0LWIy7pPrS2Zucmjy+WbWrSmjly/vKKIyAxObTOzWBuPkWsaO5PmGPytA13 gn+J5RlhdqWvnYygWxfy9N3Hwl1tSQt8pgq7rX0sVXS6vr/XYnYZrZf9bC5t lwiBIyXFGUmauLhEtxgvwJunqoo8adG5ym/8qOoL6l6u7hoerbS6ohudYm66 wW9ioQWj29asKGOHBd3S2NXeGtxwR4TlxMK8tJf8qGDULld+nFKW+OZ5iQF7 XvZvucfuddCl0ln7ZNd2sE3ZX1ydkR6IeXq0nrBvFe4j+2dXyBP0S1oIqfKl C/y0lSwuc1Z4A09i3fva+caZ+RSxtLk/Z463lf3fYXlGmF/py60SaxMa86k5 O2/tMUkfRSVsZSraiR5PFR0Wd9vH/DJaL/tp6b4ziELNWEnNSJqouPpMFCAV /d6Nta+Je2WhY1nuw/+fTWI0kl0kF8tq+B9zj0bBXeelG3w5ZZaEHmkyjhel eTlowdo/Yx/lDbNe89Fx+8s8jUgeqlAu5TI/gJFyoiE0CKFNDYTihPQPNlty daRuAS2SMFvI/pfvsSMF47vE5AQ02PMq7woWHmcgKOaM5smOWCIJ8Hn85OLq N/76YV6PMj1mK0ki3zUMO0ojSzpotq0K3Hy63pp7V+Eusn+sQn62qPH7U4bK klSiZZi2ZerKcXH5rZH9vBvUg1tlIqJG6HLWNwtWh/KE/rSKe0IjRVmWKEzU EtfkieZeZPQhbsSeUbf7gCf1aXO8tex/8+7ejVrl/XYDlV4/a9Qq8arpBuoh V9VGiZoV1fEM9b1bhUgrl1hLrFRfp32MpkowtT1eRnka0wqhpjgrs57snywj zk6O/RMlNZ20WYsUowVYif5qWLns1aSrtWOrbGwy7CBy5N9vcQW8CRrh5HC2 6l4kMBTpJNIXdI93FQiFvJcXoVz6cIqrqx5ORkCzWgSGJBFhc5o70TJRTlz2 hw5d1ZbtkG+l38KabyP7O3vstnylWcEozI+4vBJxTYtFCxZm/T7JJLz7RPNk ESapoOAReixLVS+kkwm0zlGTZZHnTSVA/h4QBtGmATa+UfYPVsjPRjVeMVTS VC1WPRY9MnRxg10j+6s1b6m2EHpDp/I94F1bcbXPZlTQrv9kOJZqBBkR5fSI 2d6S/cwWNdncSb0ol4xNoiuWo+tukucJXbraxh1re9n/QsvTptkqSf90os98 MvSLuNJ/5lglYpOYEbrIzS6m3vh1j7A6aIFeBWk5p9pxm7f3fn2PpIotZrcm AwbLiPe2mleNiMlfktT2f51XRpVNe3sUnzklNZW0fnH1GSzAH/a2q3xXzFLZ T0qVSBGp9vXrU0R0OH53W12ebvC18KmYtinmc5udLpPtSqt92/jgd9V72OoC JlD8Tf2KmaNpY+zLzz6dt2w/t5yEjv3PsZXs/6nPmaoKd5s9drxgHhMG3GYv X49lSetlc1ax3zzl/nwuepkC4t77K0+qZfW4mdn7RtkvrpCf7Wq8YqCk6ctZ pZ9am0dWyqtviWnvml4h+/ma+CNnrbB9VLb33RsMZk+4JeFNbajZzWlRM5o7 PYWXWCxe6EeTdeqxRWvbiLaQRa+Q/T8vsTxtNm6VFaJKn1VNua8y5+juwQkv 6B8WQbpf6VFI1enfS+wc6/pbw1dxGfHetu1fRsfRjd9OlRENSyPbRHfT/a5v D0M7WlKzk9Yvrj4DBfjTFP0LZH+RuLqq0GipZzMQTTxmgaGqLOSs6ohOr5mb bvCt8GWgjvLlwqHdZfIe0Ky3iWWht+fZGWvgWW0OVXpBO+iExFl1/Mi3FNnw GguPc8uJWYeNVyM3lP3tPXYrFXETvkzYnGcc844eQ7xPYk6xX+3zY7Mk6zLu nX1Zru0q2EM2K/VvlP0Dnn7b1Xjz8v5zqJStPuWO/Tff9m8L7rtc9vcy0tz2 LXRLji2ma6qgn/eHCZvdjBY1o7mTJDGL1ZGP6xt6lxfJ/s0tTxu+g2CsVQ7p GBZz/WAlwtuKfdEXVBN/Wx59zCv6hyWkrtwsg9plfSBcrZC4I1LFZcQz3h11 taTrZBnR108yLq5+Vqzo3WJjvKTmJ61bXH0GNzzwdb3mjZa9mnx0OhJ5jr+S 4nhf0+kG3wpvzN2XUyT72UI74yjJmtMIErULeaBLc1DqcCt3N7aHrW4rRN4x PNYC6Gb2zhzydDl1+//FpBelnwk6BXnqf7xy+qNyUzwcNhjN8w6wWS6Vd/Ty dSCRmVnQPO/fKQtnrwbg8T3XBDN4RRXuJfv7N9iwxiuGSjrzVMmM0sjWVfkk mbahzc5NnkahZ5CEng0vjNKZldjPCJ/9b8h+ceEPRextM92iFjT3TeRjEZr9 JnliJr6HusEM/ZaWp82cVlmkcSKa2iwy8ecUYaUvqCbeMh5TTSv6h8Q5T/Zy lDnRmmgaJbW5QKZKi+0Ek5+NYZL4xeBOMV2rIJKuG5RRdd1CSTDGJiXF6BaX +FmC/JKRrNIcHa/w7a/fuGHv/mrPr8C7fzrd4FupFqeFaqvvcJEGrq7wk/a+ LhwbXwdvds3d6aDuDsam7JlZTvP6/6VsOtvPb8gmMZ8/Y4HfqKU+RsOej8HN jEDczG2elO5y8Xow2y+qkE1r/H7L4ZK+78l8fnPmNMxE9Gf4qsyyP8RqdZ7j xnSLmt/cn55eGOZls/2UzSyP6Labtsr6xoJKn19NXXO0nXlaw31/agPeLS5y hRLO9nfLiOe010IF0vWzyoizUUnx6+bN9vcL0JCdJG/A5i1llwWTGzKGvT0Z lW9d/Wr092xEfDdT/03BbP/vhXcf3VmjvgVrNZcyZ3tBVraJkkZUmYm+aFV/ jP4MTWM6qMjSnP/dzBPrzKtFvZnl1O7/2W03SvuGPTz3udwkokZ/SqexgpKn jRUhFrDBcS+u7QrdDevibmdzbvNsJ6hhQVtpWIQoOev5RtkvLIEta3zsOTvA yq1lIdi5q7XjSM8+3Jk58z6dz9nN/TXTC5wXyv4NLU+btOd101rJLa6+6zi2 2/HGKG/RxSFfjHirCit9vlXqjj32dOwvIvPcP4JpLDClmF6RiF8MPo3cbaIC 2f9JZcTZqqQYw2Zj/CdllkQtfJMONiXTp38IhUU1td/aadCK1F85bLRGGL1Q //PTDb4W3lQ6S88dC1Y1p+aP6Bhxfa9D46nMYcMJPt5RNrPwMDek07Divodd 64M55cSH1nVfQ4fr25x0tKXs5+5+W+2p4/NejVOIHisopMBr80J3TBzPNu/t b57KDRMpn1YoKDZj121Tc4q9vCVVpNSu29YzVTC8zWoN3yj7hRWyZY1XbFvS 6+l2dCxnDZFKp/tE4r6aeZ90j56Rz1lW5mf8TLFneZXs39bytOGz/Y0iYuOA +zKNaoQFK8Xm2lXm6TTICXPtH45NIaz0udXEP3o8lL08ewSf/2GHTgk8Oeq+ fYHPVX+nv/jFoAfC9k6o68v+TyojzmYlxRgMjNCAFeC//8/jgocXVNdBqhmZ rt41b/TcFKvLqpn95g6Y2u+uH7ZxRrrB99LfcF81n/vkCTsh03yc8cD2T33b iVy8U697yjqUNG3XmSvTF2Vc9s8pJ74OyPt/8gB5q2mt7WT/5tNtzLbfFU/j APGH4mab7RrlWsWFzEJda/eb4jBmk8XOF1+ZKUuYjbs/K3XV1VndOH7ZN8p+ cYVsWeP8Fh8TKY46iN/zy3LW8kYZCGg6d+Z9Xj5nWJkX7wt9jex/2UQ/h9VN rcN5YMK6yNKL6lz5yk1DqBehyZ3hJwLCD1T6rGqq9pPdg7/wPmcPKZWHxmng wdHI8bNC+nFoB8qoH+6IVAw10C1R/zFlxNmypO5XTQ0VWAEyeT4STLyS/c3H 8x0tj4uIUDvq7fBS1Frf3zsaRPHsXBst9D6W6WVq2wDW4APJI0s+ni0/ybLY MzXD0vnhRCdFD+gbWqYXTbH8OL3R80kdTVactx4vsg00nLZkBGkaOJrmxBk9 rUl2Alflu9V6sp91ri1rNlVOrDeQrDAJLM0INpvW2kj2v2S6jR6CdVTcJGUF 4qeppx6Opu8b9aCHmabWxBhzGtQ0ubedNRk4GXC82G+kQ5eMME08XbXjK3n+ 2YxIJT9VBcwcbhgn+itlv7hCtqzxn+1L+ikyT+VZczViKvxOQGsmHXvFz1bO pwt6fj4nrUzxOsf+n5fI/ldO9N+fkTiKpOiWqWvmxdE6IzHWJkWlz16WMUdy caX/zKgm9lz6cmgX2qKM87E3Lng9qa/Jdbzs41lvBsQmJlJX7rG0Jc20LjN6 dToX0D0gYrCMiqtH+lzNjdKM9bqWqVYpIR1wXTu7lxFn85JiiIqrT+7/z4fD Px2aPcjjS+P5J5k8vzIEfJDUuIi+BTQUYZLRA7p9gwbyMZuBfIgIOiumFxEp l2exTaMzCgP5zEs3+Hoqzxu2ZMT/3V5yqj1z3ny4yLawTDR2KTTXyLqTmwNn bk+UU+cJW7CJ7H/ldFs7z+2/+qXIpueFoY6pzBwKdTJa7GMJWJWhcHTlfznf KfuHK2SrGt++pJ9mpPVQedN1W5h54NLSfE4295eZ4c1l/4sn+gV0Q7RV6zjJ T5ld23t9ZhxGKq70+vqJTvOn8TlzcFkVG+yDoCXZl4OjZdQsmD+ijBqIi6vP eAEuhB6MzPcDJJnITJRFvW8gTnOxGZmbbgC+Hboi9jA5n9Pyc+o+8dSKPlu6 fPF02wC0GJs9cHkL9MGtjVSxfkCZUyO8baCqZ6twJ9m/qkKW1Pj2Jf1SiCw5 rhqkfFE+r9TncTPd9R7LU7bUTc8Hqp7QyX2tI/EHpnbaN19X6Wz5QTLq5zHP t2N/p+h30Ypq3QBlJGSouPqstiwvYX66Afh22E5ExU1u+S1xleMWoao/AL4U +OR02y10wpWlQZ2rZCtIkjj0bMP0rtwRxzFETh9k6LW73WdpGDzSfBf2kv3r KmR2jX9gSU/QPjB4Lt+Xz014i+WpTn2/63nuQN5yS6aVJpkXW9c7bn8Tjv3N 65dWOvdZr5e4WEm8dcXjFbByGPBtRxn1GCuugV9/hDP9snQD8P2URX5L0+y7 fZkaZNVBo0+9xcQQnJ5bgux4Qow4RqTueVfbv/fzhewn+1cXyHSNf2RJT0Kn JJe9Tt+Zz6d5k+VhmyZOBg3OWeZpYJ0Pkt7dlfEjPviBvSmzpliXVzrdX6k4 SV6WRRYY0kl8FOo3MVUGKKMWy4tjRQG+gM9IBQBgJZvspSuurvLWkGok1dJO hocGYNK224y9GXvK/tdUyKeW9ByIoJXm6vhvzucTvNXyPJyZB7yZ23dNHEW2 45JF+RTvOBGxpNLrdHEf6kEP6m8i81TZntrI+oeXUYNZxSW6bHEBbsvKdAMA PoMN9tIVV0+jS+jvdrgvsnibo86WPjYZPVlqN5qyfypA/Pay/2f7CvnYkp5J fk36M8oCvj2f6/hoy0PjUUvGxdXPihUtatNzK/0XQrJ+m5X1P7iMGswuLuGl +xXgE+kGAOzNU9NtdK+/72hSLR9/UWyF76Q6aIVJ+Smvy/rUlllLAwBsDCwP AAAA8FbqY5QMawm6IhGOhy7oe/ekzALj1KwOxU2GVsTLPHGV5m8lI8DkG3gf sDwAAADAO6mPIN6Kj4kr9odx83WBErpzkpzk8ePEkUYq/Sjp/m2vfIA/BVge AAAA4M0U9w1umwBfzZ0o61NVhmh62+cpahHsDCwPAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyiLPEt+SNzztFbwXUoW3NHJ1 CSd3gVeRBxo9n+s28bMyMg6Hg5UsvDusEAAAAPByWPzIOPVJX40O90thYT2T 2JVxYC94HUUaJ7fpYJtFNutnLWCFAAAAgPcRm+hwv5ybB9kPvhpYIQAAAGCI 8hZ7juNeXNsN0uKpW6HD3YkiDUj1XVzH8eKlc6RtIPvBiyiuPmmgthvlY78q b9HFoQ05Gf3ZCLBCAAAAgIji6qrHsx0ztX/z1MPJisufMjRU1m1mvnaWxpDN sNk5o8PdgTw0JEnz2SmlZWwdued05soWFe9lYsujVXiWL9fG3SD7wUsg1sUI C9a8rOHmlXm6FRXctd8I+QAWVggAAAB4niLUWx0k226nBVmoa/6qqTZ0uG8n dc+HoxnfZ/iv9vFwtJPUVexkzf0g+8ErSC+qc/3JffVwUAeNSxGaZkinIFJX Iq34OvCzCWCFAAAAgB4ZUYztPph1mJomW/E6RxF0uG+mDI0DVfmPT5hsVzVN XVkNkP3gZTCLU0/ij8AaoT79OzGwQgAAAEAP2j1Kbtr8xDocuJ8Pp8gC1xrD DbOyc0d0uG+kr49unnJoRUjME88Zq8KOEzVkP3gVVPXTMWqZXbOxTUQlXYXU grpZwgoBAAAAT0N74absL2+BfmxrvrLIxylaM3Ksw71kb8vBHw+b7W/K/uLq yG3RM1mF7Trksj96XxbAnwL3P6OePlql6YvEUWQj6BqM7nwErBAAAADwPFmg S7IVJEkcerZheterpx7OpmMsdvNJA8uyTPVEVwtUk/w7SKcvAs9DlJMsaW6c JJHvGoYdpZElHTTbVpe6+eTxhdSbfiZVeDjr5J+XeG0sFQD60K1Dknmxdb0W +tmFjDE7K47POPbDCgEAAADjlEVrtqzzJ/gC6HQo6hB8PmXRbZjZRW/Lfrbe NGMDAAAAAAAAAOBLSF2VTewzfx87LlloqtPamAIAAAAAAACAT6NMbMWqDw1R DpJxcfWzYo2f5wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+KO4 OqfDwYr3TgYAAIDfBboXAACYQ1kU5ZuedEvitNjhwQAAAN4PuhcAAPggishS 9CDb59mxKWs7PRsAAMArKTNPVeykmP7lKyAPl3d7OABATB6a8vl0oJhYnHs7 ZWydzm76jkfl0cVxbMe/tq1w5imSGe9nmWkDlI60/cnebdUdrhflyTv8aeTX KGrOym17c1iUXXmmcue+jM+/tK9mIIXtwvk2y3G9qKoqn6UGsqKql+vQBTdP OejhW4z7QPdSxKakeJhYAuDTyC4yOukdoKL/ZA8a7W2fpJLRRWweDkq3h6O1 /6a+YYjEPs7tevM0yQQrx5H5NZ33z2Am3gPVAhQjfF0SYFF2YoPKnfsyLnhp d6KbQmHhrLIcu77A1dt1MKLxJNDsakH+hgSNdS9FZB7fNLMFAJjNzUMnvQOp e36TWS5C0yAPot3g0U6635ahcTia8Y5umKwBzut6Y1P4u/irZP9AJt5EFhiy pDivXHyHRdmL5yt37su44KXdiV4KRYWzynLs+wLzt2vi9SpC/fCeOaWJ7uUn I/3cR7cTAP5A0EnvABXbL51xFT7w7IoWXKnBVv13DEDEzFcQqSt9v+wfysTv ARble/nFsl/EGsux0wtc5mnkWbqmSGzRQlI0Vbe8SOjRRbW22Ni/KnHD3Uvu q8LxAABgN9BJv58y1A8H/d2qn2r7PL32BP6V6P4de/C5CqKMzYF0fpHsH87E 7wEW5XuB7J9glxe4iB2SmbMd52Vztr+8BcaJ2HW341NPBiYH6Z2uNaPdSx5o sAYAvIo8jRokWZa2/ixbv6j9E++dNJtOcCzLcv3k1lOkRRq4lmVYlu14UVaZ mTJLyJ1CctWFWKRbTP7heHHjYvaZbZqmbbt+3yIMQe7rk6e5AZ3L+LhIYE+n jqn+nh/kT5HRInYjVn68NKuHTN6QF31nSxVJZ1WRzPJqbCn27PSWfllyZjkc 0UZg2xZvBK2E8ZYQkXIhLWGiKdGvY1qC9OuszKb757LIYkdlk1ymX7Xf9JHe e+dd1YzVTR2/ybK2yPLq0kw4jh9HjnHJ6lxG7ST0XyrRtVOZGEjgZMEWo0Xd hqeUvq/BQxSwxzouqVby3Cj2DXvCbXikGTB6sn/8CSwD5DuW7ek8NO44dk15 o03BNEzL7r9Eo18Opqddev22xu/abX2tq+qLXD9O826qhzM16+0SVi7PkMB0 P+699GVk1KK6TovjhQ+H924/VDby0G/2PSaa1yBjORkoHIHsH6mFqRd4sOlM tZxRitikm+TlC59L7zj5UGfRQ9uhh6p+UQD9PGl0ErxRtHvrwRSkjY7pXhp5 mlTJH+9eWHqO7/E4AuCPg1iX0NVodIKj5oZM9oc228ik2GEl+32LmglJd6OW 7NdNSzED9l6zPUMtO1LElnQ4mRF7ycvsohxOWnD74aY8tOn1smnqRnD1Nfq0 yuRkHrGRyqVSQhExXsQoTBqZPDSkg8ImMMqrI0vSiZqUT4kDtknqrswPsmMH ie0kZVWwEYHl6Lqb5HnCJnmmVmtJOauklGm9nR5Wl4n5Om1XRzqojmeowohq rMYnD1rJPEW2Yt7NsUZwOD/uxlsCbWuy4zvaYFP6Ka6uSpqPV3U+5C9Jmtod yBWDb0qjst+0NI3Pe9GNZJ2BzMK2yKJgBI/M0XzQkTHN5eMNq2V/4mqsY7ao 3Bi7diQTQwkcLdgoshRjsKj7PAxErRpYNKlHSbCSG1d9o82gKjx57hOYZVHq 2Uo2e3maDCpLdNBZ9SrzxYqqe00WkAqpDRa5ra8fHxFFxr4cTQ8Vbx6dXj2Y l8AwWm3Nj8lLKGx9j6vOZ1m1mcwSTNOOZmrW29Wv3J8R082/XfEyclgdH0mG rHqWguZIstiDaJZ9k/Yzh7Pp32V/WHc94Yjsn25eQqZyIiycvuwfq4WJF3is 6Yy1nKnplozp+rvq7/n2V1t8H73EXYS3udpn0gyoBD8ZjqUaQVZkgS5N+prS OM/kwpLufm7clY0t6u5mvHthG6f7s1wAgK3gZuJh3FhEg4ZDCTEbLbNemZFW zAP50JCBzIy0jAO75f2D6gbs71toEu3F3v2rfWpLVurkN6Vh+czGI7QM167P LlhmPg/iMIOTNbK7davUUTPY7VpJtdFK4rc88n46tmbEbCDFyjzz+ZWPir52 IlmURT60LsFqeMous/s1Rivs73Z1Vi1BGWxKtFPvjQMCfd5C+/CqPeu8WxuT 2SePdCxti7RPaz2JFu6jo2VvWPOFIF/fMzV+7UAmJhI4VLAPMdAv6iFaopw1 mpYQmvJcnt0MZjyBtYb2thLmLjD6Elb2qKGru/apKsz7W8mbR/XMsS/npIf/ vv/JsR5H/PRaX/1Je+c8n6atczGZqTlvV2+hZdx0P/0yNka39xzd78dKrt0y yA+mVO6M5iVgXk4Ezmcd2T+3FvoFNKPpDLScCbtbByBqW5D+351xQNephiSG NXqm1iuzwW/dMCEiEvvMHPPZhY+ujpdMc0VvuHvhlYjzewF4HdwO1LaKW9+H HKxVYufnTUPWNo/cELcd0Vncs/qjqgdozxlws9BWxMwejYnkfk/BJ5U+Y4Fw s9SJeg5iglln0xHrZTm1OlJfyFP36FWZmZ6btlgwDulSXh2lGQhD0IlONSWe xm4LmOtfOyX7m0lp3XN5W2SPOmlecnfEuIWX+P7WME3e6ORJvuR7sxi/VpiJ yQQOFWyry2Yv5bQPbbtKWEGdrejuoFFePX9sGDu7GUw+gbeGrurgo9fR5nAL DFk2HvP77QbUL8zi6juWE2YTX85Lz0BbO5jR4xNWd3JP9ncyxVtR/YqOZ4r9 YuLt6n8yaro3eBm7rY1PPN9tEBtiNHZzZq48GcVgRvPqXzMzJ9Oyf24tdAto VtOZsFJD8Ep8jA4GZvsfpj4W2YHYYqOirlqf7F+q6/hUx+MZ9VLyPLddlmR4 9wPwQnh/wi0seT9lnS7lVa8o+a7zsk70HZWVUZ2muybzcKztlVD8chv3WAyN 6vXRkdefz6I2zTe3Uu/c+zrMdqkbsYKLxHoTbocfvWpvNmYUVltWMutBeRqH nmM7NnNsGdF7/U94o+gW2Eayf1hmrWiLbMW+4iRrVnfXRGsE2BlJj14rzMRk AgcLNureZbocO/dizkWco6ToHQfeQRY0g6En8LWs3uvDC2PaJ6AssoR6u9uu 2ZLD4kb2M/3lvPQMtbWm5OtXl7BuqpnX1srQQKbEd33KdG/wMvben6itbNvL YvW88RzGmlePuTmZIfurp0/VQu8FntN0JqzUINV8f72y0pH9vLNvKvCROZxl ar0Ba6qNGa/uUvJUDuTuUggAYFu4KaBWiKg/8rox88teO/ICdo3TrL5jbCVw RMm0ZMkU3Ly1NC+7y3ui20+xYepYgQl1zTKx3qDr4dP9e4I5s/0/ZeYbEvVg jzK6nDs5zdv7hCeqPxH1Htm/qC1S2P48XZH4obOH9nGTjZlM0STm4LXrXpY5 im+l7P+ptqKaWnVm6eE0fm7zmmYgfEJ/9vORjfF8FLGjHA+SXq2otDJerW6K 36HRL+elZ454myn7KwFXeT+MZWrgrs+Y7i1eRvHVDdPWWBZrrYiNMN28Vudk zjszrxYGXuDxprNW9lcbFw4nI8x/2rKfb3443HcjPO4qdqlZptYfdDx8en9P gNl+AF4Pl49akFbzkLXuFymUdVqte4MZM1lT9CdtmJXi1iVPGyEoqsggF9ee F+jm5uvSTGQnEUvl+anjYVwurjMUJoHVjqhoVk/G9EYgy+z7YIIa9BxBH63k HsxontNBN3+rZD/54/GciQ51eVtMAyds/Jp0u0r3HahnMovuJOb4tcJMTCbw ZbI/jy9eY2dztdV0NCULm8HwE3hr6D1rdLb+h28RFrjSs/vQJAzcljP25bz0 bCj7+Rwxd9GbyJT4rk+Z7g1exu6tebfTnBq5L4v1fEuHbjvdvFbnZPKdmV0L 3Rd4VtNZL/tZ2kifZ6qyZlgaW0uUDcdQFc3yH86EzeIQVvrateTuev7S2anh FAEANoO/mOdzvYWKGyvDEDhXTvUmYs/JPDD0ys6KZ2G5LOr23ldHcZKBNHPx 05BQD2tDOrB6ConOfBzPNp+QvHkq3yNFEqmOmc+yyGcxHIxzXupooB9J89nk C+lEjnzmi4y2WrMvtL8XWV8u1gcWVmgWhpLX3du3cDZGuAlM8JPWEsWjldxP rZwUJmw/ZffslkVKo+HtPlv2L2+L5PLONsL+0fN8JlNWFLn3y5FrxZmYSuDL ZD/9o20S2NeD2++WN4ORJ3SDDzD4ezbiA84dSZopvGeclydrZP29RtxejX05 Kz3byf6koVYnMyW863Om+/mXsVtWLEedaFJ8WYy8JXMOJ5zVvPrMzMnkOzO7 FgZe4PGm85zs7+RixFyzoZNo7qhS6+JFxbHupbP1eOFSsiCEBeuOPywsNwBf TzXT09zJO2As+l7C3U94ABvNv/00PpHvrgB8A1tfrFbhFRqz5zTSpNf73R1m ve+PzbhLIzUXjwViFt+yYUGqYGVZqGuvdh2ckToayqIZroMH6kxSV2l3SQMh 1sYmY6owbgMRGnn/XvdXVaDn+dMrMwKs8Wm4hoLgy8u0gT1GPbObUiPrPIzd nDFKs7ehW1YeCe57V3c/WdgW6eXNST/27G48kcpjpDuJOX7tUCbGEzhdsLP2 wjavfIjydsnRRjis0JY0gxlPYLluek+x9jHuZdT1o2ZhFnmayPtH3wHeyBrR en7KxJaqAFyjX85Iz3Rbq/Vef9tv887cgNQ1PJ2peY2gq2xHTfczLyN/UKtk WI4kq1t33HLNO6d1VvMSMC8nk7J/Ti2MvsCjTWdOy5nBpOwXx4ceX0se717Y t0orp0tGK9340JXh/BDvXQB+D+zdavTfTPd3F2Xji8mXDOmEjG4FaeuTs2bW IUiK2FWlo2zRTYe+oylVsIPuzzsHxZRZYMpHGqiZnlViKo0IDUKKxJGPipuk sWdqhp+mnkoUlO8bdUf12KRQw7zSNU0eDfm3DVOpYyXe6t74ViZN6y1EiCrj pxhbOq1Cyw2qc7pv8qhdSOJc43xs915T0G5i+ij3LKA+t2dSxVkauTT49JXm 4iQrCunqFzSlq6dLkuZG5D6Bo2mWqda/ceLxfoDFmT4ZXuTdW0QaWLrCPcYP EntI85MTSwm7dlFbJK3qpOoaXULP8izxLVnSBdHk6UxmTyJPXSvIxFgC5xRs Sj/htd4q6i6de5Gf0RZ61nXNINVxu5F61aib29hLurQZTDyB5fokm15IDYsq Sao7urPgh72HpH5PmhtntHg1M8zYJuqzomj3+Pu0kR3uhUle14b389iXY+mZ 09bYJ6de62MCT9J0Uki04AJLPh4VK8pnZmpOI/h/epVb3VlsuhtFseZlJNVK BqmkMSgGSfKN5ugkGd5VUHfU2E2bl4rx5jVy4XhO+i1fUJvzmtb4CyxuOrOt 1AjkCotcU22PodvjZdLhCi9MhMeuX51h/72J7oVFKTibEW3evHUviFrN7t0y k3zgIAlO9gIAPEXXGfL50265q8zSu1QONnMvay8Atv+ivWfb4LAJmvE435sy kjom8ltim09eiUwp7Qp7E2Bj66yckYXun0f1MI0xP3ACHUvN7ZZ7dbm2UTWa 0rJW9dz68My2WOdq4ufC2CRzrh3OxMKX5Wlm5rR31fxmMLs8luW6e4koBaO3 3Tg94zR9xEfuPCdT65jx2BUv4+PikUtmuvWP3XJ2OTyVk6HHC57+OS+wEKr7 +2U+FlqfMdq91OWZcefWZG5auvOPAACwAKpQm7K/vAX6x+wWYvatKfuLqyPa 9cB/HJuCmeIJyDBCkFU6RSVJRr1iyvyg2icDjUK7iMcJZGCcxtBsbmwSAFZ5 cX8xDYU5J1o/2Bi2xrbUOIm7lywwZEm+z8yzM9kWtGS+1vPccZsAgD8ZusIq W0GSxKFnG6Z3vXrErJiO8Q43nymoG5CkuXFCoz4bhh2lkSUdNNtWBfuN6drn MiFwtWWB7yX3lKwXPGY4R/dTsdC79M+ljJhXKvNTzS4KRktgHn+W7G/szC0i U4Ho24GrfVow98OvEHUv/DDpesW6t4NhVjIimEkAwHN0VisnFy/fStdVZzh1 dF5+tglt7aJucfOoH3helgV1jD2prsjBduCmS1IAuNvW2UryPLbVcV9jABh5 Gvk2d+M+G16YZJ9jql4FC4Sp+lmR+roO87ITRLDPn/8Z7F5IXZ71ICvLMk9c 9SSZ4QJ/rUVJAACAP4DMU6SZdnHsHPUyS+gJnHHajeE88XBVtsc3WYMeRRqT ok7mHWYL/ng6sYM/aILilZS3hBkkWJcdIVpemjurM9K90COTafeSZIsaLx1J aIJACAAA8GeTX3eaACQPhnYFAIDfSpHF6T5hMosswaAPAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDHwkOQ/yGRxwEA AAAAQIvrRZXP0oOzzA/yI58rsuBzQuI0L9CDfQILryW/jp5Dk4emLLFDOeXq RPP3cL0oL3xukTjy8WxFkXM+HFR/9AG0BM4nmpKDGQ988gIm6uVrn/UKXttY AAAAAPCLKQKdiTojak8FF6H4c/JNZB4PyuXrjqq/eQrPUTiW8sQ+vlZR5anw kK/IfImSu3kyFfv5Tx5oNPPWtHbPLnJH5Pc/2TaJc+pl52eVWbLT4TkiXtRY AAAAAPC7Kbm+l9x03uc/P1f7bCdvSt2WZIEhS4qTjE71Mp38SkUVm8K7xy9R ckzmyhd2znpZzPPyYSXQEvn9TzZlVr3s/CxSBK9b7VjMaxoLAAAAAH47Q/r+ ah8HPv9O1T+PV8v+1JXeKvuX5+btsv8LoO/IB+Ufsh8AAAAAq6j8P85u1vyU qPujSPenrvyLVf+LZX8Zm0fx3SH7PxhWAB+Uf8h+AAAAAKxDpPvpnH4U9NcB Uvfc1j9FGriWZViW7XhRNst5orwlvmuZhmnZlht09lcWaeQ5tmWZtu36ye3u llJmSUQgF17i/KfM6c8sy2r9ht889hzHJXcgN4hi37DZ7gTye0JIrgm63kx5 GpO7sltlZSYSysI88jvSK8kd+S96mWk+pshiR2XlafoRp+EufldyJJ8sNeRJ /ZuxzNmmyQrnOupszpLnm9LjeY+nsQqwbZNnqPOYmbJffI+qlmrSrPU3TUHz F+TvXr3MrWdK8fgyI+UbOIauKsMuPCueVRa31DckWm2qU6W6tTdjtEZ4Q+d1 mZd54lm6pihGkPEH05SQB7NbkN/EjcbOGnH/JaiA7AcAAADASvq6n8/pV583 dH9b9RexJR1OZsRkVpldlMNJC27jz8oC7XS/hugbXz8qXta4n+Je6+8C40Ru yL+kSim06Y5M2fEdzQyYGGK7TU/2tbp5GVuns3OtZRLbfczlEZF0oasdO/K1 uLoqSbPHn0j/kqTOlt7BPFIRedHpHXXT0t1rZNOIN8qAGONCryXDBbLftDSN Z58l/aA1YyVlHhk11HupyfenQyOrPQZlP73NyQgqLUnyrBzOdkMpz5H9g/eg 2fTNM2tN5LFM9nsGLZiT4VWyP3I1+oFs+Vz2t+tlVj036iUviV4PaWGRoiEJ U46S0/hZp0iWPouPFNhwTSD7R2uk+jIlf5dptSm6JA30eNTDG3uwzKrc1I3g 6jc2XBexeVa96iHsrveXoAKyHwAAAABr6er+Wt0Pfd64qBkUhYXBGY2ScqXa +PwYRjABUymYjO4/pVFnHpShQRSYFdd35AK0qa35J1WAGrZNoTUr3XKl78pX 9sCWlqwCGz0umcojTz8rn/J60TQzbOmzLsNON/xGR/OeVf7JI6dVyT1un/tq zzNr8nlEUp4Ox7aXVuaemw+alP2T92C11ixEmtLmmlFsNjM6+MTBev6pIy5d 6tyzjSinIb3fYM2zeFX0nHxGa4T9+2BG9VesHbVGcfWDWVu6hSYZ8LHBV/XO 3X/bb4KQ/QAAAABYT1vfP9T90Oc/9ZZfvSXyWWRBfVD387s1BWBx9R3LoVq5 0oqXtozl+43vCocrpabgacs4pofOVnSfjy2vnp+Kf8sf2N2x3FZUk3lkPxdE OxpgSvY3pWUrJf2Sq2alx5/dfR5T5w8xWkHGRo1nT8n+Offg9VArYn7FI6VJ Z1P40BOH67n3g/4FYyWy7Fli2T9RI9367Ndv9Zj+23ILDFk2HvP7fZEP2Q8A AACA9fDZSa4lmuq+qfszV35MOlZzlXfXh+juDTGsR7j2EQ8LYkv4Hb+knoqd nIlmnhWco6TobtT0ixYMEXoPbCmq6Tyyn2uzjy2bkP3D2o4n9uEeFNUePOM7 TTvP42HreyOFKpvV9PZEGc+6B5+MfwwWdZ2M3o7VugpV/df+teNuRZ1PuoPE 2UcLrHiWWPZP1Eh3cCQItc8ec7QHVijKgvpLuZbtmr0RDWQ/AAAAAJ7gofuJ um9InIfub6n+epK0Mzs/CtdqA+JMMB36+FieK/t/qn2UpladZXo4mXEh+m0V t7T7QIHsH8uj2P1jkCdlf3eKfenzBubEK8luzpT9M+5R6X42OGABXwta9dwx KDbPnTHDKimeNY8kuM44gviJZw3L/uEa4a5Q1Z4Q5jsmWQ3Hpp+RxlDEjnI8 SLqX5OUPZvsBAAAAsDW17jcMueVIPPD5gGwehfvMiPXKwHftOfkJiZbHF6+x yZXtCe65CNVX8wd2Z+pbimo6j8/I/tYRUBPajvvQLFZ6HWVZDeG66eXlUk/g T5XxnHv8VMVLhH7l0VNWup/of7m7H2GVFCdK37z4jqGpqqLpYzGUnn9Wq5ar 89amaoSUk+aQ8adOEqjqVjNOT/MxvRvQXemH+3jh/nT2u7LgB65B9gMAAADg KSp939uUO/C52Dc+Dwx92OeF7YLsOtZUl1RuEW05ycXV/cEzZqLbiWRf154n natZYjpbUzuKajKPa2R/Q1/Plv1V6XRdkq6O4rTTL3he467dzbbVh/qh4Yk/ JYPn3IOljen+87n26GH50Q29p/pXSXHy96KVpmeeVSX9vp2j2oE+XiPkmonF GbHsZ95Azf3Ej4ZwbzCQ/QAAAAB4jmZokSaV7u/53TM/hoPW8K0gn8gPpxoB /JKml0eZ2JIeskuY38Y9mmf964aXTi3IGnKq9QkXUk01SIcNg4OGKv2NUQoP m9nU+RN5ZCJtvu8NV8e8IMm/G8qNK7lm0rufVHGHkkclZJ6qeqPSl42aWnft FWmv1Kdl8PQ9Hg9v7eQdWOsZfOJQPVNo8Zythmd9khWiPSNbPIvlpMpIY+PL aI3Qm5w0N7ynL05v7QSy/Qi9sUt3jwuL4MmfTh5tQfYDAAAAYAuY3hEE4GS6 X7gTt4hdVTrKTH75jqYYwagMZZdcPV06SDpVRKFnaob/OP6ozAJTPsmmF9Lb qZKkurW4zOOLqUl82eGo6FaQtj45a+Yl/i8k/Wdd1ww3Sm+3NHI1SeaHN3Wu pqczPRIjaeT3WRo4mmaZan0/5/4bcR7TwNIVvn/gcCIJut9zlCwgmacx7D2j Hjw0byTRbOTdW99PlyKlc7yX3MjBVPVdT9U9ZM18HFPG8iOpjs/uQos7qGpg oowfKRm5RzOv7rm1AEB1f0es9utlTj3Tgi5T6s9/kjhVRg+SGQ7Wwvpn/RSJ Q94MxQ5DuzXSGquRnLk1VemrNpocjio7lqH7mOYZcuRZpO7JiCHOssS3aExY ekTB4awompf1G8tgCwAAAAAAGKbI4qQv34Y/ryiLnDBnsrVzifiase+m7sov WniHRvoHs7Iij6OPW32n9aWz+W2m7kG+b31XV8/TEEl9OnadyYgGp1s52ic/ bMhgtQmKISUjHtm5tkZlZZ64St+tbORhjXtuVnQAAAAAAAB8CWxVSqSe2ReL dpm/BuqFIxx+0C/gnQMAAAAAAMAMytg8iuKqsq0Zygeoajr8aAbjqaHu/KdO HE8AAAAAAADAAHloSifZCqp9smWRxa4unbjr/AdQXF31JOlunFXpu6WBJZ/G 9h4AAAAAAAAABLCTbIcC5XwAVOzHyyINAQAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHg9WaBLsm6Z muYkxd6J+dUUiSNLqmnqmhFkeycGAAAAAAD8QZSxdTqc3ezmKQeCFe+doN8L K2IjzGmJHw6Kd9s7QQAAAAAA4E8hc8+Hg+rnP1dHIlr0ZF/3TtFvpQyNw+Fo Jz95qNMBlhbkeycJAAAAAAD8IST28XCQMe/8enJfJVrfxGIKAAAAAAB4O0z1 S266dzp+P1z162G5d0IAAAAAAMAfx5Wqfrjzv4E80ODODwAAAAAAdiF1JcxA v4WSufNjWQUAAAAAALyfmycTLSpfEEny5cQm3cRrRnunAwAAAAAA/HFwvxO4 +LwB7kwFFx8AAAAAgDdy/R/+xb/8p8d//gn85S9/2bEgIjYDDS36erKLjAHW H0j+v/9P/+Kf/LO9rcwq/uqv/mrv0gMAAACehU5x/4//9/9bfgS7lgSfgT5+ d5z+IoujKPJd7/rB+xOqZZU/I07/N9RImSVRi/QlNXO1/9t/9tf/qdjbyqzi H//xH19RJAAAAMAbSd3zwcAW1p/7DPSX7+ctizxxzsvD4ZPrbmnk6tI7Aunz ZZVP3c9bZoGpKIYXhq5+VpykePJ2K2tkU8rMN1TdtCxTlY6S5sadTJFE5rfQ pMFrrfiW58ULXoIi1Onh19vfGAAAAAAzQE98p5qB/lQtOh+WkaUT6XkaRVES u/I75ClfVvnQAdbNU2jSKllMR8VPn922qka2pAyNs3NfbKB5Ehw+XRZXWv2y e32F5scEAwAAALAvGemJ7wpnG8pilmiY+bM3EluH3xFbhsbIWalUWSSjl8t+ Jqw/NWDStXNIM20Wz/p9PVEj28DCJj32rPB1rfvGiuLqGbJsuFHoUNnvhJFr yIrpX7c0DGTkcTi/ZUhNFy44z5mYre4DQJtdO7/P63kBAG+D9sT9Sb9nbph5 qmLPc4ogP5Vn/vQt8Ij9H6pFpynSwLXdi+v6F/O4Wqe+RfbziP2fOsBiCrmh 0VmRrNHs29TINrDtBdf7agNr69WyFluJOJoRfRMbeS0i6vCj+reNUkAnGN60 3kFr8KxZhOCpUUYa0Htoe7tngd9FEVmKHuzXyxSxKWs7Ph8AsB+0k1f9bk9c ZonvmposSZKsuSJdXt6I4VIuvS6VTuIuWTog9kdSvA+xP5WLz4dq0TZFZKsy G6RUSooMoQ4nk7lrMweO1TrlLbK/cvH5mAFWuzhzX22ljW1DWCzaN6uRV5DQ Cqjm/vlot0pda4jDxj8bubyVsXk82snAt3loyhJvE1ssidCEb1fc294N/NmU sXUaXfPKQucST4+Oy+KW0kABUZzeJibvi+TSHf9mniKZ3d09AIBfD+n8Oz1x cfV0SVItL4x88zykgplo6PfhVPQvnc6jU4rvWfifhJ8e9TladBLujEKTe7VP j/rouJE/HBVE9DqMd8h+fiTapw2wHsVJO8VD7QlP5XtD9s8szrEa2ZiFFcwG 26fD+b7Oxoe71S6LpuznazLbpJsOpfoTDG2SjnPVNGWWCOMNQfaDz4SK/tHl dWp6Jl+CInEUxfKTjLzgWWCcyODcDIdeLva69xswdfPb2LsXAPDh0J64ZV+I BD8dlEtWCQUuzgQzdHwS0OnYLro1eI2/ULbFjskNqFx8vqeDZ/VD1SiTZ4/Z 6LYbeXn1rDG6MSXfIPtrF59PqPUH9+LkPBx0rgn1g6/U7y10xkrTCW/0V6M1 sjELK7hIbFky2hohC7TTQXaoI/9D9hdXRz6cNvIFoBMMZjzhULzcmYpcIWyq kP3gI0knHN2yas/T6EtAx+mSGWR3yc4nrMRxObjoFzVg6uA7/VICAH4PdD6y GVWD7bJ8iP7aE6Nngai1OPS35lH1vi4gEB1+DC//v4vaxeeztOgIXDzTCXMm l+4xcWi1UcWZp0m2wqS/QfZXLj6fJaUexcn+apwfwb6Zmqlus2mNbEgRW2fV qxKRXfSHm16Zk2GOqRsGGQAQsW8YuukGab5Ncum7NcM2LJb9tGYg+8G3wLrO kUhWN09VFXmyE6qXpe8/qlZPBYdMlrElK4o0YGzp8toywwYA+F56YTvLLEmy pkdANSfbNRdc9ffm+ulc+VovYKa49+5Xqyg+33NqLDP+bOaoWX5lYp+Yek1d edVQisv+V3rfVFF8Puwo5EdxVmFu6uTRP5auYm1aI1tBNb92uXLfnyzxzbNg 3nH19uUR5obtXPrs4REqZD/4PFiPOhyymIp+79aNJyAio0uO7sP/v5pH6bVR KvqtOGWDAmEDphd+zTwXAOApZvTE3JboQcf7T+zhwzxkBIo5TzzHcqo4gNRv wrIcL76V/atHt0wWoSnNRXbXBEypDur6MC3aoczTiJYnLcGGJzrzPz8qdhh6 lm451vmgOhdDW5qTPL5YlqWzHR1nnfyzt7GsrsAopfVZ3qLGX/PhB3V9wABr sDhJdynJdnzLb4mnSbKzYuvbZI2Ut7jxatw/JYPv7tvR/jokV60o9J+rw33Y GrRfuV71PxcE587YuSCkBmKfNCLL9ZOszESyn7c5w7Jskunar4FuZ/QNliHV qQ4Vbq6kDAt1Fq6APC+g5TczkCFkP9gApvoH+xcu+vthxGaQsYgBvfV3LvrL ai1A2IBZkv6Mg9IB+MOZE0Cbz8n29reKd/MO7Fm82mczKqioPxmOpRpBVmSB LvUXOqkS3FVw1+7m+2vRIYqrq5JiDKgoLALjdOzqtrK4b99s/HO758eWovtU Wt1oiBrDMmRSt0VinxdWXb2HYt8B1pzizNLJGBmjjNQIGRWoFyJ06UrCYwhd 76EVKfoiZq72Hhsm0As3jbv7OgbPBeE1UGWI/SVJnS29pM0R08Eji9I8K3Sv Af2anSwXOeoy2Z+HZKSguPSB5Gbqifo8z1mFgOwHG1D7+okgHajKI9otlf3s tThIVtR9xa62zEP1jMh+Ptv1sX0eAGA2RCIoVjTYn00G0CYi5eZTBXKy4nZc kMg6Mg/ozr2Z9RC4A7GxBdd5fAAxMJhgc617Wp/a3fxTZz7YVq/GSK0Kuvi2 SDhlbCr3p3PfUiaYuGuUMdzWetR7KHaNYr9zcea+ylxqucx/LPt3zwl7XBDS aB3NULfkpx+xMFVmvqENx74aPBeE1UD7myLQW4qHt5SmLmdzDo8PWDuc6+TD tzY+BiC87Gf5JUL2gw2IBjf2P0T/AtlfJK6uKjTs7dkMemt/d9E/LvvZO/YR hgQAsBo6bcYk7NBenfEA2szBoesN0KHn+CPugGOLdeu893582dwtWfOeo2GH qd3NN4pRvjV8FbcpgJqe6G+A9kv35tQK+CiszjHqPRTDPq4vZ+/iJK2NPYtv k3k8lg0+BMMhXuCNUUp5C/TTB4xQ89CU+BAuEf9AfC7IfYNQ521rK57KybDV TJh/2P2jBbK/YCK/6WvUDNxUXD1Tp0GLQ3o2sRXlE3cDYDGDO1fI6608Bs7L nXz4gLYVnYsvszcfPNSAdz89HADwHOXV1Z24SMXOfow5AbTrPrc7q88NiODq EeMxK/g3u/FIqpb49gtOEZukdjf/rEDyFVwjtQRQyxP93TDhvnaGqN5Dsd/p CB9TnPzNeIw+uuPjGj5KOeiXiPr126ah6VZnS8Ae5IFp+FlRl6YoPf1zQSr4 elF35NdSPFV0krsPT3R367kbmvmynxdhc5jRGLuSfzZMJT9IJBu7GwDLGZja IgNSpWl5Vvj21yuodStOXcVs+PxMyv6DlSx5GgDgE2HnjAodV2cF0L47PbR/ V62Ld7fz/tTGQ2hYBh0Xmuw827+/Fh2Dz483B06dEPPvhbWN1csi+w+wPqU4 ux4+3b9reJ++q0/UKMzzRrRpt3cuyJ2BIGEC2T/6Rs6W/Xwxr1WEjfUd8s9j QyYRY9ApbMh+8DysQXdnS8rQkJ2k6UbLhtGyex04ao9f1d27VXVgrN1mrqz7 WeOOV1dmWkB4R8z2A/BbqKY0uxPoMwNoc9Xfm8EbduRm2l7YMw45Lsy9/h18 9n5ern/6M5VMOBeZ8JTSlyfnUVLLUrD/ft6PKc6uY9HQ+Jgn+IP9b/lUem9a v3suSPu7o2AJsCX7B4YGvd/XP4jNRtl1hDpf/eyt71SNoJorla3oVrJtv6rX tpCQ/eB5WDPrvt9llkQtfOY2J5k+/UNojKrmerIak3f3Y8/jert7d4msWjbr HhwiTBQA4DsRTcKN9cQNsqqX7Kh+PmcmmuznX4kceRqSaozh3U7voNaiH+At LYDrn+YA7iEYiZ55y1ClSOMoZtET2479bG5pTjCUinqAtePc9ScUJ6U7fBpe RGk7tNcUycW/zi74lyJaW5yYYKCWqDdSaPs3iP3/88DQ69c0bhbMmOznlqs7 DmicyHz19GpD01HvGwHIfrABdNZs0vBVi1ztvrAsGvP09dK00R3FDnWh3KNu JJIP2jYAvwTeGTe61rEA2k2Y6j9aPU8gbj4q08KCtj8iew8EJ5vl2D8jjFh5 9ay5OOFtMost6tgyH7qft5qRqb0dmoetL9Pcq6k2PNNHVQqv7iiK0OhOjY5S B0zacT/v/sXJ4aq2bvRVMsTBtWPr1JHIRWwriwr+xfA5hsZYavJcEJ7hpmWg TvXtt7D6jX9rXnUPUNIeKZEHNgqvK9RZndfJIw86tRohjYJw1l3frbQ/ZvvB CxiIct1G4NtW7e25B/ol5rgzOGWD6MPJFJ8vUsl+4dTb7pGzAQBbUjn61L3v YADtDtwtp6/665laI7zlKY0VTHrHdmy9/mTD1TnNmMZn9nBccNH5jrksDbVe a9GP3M/LoIcdSEaQpoGjaU6cRZZ0kJ3AVd8j/Whwp6PiJmlkqXpwJU8/aZck jV1Dc5IlW0vrAdbOeyh2Ls57Mjz1cKwK8nwcGw2V9PAvyfDTGz2uy9K0T9jS 26I+MYiX35xzQao5dklzozRjNWGZKp9wP5NKqVRNEbuqdJQt6vPgO5piBM0a KhKH+kvbYWi3664v1MlPFUnRLVPXzIujNSYj6KD2bhdJmrRTd5EUsh9sAZsz GWxI9Lg8XTnxRafDSdbMalqtmhJoDBhoYz6rjp9keU7PraOBfMywP55IA8vU uGkhrxVt/p0TGGnXN2cmEADwLTQm4QYDaHchil42PJGquJ/zSQyI6Sd5W6LQ Z/Vj8cw5OIoNT943zdql1qKf6eJzhw18HmXZWvd9++P5KGzx86sB1idsT925 OFvJIE9mM3LjAbaqke8eqZxBc21x8lyQJo2mNNiqRptbpyYZ40K96djPplfb EYmpnWvNgEL2g02gL8lI7Oxl0BOu64PqVhoF+qJC9QPwu+CTcETuZwMBtDeE 9p9rbAi1hdNTg6+jCiT/qS4+v4j6dIQ9XXw+Azb3LBm1NGZR5WcE2PpkqrVF LcjGzwV5Cx2hXrZkUTvKAE13O7lE9mO2H7wCembOjjNcHehM3Zz1fwDAN1H5 Yp9O7+iJr/ZpuXZhF/VOFn8ftRb9XBefX0M1wPrMMKnvhEvkOhYHW8Qfcsz9 Ivja4ul0evUEwzQNoc52RjTW8vgWguZsPnXtP8lWkN7yWxq5htL1l4DsB1tB 15Y/I3IOS8kfb4oB+IVUk3BvMjWpe16mXxZfsDmVFv1wF5/fQDXA+gQXn70h RaE4SV6WRRYY0kl1P8xVfx3V3sMPWLZoCHXmw3cy6Mm7ZZ4G1vkg6X7WS2BZ EM2fZkJXIsh+sB10aU/ZfTv+Z6QCAPAS2Db/ty0sFrEpzTUnNC6HFuxreiot Chef11MNsODiw6gidsdp/nuKg0nsT3AWpkKdBypP86YX9FI3aB4D3RnbiQnA UjJPkXad7Mo8VbYXRWMAAHwTZfHebYBFFs869KjIknR3y8Ojm33mQV2/i+pI GYSL+82829YM8Diy6Lnj17a6DwBt8mv35Kz3Pvz2Ca8pAAC8nUqLYgb69fAB FpZVAAAAAADA+4nM9218+LOpDpeEswQAAAAAAHg7LJafaJNpfh1f3b9/H2e7 +yl9BdVhb/2d00X28LsWLbk8vr/CzwIAAAAAAKyh0qKCGWh6BlCgD60E8MPQ j2Z4+9TTkz4OPsASFSYp6sQ5D9RDdZaafEk/9qAqAAAAAADw6fBTYwcc+4m2 l2VZEND/6uiaCn+VRXD5PuDYT75kJd2LIp0HhqbJcMICAAAAAADPwN3NByL2 3zxZD0OzJ0aJ6PcieiG2AS+A7aEYitgfm2c39HojLCL6rSgwsQ0YAAAAAAA8 A3fxGZhJpjPQ3u3WEaNlbOnejU1dYwZ6AdzFZ2B55GqfyDdxZ4R183QrLtl6 DJZVAAAAAADAelhESdUXbxSlM9ApP2LqLka56OdT15iBXgAbPR3tZOhLunDC zk27j7C46OfrMY9llfKW7n/SAwAAAAAA+CpGVT+fga4O8eW6s6hE/8/wDDSL OuN74W1hUj7kkKNXMar6+bLKDx9hVYOpjIv+n86yys1XDwdLfJsGaXCJEfQH AAAAAODP5epId1/+gnr4nAaczesZ6J+HGL2L/u4MdPdCZYH7Tx5fLNvUpF/n x5Iz/ynJYcWbuufBHRT3ZZXGCKsW/SuXVcjj4IAFAAAAAPAHU4XrZD47NATn yYwHPEbuM9C1GPXDWvTzGWhlSFfG5uDG1UHossMvk/3cl/9gRGVdXtnAL+tl lZ9qhOUEd9HPl1Wse8lkoaFIkpNUf5jqWdIcz7Wdi6WpVkSHFVlk00HUSbMv l0s09EwAAAAAAPC7yQJd1twwdDVJMsNBR5AyNM73OWYe5PMxWS2agS6uvmWY tmXqynG5gv+Fsv+nSBxZNv3It+ST6l4HHfIz93xfOKmCfDr1qKm/rEK9hR4l RctND4r6n9X4gP4Gs/0AAAAAAGDUkZ663eg0rOdJNb0r/R0Vo1z00+8snR4s dVQMy79Wdyli81SNEq7OadibZZDfKPs5o0WdBpap0kWBs+7w3RBkhFW5XZHv yJf0TLSzZjnRrbqkL/urvxr/hOwHAAAAAAAvgPqzVDKTjhAeirO8+pYYp73n 9/fK/q1ZIvvJf1GoAAAAAABgK6hH+kN8Hu3rzbf926I7QPbPocwiVzsezmaY 0SA/qW+eDwfZjrI8C+k/qy9ovJ+jYvv2fYsAAAAAAAAAz5N5qmRGaWTrqnyS TNvQ5ruY5GkUegbVrIYXRinCTm7EL4+ICgAAAAAA9uEuM6E3AQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAMAv4P8HhVI/tQ== "], {{0, 176.97787776527935`}, {765.6542932133484, 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{96.012, 96.012}, SmoothingQuality->"High"], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{Automatic, 132.83344760039176`}, ImageSizeRaw->{765.6542932133484, 176.97787776527935`}, PlotRange->{{0, 765.6542932133484}, {0, 176.97787776527935`}}]], "Input",Exp\ ressionUUID->"068c2eb3-c90a-4618-8cb3-8fe87809bc6c"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnbur/EaWx7WzQW+mzTpsJtLABAq1mVhYEBMJZhnkicQM4xULxsKewWL+ gg4VKuzAgUKFwmwgZwqVDCgZkMH2T5GtxCCc+G49pG49Su9Wt9T3fMDmd+/t h6Sqc+rUqVPf+vWfzd//z684jvvrv6H//f5P1n9+/vmf/v7f/45++MOnf/1f 49OP//K7T//2sfHx5//x539Fv/wj+u+f/8Jx+N9vAFAltsWj5mdP+/7M1wT5 Ej/t+wEAADZGGgZx/qTvzuIget6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAsDJ5liIy9tmRaeh5rn0JJ54smWcdnwcAAAB0kQWm rFqe77uWzHOSzTjoPPc1jtP8sZ8YXXRdV8UDJ9jJHS8UAADg9UlskTvoPo1o PeR7xbYjTWyBky/pxM8VwCcDAABMJYv9IKEuOXcV7uZ888QzFdUwdE0+TXev 4JMBYFWQ5Xqe51j21KwisBcyX+N5+VLkLmIUPytuhn9/UbiDEU78NPDJe2Bs zv/11gY2fEfjGyUNzNOUrGL5tiTyLOU49Y3AACMbbmz7pq4qKnaYlW/DEXPR ZKFxqLQeCp51NvXhGnzy5sk8XVQujPUDBrEtCUaQDb9wF0y588eDgiNBHnV1 6UXmpmYV0wgF14FvCZOdOdBDjixEHGkhI4wpC8+q6sTYoyJfTJoYZ5kLj0qT yYlvWMGUawSfPJMsQjNSPypbLIuDeA1XmPs6f7KiCdfla0eRtQK8N0bceWQr 4unAIaZPEKeBM4dxO2pCs9Sj5g+2O157n2dk2DzBJzfI48CxNFk4Ho+CbLGc Zp6g0Vw8tzpPcs0qjKPfmFAPPXIVik6YoV9L5yCwVdQ7Ockw5HIdcBh0a55j iAfuIBqOx+pyQAdoBD1Kmq4gg+EEzbZNaWTENBHsl/ip7ibztMMkN75FRt85 iUE5zVvrOrIkuuiknZlONT4LHVaeRRfLsM6W5Zy1w9xBA3xynSy0leNR0m3X c7QT8YSMpg+MA/aQQePX2CNPrYGYa0x5mffIN5t7eyny8HIpRzBsebp1iVZJ F0TWaXInwsTWjNXeTTH+znEMOushDZP6Z103bRdFPJ0+GU1ZVe6gNQMhNGhz PI2g8a3M9qvgkysg/8hz4rk0PfJsGK6Xdomj2RgEM1fhJsc3b69gTMDdwNbO qe6cYTZ1JFZn3QsT7jyy0PRROK+bqyFG3mmXOCqTnOqgEBr87fE3ksl021cX zaAKfPIVHOVWPDJdQGM0C+k8XCu2xa71ZM3pJ0xj+uqrr/7rIfz4448zrhlY BbJ+q8xyyYUj2KstT7hz4rPWTiYP+GTiHCp/JZd/u6Z6MjkP7Y61d9YKPPjk K3kcBHF1yCKPuf1wqEtuRcl47D7OTOixjOnDhw//9xB+/vnnWRf9TkHdxLVN PL31ovTeWSPS5Rgbg7L4Yum65ZFa9Tzx8QUwcie4D67uq9ah686vf8dLPPSm V04mlwz45Pp+AepHr0MKdti4IdJozooN+OROaJisXBo9n524INMpvf0c0wDZ j+nQQjaSh0TW7Cd5+92LjalXFwNYTh47ypETrYD44iwwhB4nMovSlusgJ4Sm bxnxWrqpKOgC0sAUuPa0rGOv5w5g3zkldVX82LEN5aEpHA6rJZOrDPhkstB3 s/hqWJUHBk8GjcgS5uSSqE9ee8y5B49W2yGpjHbWir2811GMGBonzcuwx+VV U5fUS4wiHmTXrbzZUmOKL6qsO77vO/qJO+rDlTrAVMiyzbU70GDt3tGMx6qf iq0TDsDotO2A+hP6na/jb1e9RtcmYQQjMtg+zDvH4N1SXKXKgT6GtZPJb8M+ mfSAis3GtnQQDde1dUU3kRVK5lmVJ5o0WWDUFVJbcFLQP8/+2kPPMqap7eDb MzT5OMtu8HYaB7c9r/v1fLynH8jEqbnkemZMN3JXJVlnEkMX3ajD0y80Jmyi ZUldffwG7gKu0qoNxSRFaLoxLfP3HDSpnvR5ceDhEMOu2RwJkJpuAPUYMtiT LlLJUeaMUGO3s17mnb/d1m7i+isfkaAZ8smsAmTkN27lUO9hyjpHbWeaaBqh WRTMoJXPoA3Y/CJkx7jvFPmv6x9Z1rTUmNLwupNhx0nFzRKT0ibmckGeJa52 mLGJNjq33FBfLyAD+1C7kg+olwPsg447bz/3oWRyiqahY2DsLWgwyidzejB4 b6uSJ3hwD67J0DQM12/9ZWo7M3wyhSaTm/EwrY5jdPqeTTt0sjUwmNzNmLAU xul1NtpuAzq56XSIMwfUdp8hH8ROYTUH9rteyfNh3znjua9YmdxgTpz8YPCO M0HRNQkN10fJtG1VeMAm+6VqO3N9Mk03NF0yda+t9b23csxkflFjzsnmLsaU hZYk6t7+oqStQ1q3u1Drbj6ZOF5mVxk1sBd9bY8+mX3n7edOjYlk/tJolX3t 9S8fyic/1ScnrlMuHJFaHEbxwP1ZrrYz0ydTl9zaPtmxsvLWZwyj5px3MKbU 1RWTNhFe7oXcxR2h8VqrebLg7ODeVqyTJ97ZtCzTKKtsyldFl7OmqqquNsrX GHEW7mDMvlLxRX10rpRtHuadUzOsrKffksnINaxcYDKq7mKP498ylqvtzPPJ NI3VcsnUNFlhMv0TK4wZWUy50JgSR6olvB8yuXtHMGKizDfE4uAXmtGixVq0 Ka9ZKDzPu+qZ5KF5qhwWw/DJXVpi4wb2PS/vsu88LIrKKDGxP/LMclcVZu3P mnZBfcPgzuoO76b8ukRtJ40811aRcz2ptutFE5wUccmH9jfRqVRhRnniWfpt sb2jvnLknHPHxvROyAJTOJxQgyd4z4guy/otGq7vF6hkMvAGzdrUuzZ0s/KR 5B3tgHxUMpm6kXn7sp9Px53jxy5aQeTbmqw6UWRL3EFzHFUYocw27zpwOZom C3yp+3UUFVZNGjb4edt2H88UrcpxYqSPVtuhQUnbJRf7+lCvT9LojIwLhTy3 1wQG64y70ORHBMC7NqZ3RCFb0K9PUPmpXY1T/Q1zjYgtWoG/eLDzL5DK2ALd ch3ksV9vv/7Ts5ivpHBPMs+QitGjO+6bqlU5Voz0gSB3K6h2yLik0Dxex07N CRo7a9uqJJgxZYo7N6Z3T7dP1ht5q5oqAnvdPve1w6zOgH3artU6Z9/5E8DG PsnPrUj/WsMcrcpOMdJvv/32H3flhx9+mHHH48HGOGfo3L0xvXc6fTLJgFZi v6wm6tBVS4VnTdPXFkKDL/b47Zd5d/54yHWuv5NwHL2baOZqVbLFSN8+++yz 396VL7/8csYtT4HYxeiEd/VNOzemd0x0oXtheUk7+yn6Sb799FbocQu6gzft qeKpODIGZy01iac7aNs7ALElTTs2JLJO/Lamm/OYfuePZ1vX2FtEsCDDwp72 j2JjwjuTbeNVjAnoY1Q+uMaUnN74M+L2wPaymTW2dvhh3yaaJVqVTTHSkWxS eGfK0WivZUzAfUnDcUKPWRysc+LJ0xh7508AXdr6+zImQJLJRytMqJSpU726 ZVqVDTHScWxWeCeL/VGld69nTAAAPBBaGs8dpFLJ9HRLqyzVqpzlU0F4BwCe AxXKG4fowFRwHWgyuVIgQCp9Cj+8VKuyKUY6DRDeAQDg3dFKJlP1B72jOv5t klblfJElEN4Bevjkk09+A8zi66+/fkADffHFF8++0R3APqCtSCY3lUwrPnmJ VuVMMdI7Cu+YpvnsB/9kPvroowXPb6N89913MTCLn3766QEN9OHDh2ff6A74 5Zdf2o+O5hyqGV+q/lD42qValXPi5PsK73z//ffPfvBP5ptvvlnw/IB3RR6Y wijxeITiJM++3JeEON2qnAo5l+66VrdUq/L5YqQAAEyhUP8YZDObB16NhtMl e9Mru1mWalW+UzHSvbAN3ZfdMft83kezmwsFKhCdnNLpkrNkedWtuOBlWpV7 EyOdw+h+P/aF+CBvz7UtN1lyWWMuiBxUCarM08g8XVR2siHoXW5eKuP8qrXt bHDCWsZH9RJFF13gRbO5a26JVuWuxEhnMcVAxxoI6lMXZXrGB70tDhxdmPDG UhBvjxOZ8CyJtcynIJ6roUPqqqfbH0+1QKNJ6mrCiR/zKHD5LktXCl2NJJTf J/fkWfFXFZckSJIVrO4pNr6l+X7kaeBoIn84iIppu/jIcUUUiA5J5mn8/vKn feoS87UqNyJGWiNPI882FZGccau5rGvLQlsVtKqiXRb7nt8+JazLQLsZaSAd k5M+yCH2fuSo05dUbWGPPplANjjVq+urIGM8cLzmpWM8H0mz9ftk3OA9alyl EHf3h2TlKx6pB9kl0PhCIJOVcZCoe/WdxKgDIDvnO44m3zFztSo3JUaKST00 ExAUy/FcSz5w7CNgyLkI9UGInnXNN86GGjDQDsYYyIKDVWeUufjanpNLxSbU jntGj2O0cC/9pL7HHqEQoy/P4+ucJIndV5O5qqwqB67nWNZV6BBofBXiC/bH PFuDkZrzLmeC/czSqtyUGCmKI89itd1oxV87/qeWqVwq7Uu3KzZDsSED7byQ DgOhJ9Ralnl2TGl2jneyT0attO90cmF0rKABP+rxxjjkkwdPKED9RHFd7Vbc XwfFbOrFJ8H4wwfBBQKNG4csgXE9Gpv1A7xeicnSk9sSIyW7+KsjabExpmWB jFNUadGfUs9HLjlChGEgOKdfPC46vZ2b/prok2NbkjbTSDMpMgbtXA9qY/aZ Q2wGfDL5mj7bTmwR+Vr6Ke1hDrWwYie02z1hIj1PoHHzJLfTVTvxtFe8c8IU rcrNiZGmkR/VkoqFVEezrQqXXI2Sya/4xil+gwbaS9NAiKVevXQjmdxfLdrM 6U/0yczt8HujKB9p+l8UQDedX46VDw1D03XDtL2Gdl+/T85rR4mwX0C+ztMY ObEce+S4+OMzJtKzBBq3TlaOxkH/i5gn0r8IY7UqNydG2qKIV5ptxUhckF81 x6IuA81irFlq0YUGkoxAP11aup0NAyHjw/XHRjI5cdFndGM2CuZmy4vsGrrP qT5vQWNpPZ+B4gSOVy9Fx8xCq6Fv1e+TB5ddfZ1mLOhoX/+Y0JCJk6YLE0+Z SG9K9PY+FFkrkI18DajMkubVjYOxvEcO3VWadVRsA0WOXjzH9Gw23VQUK0jT wBQYuc66gWA/eo3oSnHUPA7GjX+NG3uXPpnhlJFLrjYkSTs2AioyA7qNrP0+ 2Rt4sCSZjL+dDvfVl4aGRFuXVnZ0fwou78E1XHZ4f6e9TKBxixR5C3DJ+wfn AgJSlyvZcS0PgAOpxrQT9+ST0TIRpoEiE8dWSdObxUl81PerDd/fMJBqKiNx ZHIJ6FNmrckQn7yZhdXHQZNOt/EUOenq86N/bu46rYe0vT6Z/LHHJ9NkMvln VVaRfIlUeI3BZDLqmgGu7ZuY20BvSyLPUo69b3y50Zqu0k+ddXRX8WMhypNk Op6jdx1wD6xAU96oTT2fkSeB1w5XmQaKrJLkHxrSTOyMbd1A6K4d23NMRdVN mT9qZ0PWJ9a5RBdd1+n5nLykoX+3j+h8ZepOOTD4aiKDhlQtb1jU0RXuc9gn 99VkKNdPr63yxWf5GseNSCZ3HCHRSxqh4DrwrYH6yXkCjdvluorQCpNjRz7R qmQKfzyVq/vdVfwk+rp2kK1V8b48xeyyGU2STjtqob7PQMdJM7UNpHra5qj9 OECdSk0cNtdabpm6yVZkVPhkbaxP7p76l8lk+oNWDgCxrdyG1jHJ5PnB7GBN +4vGyd2TQpopYj6T9rNoHnH3ck9r29DkQqst6US2tr7XRY+BNnX+O4Amvz9F eePRClylMbR2VD5SL1wGuL0+uV/f8JpMJhQbAr3YlivVl93JZHyapWGdLcs5 a5P3b9bupaffvZ5AY9moHTJoRYkkc9LRMr/W06HSbEMKa8B9oG3V2ozbcXYV k+7+PVKa6fUMZAuUs1lE06/RPzWeeNkTiibvX+PDWeIud4neWf3oYkWBP1V3 lnUlk0k1CK38j2jSe15txJBPfkGBxqK92bsEij+yjazlk1vZyKH1A+CO0LZq 6yPQlZlRYXKPgdJk8qBjf0ED2QKlzh1rTx+VPKxue8KHPVarHPt9ck+mF7dm LaQqsxSVvlREbc1PD41KNUjjK6YVpg/55JcUaKSb+Bi7qrHqUE9RBvjkLUHN Vmo97HpqMQsd8+x3B7tdBjoumfyiBrIFgr6zbzLfko5HvLLuubYm8IJ2ialn S/2zJlOJPO4gKszlUZKvrju9xDNkoVxK4kXlXFQ74+5R9g700bp2e9VR1vRr zyKO+tZd6p4iD+2+wnS9UTA34JNfVqAxC1Cjouem2W6Ay6jiwDFlAevBJagV Oh7IsE+u7xkAVoSGK22XXGSTOcEK0wSPsUedqWhSwjBQRDYumfy6BvJ80ogl 4FelCD+nL6KSUvUJe7WHqUsxlEXvaRTE01d4+33yBgUa70me4XoKShAPN217 Oae546C2ZwBYkczVjmJTz4+QliKKHC/IpjdoFGwDrRZPdPPiBvKykDN4Zmqc MCHTrcKP5oHBk1UlfCZwMP2zqE/uWJSC0q46jCp+nEW6VbSDie6R+QYKBrJb iNThPXNOsS0dRMN1bV3RTf3ESeZZlSd+Ac6O6LpCdaQV9M9m1m1bAo3PpbuK H28ZOYhWkKRJYImH3UtzvUvmGSgYyK5ZQe6wUo2+RmH6tgQatw3ZERnFsDtg v0zv7mAg+2dXhyltTaARANZmkoGCgbwIaThnGe4JbF6gEQBWYLSBgoEAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALCQ/wd16M7B "], {{0, 66.7416572928384}, {356.95538057742783`, 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{96.012, 96.012}, SmoothingQuality->"High"], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->Automatic, ImageSizeRaw->{356.95538057742783`, 66.7416572928384}, PlotRange->{{0, 356.95538057742783`}, {0, 66.7416572928384}}]], "Input",Expr\ essionUUID->"77f85317-01ab-455b-9bb9-ba973493b546"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"sqrtDetg8", "->", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", ">", "0"}], "&&", RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ RowBox[{"k", "[", "\[Tau]", "]"}], ">", "0"}]}], ",", "\[IndentingNewLine]", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"-", FractionBox["3", "2"]}]], FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"1", "/", "2"}]], " ", SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]]}], RowBox[{"6", " ", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"]}]], SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox["1", "2"], SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"1", "/", "2"}]], SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]], RowBox[{"k", "[", "\[Tau]", "]"}]}], ")"}], "4"], SuperscriptBox[ RowBox[{"Cosh", "[", FractionBox["\[Tau]", "2"], "]"}], "4"], SuperscriptBox[ RowBox[{"Sinh", "[", FractionBox["\[Tau]", "2"], "]"}], "4"]}], ")"}], RowBox[{"1", "/", "2"}]], "//", "FullSimplify"}]}], "]"}], "//", "Evaluate"}]}], "]"}]}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"b", "->", RowBox[{"Function", "[", RowBox[{"\[Tau]", ",", FractionBox[ RowBox[{ RowBox[{"h", "[", "\[Tau]", "]"}], " ", SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]]}], RowBox[{"6", " ", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"]}]]}], "]"}]}]}], " ", RowBox[{"(*", " ", RowBox[{"hmmm", " ", "check", " ", "once", " ", "more"}], " ", "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]", "}"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"(*", " ", RowBox[{"H", "[", "r", "]"}], " ", "*)"}], " ", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["VolR3", "2"], SuperscriptBox[ RowBox[{"(", RowBox[{"64", SuperscriptBox["\[Pi]", "3"]}], ")"}], "2"], SuperscriptBox[ RowBox[{"sqrtDetg8", "[", "\[Tau]", "]"}], "2"]}], "/.", "%"}], "//", "FullSimplify"}]}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", ">", "0"}], "&&", RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ RowBox[{"k", "[", "\[Tau]", "]"}], ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"d", "-", "1"}], ")"}], RowBox[{"d", "-", "1"}]], "G10"], SuperscriptBox[ RowBox[{"b", "[", "\[Tau]", "]"}], FractionBox[ RowBox[{"d", "-", "1"}], "2"]], FractionBox[ SuperscriptBox[ RowBox[{"(", "%", ")"}], FractionBox[ RowBox[{ RowBox[{"2", "d"}], "-", "1"}], "2"]], SuperscriptBox[ RowBox[{"(", RowBox[{"D", "[", RowBox[{"%", ",", "\[Tau]"}], "]"}], ")"}], RowBox[{"d", "-", "1"}]]]}], "/.", "%%"}], "/.", RowBox[{"d", "->", "4"}]}], "//", "Simplify"}], "//", "FullSimplify"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", ">", "0"}], "&&", RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ RowBox[{"k", "[", "\[Tau]", "]"}], ">", "0"}], "&&", RowBox[{"VolR3", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"%", "-", RowBox[{ RowBox[{"(", FractionBox[ RowBox[{"3", " ", SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"], " ", "VolR3"}], RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Pi]", "3"]}]], ")"}], " ", FractionBox[ RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}], ")"}]]}]}], "/.", RowBox[{"h", "->", RowBox[{"(", " ", RowBox[{ RowBox[{ SuperscriptBox["M0", "2"], " ", SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "8"}], "/", "3"}]], RowBox[{"\[ScriptH]", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", RowBox[{"G10", " ", "->", RowBox[{"8", SuperscriptBox["\[Pi]", "6"], SuperscriptBox["ls", "8"], SuperscriptBox["gs", "2"]}]}]}], "/.", RowBox[{"M0", "->", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "//", "Simplify"}]}], "]"}]}], "Input", CellChangeTimes->{{3.9555217970641403`*^9, 3.9555218852441397`*^9}, { 3.9555219951301756`*^9, 3.9555220337274475`*^9}, {3.955522108946381*^9, 3.955522134625804*^9}, {3.955522169033123*^9, 3.955522176555893*^9}, { 3.9555222083807697`*^9, 3.9555222685622797`*^9}, {3.955522337535322*^9, 3.9555223585974283`*^9}, {3.955522419163993*^9, 3.9555224730805197`*^9}, { 3.9555225094814606`*^9, 3.955522563632674*^9}, {3.9555236398883147`*^9, 3.955523658740822*^9}, 3.9555239854320507`*^9, {3.955524040728914*^9, 3.955524070791563*^9}, {3.9555241155867624`*^9, 3.955524218511917*^9}, { 3.955524716599825*^9, 3.955524718342491*^9}, {3.9555247621377153`*^9, 3.9555247708458953`*^9}, {3.9555248889694867`*^9, 3.9555248945052233`*^9}}, CellLabel-> "In[432]:=",ExpressionUUID->"cf0f51a1-bfbf-462e-846c-957b598e5f96"], Cell[BoxData[ RowBox[{ FractionBox["8", "3"], " ", SuperscriptBox["\[Pi]", "6"], " ", SuperscriptBox["VolR3", "2"], " ", SuperscriptBox["\[Epsilon]", RowBox[{"20", "/", "3"}]], " ", RowBox[{"h", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "4"]}]], "Output", CellChangeTimes->{{3.955521838180101*^9, 3.9555218988960257`*^9}, { 3.9555220186251535`*^9, 3.955522037289859*^9}, {3.955522113451131*^9, 3.9555221348512363`*^9}, {3.955522173740649*^9, 3.9555221766498146`*^9}, { 3.955522224476156*^9, 3.9555222694254932`*^9}, {3.955522342518516*^9, 3.955522359653755*^9}, {3.9555224289850707`*^9, 3.9555224733222313`*^9}, { 3.9555225107895036`*^9, 3.955522515855753*^9}, {3.955522554513314*^9, 3.9555225752855425`*^9}, 3.9555236218807297`*^9, 3.9555236593093185`*^9, { 3.955523773918025*^9, 3.9555237826064386`*^9}, {3.955523983014925*^9, 3.9555239949686513`*^9}, {3.955524038799161*^9, 3.9555242513173*^9}, 3.955524495867015*^9, {3.955524578163273*^9, 3.955524584894745*^9}, 3.9555246381782513`*^9, 3.955524720040741*^9, 3.9555247711936197`*^9, { 3.9555248782938557`*^9, 3.9555248947618537`*^9}, 3.955524983603964*^9, { 3.9555251142945833`*^9, 3.9555251164459457`*^9}, 3.9555252040128937`*^9}, CellLabel-> "Out[433]=",ExpressionUUID->"26289b97-17d0-4128-9b5c-237b0ae18d75"], Cell[BoxData[ FractionBox[ RowBox[{"3", " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["\[Epsilon]", RowBox[{"16", "/", "3"}]], " ", SuperscriptBox[ RowBox[{"h", "[", "\[Tau]", "]"}], RowBox[{"9", "/", "2"}]], " ", SqrtBox[ RowBox[{ SuperscriptBox["VolR3", "2"], " ", RowBox[{"h", "[", "\[Tau]", "]"}]}]], " ", RowBox[{"k", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "5"]}], RowBox[{"G10", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"k", "[", "\[Tau]", "]"}], " ", RowBox[{"Sinh", "[", "\[Tau]", "]"}], " ", RowBox[{ SuperscriptBox["h", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], "+", RowBox[{"2", " ", RowBox[{"h", "[", "\[Tau]", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"Cosh", "[", "\[Tau]", "]"}], " ", RowBox[{"k", "[", "\[Tau]", "]"}]}], "+", RowBox[{ RowBox[{"Sinh", "[", "\[Tau]", "]"}], " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}]}], ")"}]}]}], ")"}], "3"]}]]], "Output", CellChangeTimes->{{3.955521838180101*^9, 3.9555218988960257`*^9}, { 3.9555220186251535`*^9, 3.955522037289859*^9}, {3.955522113451131*^9, 3.9555221348512363`*^9}, {3.955522173740649*^9, 3.9555221766498146`*^9}, { 3.955522224476156*^9, 3.9555222694254932`*^9}, {3.955522342518516*^9, 3.955522359653755*^9}, {3.9555224289850707`*^9, 3.9555224733222313`*^9}, { 3.9555225107895036`*^9, 3.955522515855753*^9}, {3.955522554513314*^9, 3.9555225752855425`*^9}, 3.9555236218807297`*^9, 3.9555236593093185`*^9, { 3.955523773918025*^9, 3.9555237826064386`*^9}, {3.955523983014925*^9, 3.9555239949686513`*^9}, {3.955524038799161*^9, 3.9555242513173*^9}, 3.955524495867015*^9, {3.955524578163273*^9, 3.955524584894745*^9}, 3.9555246381782513`*^9, 3.955524720040741*^9, 3.9555247711936197`*^9, { 3.9555248782938557`*^9, 3.9555248947618537`*^9}, 3.955524983603964*^9, { 3.9555251142945833`*^9, 3.9555251164459457`*^9}, 3.955525204035607*^9}, CellLabel-> "Out[434]=",ExpressionUUID->"db758893-15ed-488b-8f7d-fea68f63e159"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.955521838180101*^9, 3.9555218988960257`*^9}, { 3.9555220186251535`*^9, 3.955522037289859*^9}, {3.955522113451131*^9, 3.9555221348512363`*^9}, {3.955522173740649*^9, 3.9555221766498146`*^9}, { 3.955522224476156*^9, 3.9555222694254932`*^9}, {3.955522342518516*^9, 3.955522359653755*^9}, {3.9555224289850707`*^9, 3.9555224733222313`*^9}, { 3.9555225107895036`*^9, 3.955522515855753*^9}, {3.955522554513314*^9, 3.9555225752855425`*^9}, 3.9555236218807297`*^9, 3.9555236593093185`*^9, { 3.955523773918025*^9, 3.9555237826064386`*^9}, {3.955523983014925*^9, 3.9555239949686513`*^9}, {3.955524038799161*^9, 3.9555242513173*^9}, 3.955524495867015*^9, {3.955524578163273*^9, 3.955524584894745*^9}, 3.9555246381782513`*^9, 3.955524720040741*^9, 3.9555247711936197`*^9, { 3.9555248782938557`*^9, 3.9555248947618537`*^9}, 3.955524983603964*^9, { 3.9555251142945833`*^9, 3.9555251164459457`*^9}, 3.9555252040385995`*^9}, CellLabel-> "Out[435]=",ExpressionUUID->"916d2afd-6b84-474c-81eb-88e9806a3395"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Assuming", "[", RowBox[{ RowBox[{"\[Epsilon]", ">", "0"}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ FractionBox[ RowBox[{"3", " ", SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"], " ", "VolR3"}], RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Pi]", "3"]}]], "/", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FractionBox[ RowBox[{"(", RowBox[{ SqrtBox["Mc"], " ", SuperscriptBox["\[Epsilon]", "2"]}], ")"}], RowBox[{"G10", " "}]], SuperscriptBox[ RowBox[{"(", FractionBox["3", SqrtBox["6"]], ")"}], "3"]}], "/.", RowBox[{"Mc", "->", RowBox[{ FractionBox[ RowBox[{"8", SuperscriptBox["\[Pi]", "6"]}], "3"], SuperscriptBox["\[Epsilon]", RowBox[{"20", "/", "3"}]]}]}]}], ")"}], RowBox[{"-", "1"}]]}], "/.", RowBox[{"G10", " ", "->", RowBox[{"8", SuperscriptBox["\[Pi]", "6"], SuperscriptBox["ls", "8"], SuperscriptBox["gs", "2"]}]}]}], "/.", RowBox[{"M0", "->", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "//", "Simplify"}]}], "]"}]], "Input", CellChangeTimes->{{3.955524723813712*^9, 3.9555247291323338`*^9}, { 3.955524822216772*^9, 3.9555248288481793`*^9}, {3.9555249058002157`*^9, 3.955524955095436*^9}}, CellLabel-> "In[436]:=",ExpressionUUID->"b173bffd-1557-4126-a1bd-0084e6cb9e58"], Cell[BoxData[ FractionBox[ RowBox[{"9", " ", SuperscriptBox["M", "4"], " ", "VolR3", " ", SuperscriptBox["\[Epsilon]", RowBox[{"16", "/", "3"}]]}], RowBox[{"16", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["ls", "8"], " ", SuperscriptBox["\[Pi]", "6"]}]]], "Output", CellChangeTimes->{ 3.9555247296246557`*^9, {3.9555247778595886`*^9, 3.955524859830097*^9}, { 3.9555249108028975`*^9, 3.9555249576822834`*^9}, 3.955525148534916*^9, 3.955525204668414*^9}, CellLabel-> "Out[436]=",ExpressionUUID->"637b7a5c-0c0f-4444-a58e-17c2cc54cd50"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["computeWarpFactor"], "Input", CellChangeTimes->{{3.9555253216861467`*^9, 3.955525334991498*^9}}, CellLabel-> "In[443]:=",ExpressionUUID->"2fae4920-47e5-498c-91aa-3b8e282e63b9"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[ScriptH]", "\[Rule]", TagBox[ TemplateBox[{ RowBox[{ StyleBox[ TagBox["InterpolatingFunction", "SummaryHead"], "NonInterpretableSummary"], StyleBox["[", "NonInterpretableSummary"], DynamicModuleBox[{ Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`70.*^-5", ",", "15.`70."}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource[ "FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`70.*^-5", ",", "15.`70."}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Order: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Method: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"Hermite\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Periodic: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["False", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], ButtonBox[ DynamicBox[ ToBoxes[ If[ Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= "R4"], Style["This object cannot be used as input.", "SummaryEmbed"], BoxForm`EmbedSummaryLabel[InterpolatingFunction, 3680816, Dynamic[Typeset`embedState$$], Automatic]], StandardForm]], ButtonFunction :> BoxForm`EmbedSummaryInterpretation[ "Choose", InterpolatingFunction, 3680816, 8811111632002960760879827459699917310010502812860650912464, EvaluationBox[], Dynamic[Typeset`embedState$$], StandardForm, ElisionsDump`embedSummaryBoxes], DefaultBaseStyle -> "SummaryEmbedButton", ImageSize -> Inherited, BaseStyle -> {"DialogStyle"}, Enabled -> Dynamic[ And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === "R4", Typeset`embedState$$ === "Ready"]], Appearance -> Inherited, Method -> Inherited, Evaluator -> Automatic]}, "SummaryEmbedGrid"], DynamicModuleValues :> {}], StyleBox["]", "NonInterpretableSummary"]}]}, "CopyTag", DisplayFunction->(#& ), InterpretationFunction->( " \ -5\n\ InterpolatingFunction[{{1.\ 00000000000000000000000000000000000000000000000000000000000000000000 10 , \ 15.00000000000000000000000000000000000000000000000000000000000000000000}}, \ <>]"& )], False, BoxID -> 8811111632002960760879827459699917310010502812860650912464, Editable->False, SelectWithContents->True, Selectable->False]}], "}"}]], "Output", CellChangeTimes->{{3.95552533074658*^9, 3.9555253372318945`*^9}}, CellLabel-> "Out[443]=",ExpressionUUID->"bad8cc9e-12c6-4b91-a221-bd8271f7fe0a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", FractionBox[ RowBox[{"3", " ", SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"], " ", "VolR3"}], RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Pi]", "3"]}]], ")"}], " ", FractionBox[ RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}], ")"}]]}], "/.", "\[VeryThinSpace]", "rulek"}], ";"}], "\n", RowBox[{"Plot", "[", RowBox[{ RowBox[{ FractionBox["%", RowBox[{"(", RowBox[{ SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"], " ", "VolR3"}], ")"}]], "/.", "\[VeryThinSpace]", "solh"}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", SuperscriptBox["10", RowBox[{"-", "5"}]], ",", "15"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Black", "]"}], ",", "Thick"}], "}"}], "}"}]}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"Axes", "->", "None"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}], ",", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", RowBox[{"PlotRangePadding", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{".2", ",", "0"}], "}"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.955525211399686*^9, 3.9555252336809697`*^9}}, CellLabel-> "In[444]:=",ExpressionUUID->"c6e312dd-0f14-4d4f-b5b8-45c0e55b0bb1"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwV1vcj1f3fAGCbbIqDQklkHCMZ4bxfHyOhRUVIxcnM3pkhqbskSUaSmVHI VkYyskf2ioxzCNlk832en65/4TpBdLpmSUVBQcFJSUHx/xY9Gs5gTSCj2Fr2 vKxiemXrHG7KyglXiNR0lHcVbVQNLbGvNBgJhs15n4YhGh6CMfeV7Us6YSA6 vr4SVq1F4C6POZoyFAk1LYtKiqvWBAo7hrKEiBhg63JrGFEPJszweRvFab2D 79t/PEqKowm2ZHdf3YAkeDznnZHzNJNwh5Cjqz2YAgQs9UzHn1LC9TdkXq2z HyB/Yqw66L8fBO15/hmNlxlQK+JAclPpIqieN/yiNpsFQpE4dpVbIwTZhPAn cD4bZunc6IjZUwSR9XpDQlIuRN1J4gmcWSK8SD+ITPDPAzmcjNuM/ybhaVe8 z7FP+bBTCRoGOpQoeF+RGD9QABdcY7UUR+iRn3iPDh9dEcyJlFWJi7IjL0Nn 2Ti5YjCuzcz85s+FXIOZeXnMSyCXMqYpQfQYss/NpIgJLwU9vlRhIRkhZDWk +Yer4gvMbEX8/HVWFJnRjXdEzXyF1DiXCVctPDI54196GFcORlZyHt5aZ5DB Hd7ESM0KeLSowsXzVgHpPSsO5XCtBMmgf0r/ilWQbom+Y0TiN7h/ydaBYghD mhPzBmxtVUBf+HFAyEgTCdL/ELjg/x1ypI8MPbLQRsf4X0fSHamGmKzmSlu2 y4hPzpyu/mM1LNdpjQrL6yOcjrTPY7Ua6B9appzRuIGO3N2b1xyogSzW2p6t ypuIw6PFnMapFmje5Gn+y7mFWJ/H9dbS1kGmGFEjis0MMSdb6zx6VweMMmNe P8KJ6FCpfKW63A/YUH5hNmViiejaqGWpmn+Aw2kqj08+NohmsjOt2qwePNO5 75xet0OUW4k8QRv1EGO/o9PV6YT2WR3DsPAGeHxs5ZgasyvaEValoDjVCM+0 ItLKbdzRpjKje1V5I2wFVXhmU3mhdb2B6YBrTfDyjXHsu1FvtGKVfgvNNMFY zlOXi5T+aNHPvWPvYTPYmWcv9ysGor+R6hqV3C2QrzCT7YcLRtPfRsVVNVtB xZKWnuVWKCL1ZL/fGWqFWS9X4bK6p2hi1oez3KUNVHj56m8Tn6PfFDqhPgzt IOLVVyOsGI5+ceO2zyW2A6P/yxR8agQalCQ7bMl3wPFFhdQSnUjUp144/qW1 A7he6Iasskchm9IM0lH/n+DHNBCyyhCLrGrC3/s2/gS1U+dy3xDeIss2D6Ph w53Q2VFE+Pj2HbIYMOVUudsJAz7jLheFEhFxUqP17cdOME4NDro2l4TMF8RD t9c7QWqCQ3LbNAWZbXFgJmpdYGLjfltzOhXdZhsr5B3oAskma4Uw3Qxk5iHg +1OsG3J4mq+bXM1CFsOm6k98u4H7FYshzusTslaLP4TauuHGn4fnH9TmoPsZ gz/XBHqAjoE1U/BoHnJg4Yn95NwDbbdo1xNs8pGzm+FdYk0PCD5+5XmqpQB5 Qvd8h2Uv6DIapkl0FyPvDxzFoaW98K/DQjrLpxT5Men5EQ71wWntgka8ylf0 qL+V8VN2HyTx6GhGM1WiUAJTl/l+H3CH9Xbl8VehZ6k6cTx6/bCbRLWUmP4d RTjVi4au9sMX9Ycfymlq0etemkXV8wOgISL688KlOhStolGyGj0Amt3+Kvtp P9A7+u+a5sqDcKcscyYorBElOuwz8YQNggjDJbu0Y80opVu1u31kEFro1gvi v7egrMSv5qpBQyAye2p8WKsDZdNunl7tGgJpUsjExTc/UZ6dwlKW8DBQ9icp PonsRCWKhQG4xmEgdHvlJ+R1o68Jy+fbeX8B6/E+M7WuHlRBLcPy2O4XqMKd Z90UfaimIzt+hXUEIpnS5GxDB9AP+TliltkIBDBFWmqODqLGeDFxs4IRsCUX eFZqDqN26/QvbQajcKj+/cPLMIo620gPQzJGoc/6662LPb9Rj9zJCypbo2Dz NslpqGIMDR8k9ma++w3vdj1q+nwn0Kjl6Lu7C78hOjfuVpzNJFq2ZD3DdHwM /lmN9z+5Q0JrLZe2ql3GoEBieu6P1RTajml6Is01DhP9HyRXl2bRbrPNHCMa B+bug5nzUn/R3h791SmrcbjheK9qxHMeUVhocSd8GYfDIq3u/lxLiCqG7P1g fBy6A8M7n7YsIZrmkJHrjBMw9XmBv/HJMqKXqU1jNJ0AhSwc+cHhVcRwj8gw FTIBuTRquQqTq4gxmtK+OmcCRMTdqaq/riHWXZB7cDABbD/pGgZ8/6EjjRXV 5JRJ+GZn6O1rtI2SzfhomZsmoUvW+zyP/g6S2vLSPrM4CfAG+Vfo7SJtcbmO ABUSPH/KfiPdch/5hmX9wvWQwO2OeMCiOyUwnKI/jrZJMNYiKKzLRgVRlRb3 LI6TIfRsZ3JpDhXkLgjO5tmTgY+W8gXXBjVM6EVv6NBOgfNrG5qFSjpwmllV dpaYghaqVGzRhx52g/QDovWnoJjvS1e8KgNwFzLTTiZMgUyvRuf59kOgw/WI 009hGlZaDqyZ8SzQlzNmkGI6DclfOF5Fc7ACUQvFNQZPQ9Z/tzkddljBz2tL kKtjGjwkDbcyndghb9AJn2v9B+iCXAqFPDiB4Nrm3PPiD/h1XB6u3OOEZkaJ ou3CP2BtnO99/b/DQFKZUr5AMQPqShPqcVlHAPfeVHssdgY27aVIVWw4SFMo e05XNQN/z0/C3XwcyHTgOiTJM0DlJZ+iZ8gDuhTdBt6ys9BQYsFv+JEXAog6 9zibZ0GOkZAm4ncMmHbS05WWZqF04se7iHP8EPuaZvYO9xz06LaQ07f5oaCu yvkTcQ4MsX8EuqeCQBZRCNDcmYP9n6yXbW1OwKU5oThPyXlg6J3btOI8BczZ Sjoj+vNAsIm7WRh+Clrtr2xpeM2DAK0YHz+LCFxc8DbmqJmH8hJn3rvsoqC7 /JM3++YC4DM5/c/JigFjwVQTp/8CJGrH2rJUiUGz6663d8oCjJvf8pW4Kg66 a6JDWvML4NLJ/MjUUwJ0NgLejgcvgr5Mg4P0OB4YvkTpamcuwr25/MblIClo fPBxO7dtEVRx8coSp6RBeO8+HjEvAb6TeSHsnAykBUS/YLq5BNdUWFKqo2Uh NWj+cvrfJegJvRhQEnEWqIibH4wPlkCbVinq+L+zQFSn3mfmXIZfMUFzK6by IETNm+umuAzvOIUdh6UUICVEk1UteBnYn1ybZyApQsqT+PZh3AowH/GwU45W ASqbdJGX4itgnKL/xuWwKhC18wPUCSuQl4yLVo1UBaFDDVJZxBXwN8HVxUYR IPnZSrhnzgoo/j29XJgNkPRC5yqHxiooVZs/vcutDtWaH++b3FyFQHyt7Gcb dZjYYQxNtVsF8aFERtoKdRC+31ohH7UKR5TnCposNSBT66q4CXkVagV7Lkz+ 0IT8gxu0qU/W4PaOBW3R1wvQVVJ8/G/8GlTIvI4X4teGNQduVfm8NTAVMmPL C9IGhV/9rg0Da3Cy+IwD/ooOlH0xGZsTW4c8ma6nQ2u6UONiVn62dR1st5Lu KvtcgcnT1X3+Y+uQGO2Ro7Z0BWjGTqzUr63D9WO/pAKsr4LWlcnTxvz/QPtu J3W7pB40i1tF+zv+A99738IuiOhD16SdSz37BkTSctPLK16HSQMvUSODTSC5 dySz9N6EZigt0LLZhOrlUAkVQSPIE9sgyPtuwrfMDezA1ggC9jxvcCZvgmyF dcIlSmPg+eAZ1Pp3E96/ZqujUzSBK2sew1jIFtDJW7joVpnC10j3l2KF27Ck 20HKFzKHJL8iPp76bQh3Vk55om8OoVZrH+gGt+G4QXh/TqA53FB2r5jc3wY+ vlbJv7/NYWHcbSZBdwe6bQW25FKIICzrpsE5sQN2Le1SjAoW8LLDZWObfQ/k pYu4nsZbg0IEvdbDU3sgZvb6heOgNYzqJURRK+9BwBtTVIqzAamuRlnme3sg vpyQ6vTGBtp7BO35i/fAv8GzOeCNLTAPtY2B8T5MacQeFs20g2ckseaQ5APo fe6cSM3sDGc+VPEcKjkAvUu/PonLOsOQpYH1i+YDGGeSKnxk6Axi04E00asH EGJRXNmS7AykNbvEbiEKzEEkl6ZI2QVCNmoGSe4UmKWfWsWUhyvU7Dpfoeel xI4EXsvq5fAAoemZCN6TlBjna6NoV1UPeNRJ7JbAU2J/jL0+grUHaKbfMNJT o8Q0sCjV+5Ue0HBViRhnS4n13ZbOp7D3hNaUAw+JMkrMy8a0TLrLC/q0wxOu 3qLCipY17nrV+MBc1Ke/MQnU2DHH5MfFsYGQy3NkejedGsveMmoXLAgE13d+ 4+Z51NgZ3nLb9y2BsJl6uU+ilhrzEhAOG9gPBLrCxaqqP9QYQ773acwqCIQ6 5V5Py9FgS/ffUwwpBYMJS8U5xWYajKhUsXli/hE0PW4N7ftHi3HdbjvQe/UE Wq5kPm8LZsDm85i5F7AICHa+H+Y6yYjp5WAOiSxvwIbrs5GAEgu2GRcvZGHw Ftwic18GV7FhR/dlsWrjJOA7q2vezMKBOeJuV6+/TwXm53x50gacWGPg5wqf gAx4czLbIjb6MNYk8pHGJ/kTeP+RwRnVHMFKVL77cjV/Bifewwdu9NwY3Akh puoVQJXnH9KUAg7rN6Qs6SkrAiHsKEXJQx5M/ji/xY2QUjh2kS3oaQ0vlhjO ryDkUAbOwf8O8hf5sHydyr3Ei5XQf0qlSFHhGHbjuH34B53vELvuanXEmh8r OXpClGKqGpbo7APWXglghYb7lnde1MKtkJoWmT5BbNbCNpvT8Qew40KZiMHH sXNufir16g2wmzzYYixyAjsT/Uo8/0YTFLWxwPWGE5jSoYp8IbcWiHupIvvg thDGnsVGNRvYBk/oedBFipPYxl997/KfHZDCtdCkE3sSI7GvfvtO1wn/1aUx 6OKFMayjZZpWrAu8xRiJm+3CmLiAZGWWYzdEC9sqd1mewqjXL04GZvZAZa8n 3uSQCJbw/O5OGn0fcPAHJLKkiGCL1XI/moz7QYbWqq5GURSTKn9dPpc78H/v 3qUWGRLFDqkp1ZdIDMHn/rCaIpfT2GmtdE2luGFgrWmJX+YSwwzFmq5elxmB c5fnRGVKxbCmsrIosZZReOVII/f2sjhGLUE9JCU+BivnW40KlsQxvYnikGaa cQgsfLG3/lQCa9/4y7LbOw5D1dIGKgKSGJE+gmswYwIIoYENUt8lsVLrmGlS xCS0jTV/uXwTj40I6HMRnUhAlfgtaMkYj9VJL0VccSOB0u0C3demeEz66nEH FS8SpAzG/Rowx2N0c7YXuB+SwLPLhsLCHo+Vf9sJ+RlOAoE6Om2fIDzG9mBG 7GYuCRwz1PvTP+GxlXvvqXLmSZBqqZCkk4vHcoJ3oz8sk2DgpLjt3zw8xqWy 9/z9OgnUkzh2ZEvwmEP2TsyrPRJwx40JVH7HY7si9kp+LGSoehZg1d2Lx873 +7y/hyfDmrartOcAHrNXZgGiLBnE6a02eYbxWFRSJGYuT4aoR5ef3RnDY+6J vlZmBDLY+B3LnZnFYx3LjUr3LpMhQZndK2wej8WvZIxa6JOha5Mak17CYwMb PmQrAzKoesx1uq/jsQiDIZz9bTK4yP1+i9vEYxkFbzEnczKkL3fdK9vGY9V0 /7W4WpJh+HO95O09PLag51ziaUsGdsey9YMDPOa0a0fl60CG/wGIaBWv "]]}, Annotation[#, "Charting`Private`Tag$9166#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0.000010306122244897984`, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0.2, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.9555253407369757`*^9}, CellLabel-> "Out[445]=",ExpressionUUID->"c749ee4f-dd77-4e07-a412-66bafcea5fc0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", FractionBox[ RowBox[{"3", " ", SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"], " ", "VolR3"}], RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["\[Pi]", "3"]}]], ")"}], " ", FractionBox[ RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], "2"]}], ")"}], RowBox[{"(", RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", RowBox[{ SuperscriptBox["k", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}]}], RowBox[{"k", "[", "\[Tau]", "]"}]], "+", RowBox[{"4", " ", RowBox[{"Coth", "[", "\[Tau]", "]"}]}], "+", FractionBox[ RowBox[{ SuperscriptBox["\[ScriptH]", "\[Prime]", MultilineFunction->None], "[", "\[Tau]", "]"}], RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], ")"}], "3"]}], ")"}]]}], "/.", "\[VeryThinSpace]", "rulek"}], ";"}], "\n", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"1", "+", "\[Tau]"}]], ",", RowBox[{ FractionBox["%", RowBox[{"(", RowBox[{ SuperscriptBox["gs", "2"], " ", SuperscriptBox["M", "4"], " ", "VolR3"}], ")"}]], "/.", "\[VeryThinSpace]", "solh"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", SuperscriptBox["10", RowBox[{"-", "5"}]], ",", "15"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"6", "/", "10"}]}], "}"}]}], "}"}]}], "\[IndentingNewLine]", ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Black", "]"}], ",", "Thick"}], "}"}], "}"}]}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"Axes", "->", "None"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}], ",", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", RowBox[{"AspectRatio", "->", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{".00002", ",", ".001"}], "}"}], ",", RowBox[{"{", RowBox[{".002", ",", "0"}], "}"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.955525355873297*^9, 3.9555255725145035`*^9}, { 3.955525850766009*^9, 3.9555258628663654`*^9}}, CellLabel-> "In[543]:=",ExpressionUUID->"5608d300-9d65-478a-8559-4b6b8f926999"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0., 0., 0.], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwdVnc414/3RRktSeGTipCRLULhdSQZFZERhUoJmWWUFUkiMyVCJVuiN5GV kOy993p7v+1VRqXo2+93/7nPee59nnP/OM89h8fc4bwFHQ0NjTMtDc3/9QdH jRhn/i7gu7qUrez1zcd5L48EWvYt4OVUR911/hrFxqmLMQp5C/j9N0mhc9N/ Su+qUxhvhC/Abj2ENFGmpvThokAK1WYBnE9VynK/WyqJF7w+V6i+gJyPYxKh Kr5KCVUHxob5FiAl9fXntbznSowSbapGNAvI2FyqejUgTamH86cpz+A8Ctay d4ZO5iuVFuTvP140D5pw9xitwEqlF/e3Or+Jmkca22mhswptSsty8ZcMXebx ZM/6OM2lQSWPuK/NF/TmcU3oaa/8u3GluNZTrUlS8/h0Xaf02tSikoL1JQtF lnls2n5fv8Lrp9J5jtDIAwtz0Nm+V1BRk5Zw3RzvoN40h13P0qvZBxmJmGIX +sLMOeRquG9nF2QhjLL+2t4KmUPw24spSV5sxNkzh8oc7OZwNjDW10twP6GT 8Hb/B605eOtzGDJL8hKqEfxJx8XnUEt+WfpVRpC46znsQb9zDnwN5pMGamJE u1tVA+viLJzOHReyUjtCjO8wrrjaOotG/oBnm2JkCS39p2Hfcmah0LXBMZSn QEwlDVwvfzYLo9Rfut97lQmHjBW3FtdZXJYsvs1qpErsXRhn4jKexdy6FNXx ugahVr2gna4wi7JFh0W9nVrEWKFL8C2uWQSUrl3776guka+8vNmVdhZRDxdq +07qExnfZzfyKDMIoAjmTJVcIASZeyoka2YQU13ISMm8RDCYs8VTM2ZwoNpk I3DnFUItYpDcHjaDv1ccvhWGmhPsH6WH1pxmMDoAz96LFkT22e5xY6MZ3GRv 3PPS3Yqo9JfVX1ScAaffafP/VmyIydErPiU8M7gVfPxJWasDwb5nrbqMYQY5 54J15LbfJgZVxR7/mplGJ2NhJ8nKmZCPiBeybJ2GfgVPRDzdHYJt2IpxS/40 /O99DgwbciPuTq0HD8VNQ7ynjE+J1ou4lCLOO+E7jfEKnoMtcj7E/VG2I7zW 0zjKI8LvzOFLnOfeKRx2bhqWasJ84PUjWEoz3MRkp7GNrDhPd8mfqL6UFvFn /zQiG5sk3n8NIERukid/b5rGFimGSV3zIGJ5l/Z34Zkp1GceneOQCyVYT8wK BLZNIdAnOVcgMZw4/aOMhr1oCpf0YoTfa0YQBTW1v1veTKHg2j63GZZnxPId 9nPNt6agaVahMM0UTSQMk9N2XZxC3meiMEgphuinkgV8VKbw8FTz09cxcYRX g602p8gUDBNKtyjzviZOZMWmDO+ewpdkP+uzM/GErYl6QfOfSbDxSmUsmSQQ Z63/7JimTkJo/am90kQiYbSfuSC2YBLGOhGX/E6nEvEvTlrqxk+CKta4oHsu neBZSEyUDZjETR9+c+Y7GcQ1azbyacdJHDLLLbKvyCTEWmJehBhNYnvd66ec +0iEsYTmyQ3lSQiyD4ZEW2UTdX1KF+MOT0IsmlzAXZ9DjLmaVZn9nsBj7yox /vY8Qis/ap8vZQL7GVUNE9zziVpH7qGWxgnIsFcGCCgUEoaqWRGn8ycw8HJb 0Be2YiI/v7F0Pn4Cz/PjD4duKyEYsprnPj2egKknvWragVICLFUpuc4TUD0l aRubUkbsZrWc5tKcQM9kzJuPmyuI3N2ZT8KlJ3B6wytA5exXwqWNef0w1wTc 9nln/kyqJF4k89m0LY3DPnhXtUdwDcHy6XjUyNA4hlT0117uryMarAX79tSN 40VAy+KzsnpCtruDcT5+HAejGZ071JoJ+VvDghHB4/jCTfNXPbKFcDBUq714 dxzqZxL4H0S0EiIT/FuNdMbxZKxP6QWpnRhn35gKUhzHtav0RYptHURLCrWe LDSOKZ78rCaaLmI2mIb/J+043v/VnLrm30OMFk2N581TsUX47Cgx1Evo/VJR juynonJP2cd81X6CJY/TJD+PivfyiyrqGCIatVZu/0qgQrBydlC1Y5i4uX2+ 9lI4FfduKuzs/jRCsGe6zXnbUGGiL7O/3YNMXCmx5ThhTMXelu/hkVZjhOhP GUUedSpmTnVNPDCjEOkenxSV+KhgV2DMotwYJ9KXN5X1D1AwlHRfbX5xmrDv 9rkcXE/5p5c93cris4R7Q2W8cREFYnNP7/W4zhEPjfXmNaIpaEdjkjvbIlFf 98Hh5iMKEkbHJx/WLxKF8Zu9Ul0pmHJn2l/56Bshsl9DwsmAglXXmSyX3UvE kNYJHdpTFNS2bzGVHlsiaISkVtJlKOhbeBZZUrhMCH3Y2qC5h4J0vV8HOz1W iZ2WpqOfOsawf1nF+I7RGvHu8KfZg1Vj4DloxbhH9zdRbPfGPiZ/DIyssQcL dP4QDDbkvY0xYxiT8St4Y7FBdHL5jz8MHoPy27VwMY+/xMkbio5698bw6LxW hcBZGpzYLcwoaj6GiqWRuVlnWqTm1BbL6o9BPeqWr/pOOmwr0PA0UBsDTZD9 fG4m3T+f4nJpEv7Hv3gyj/XHJkzrICt9mYyGe9wj0yUMeHfQW0BnggzTVzeY Zt0ZkTcueXlLHxlNk9L+0YpMuGBU4vyhlAxnTclLKk1bUBZC82c0iAy6/0pj mMR2gESBMqc3GSPKwpkRu5gxqubEdv02GbpurhzWv5lRKf+KLGJMxv06E0qK Awucv2aJBgiSQY48a3fQhRW3FZ04NfeRMWloE1C8zoo0l2Jfzp1kJNGO7dUN 3I26pXvE/OooXmmTap6n74GAa2S3QfU/TNBIl+zkQM73km1RxaPQ4vH2Mcnm wF9+76KJ96MwsrXp0DL8D0tNDMz50aMQMyKO6L3dizO0rKe32oxi9QCHJ5/n fiwupO34enkUVTnU6yHHDqDHR+5KsP4oQp7/fZm4dgBNZBoVDWIUEpKlnXQB 3Oi4or5qzTqKx/amdyytePBtKEosknEUr+NMu+27eFB8JJyz6c8IAmOso93V eLHJfDDTamIEkmyDsR9F+TCm2vxdqWQEpD1G/ddZ+UHK7j/G9GEEfdNVktmh /JCkFs8NpY1g27m/U5w7BJCVnHEi+9kIwja0u0xYBDGjwyw+YTuC7yu9rHJS h2Egt2rHem0ECmomK1tLD0PD95GNpvEIcm5sWhc6JwyptckzfadGwDJ8ZNHY VQTmsyfNH3KPQJqpnCQ6KoZS0yzt7ez/+H6RaRbuiyNlWN7w1fYRlKdPWwrx S0A0ob21amkYQXuz3IKOSaL3meX24fRhTD3ZwVH2XAoVuj+WN/YOY6vZp4rc cBn8SaDLNGMahveUdzvXqgxcVI7pt60OQdrs2aFvJkcRwO05tdw+BHGptJhe cVnksO1+whc2hBunhGgYKXJwNtzDy31vCFOumWdoDOTxZ9PtODG7IfAeFeu6 Uy2PvojcZt8zQwhiW388SzqG12/8WrZuGcKX2Pca8s8VwDSSfDrm5yBoPRJt HHYr4hftYqHC5CCWdrpYHI9QxJOeBrrc6kF4j1s9fP5MCVKmBzjuPBqEvX93 ZPY7wDmUGBLfOohHJzYrmbGr4DvH5rwHvwagNaBCzrRSgf2cS+LM5ACMZFY/ bvqkAoPYEtXl6gGw+/Yb1licRHlnHDvVfwC7fDP6RitVwVVmL9DsOoBo2/bb YQdPQeo0q079jQEIFet3nfM8BeUjPHd+qQ3ARO05/045NcT23mw+zDSAz4zD zjmF6lBbmrvx5mc/OEX9GXgOaEAj6L2I8FQ/lvdUuWTd18C2dad6+7p+jHTa 1oloa6KIQe5CeUg/tn62b+9ZPo1LpcXrThz9MLmz9EDeXRtd/i0vvjH1I1hu vAGL2qi+JVlwb60P34MsND0tzyE49ut/1YN9MPsjsL1RVAe3Xc+X7kjuQ3EZ e5CagC5eHE34aSrbh6Snfxal5fTgnu76qEaoD72uX/pEPfUwvyrMd2JfH+6p 6crWletht/dFYROaPvBrrz9a1taH4sZLHrn6XnjvuirMccsAPGz0YfbXenGZ 7sDV7Z0XsC5ecTPwQi8GxtUnj3EbIY786cb7M70w1BX+vW5tBCyK3t8v04vC irvnz9AaI0K6JcKNvhdzRbX29HIXMcllse/I2x4MqAswapaaYFS1ZfrHqx6E 5QXnb9ttCu0A+fnqpz14LD2RddPSFOaPw439vXqgQLIs3thlBi/pipMeuj34 uesoc4D9ZRySGCw79rsb4kvSnNm8V0GDBw/iFrthwKnS5a97Fc6peqlM492o cpTfmulzFb5ClJE/Ld0wdSo0mRm+irDDzyv1UruxMBbEJ51gjqaXdFMkg39z Wn7tLbLX8Yzlh05vQRcSHIO5HsVaoih2S+/DrC7kWJGf2fVaojzMp1QhqQua W3lVP3JYwTey1rkirAt+cudS7COtkFjFwHvCsgsHu39XeUVao0Zkpneaowv3 3fI3CaTZ4IAk+b4gcxfqfR+pHJu1wZvV5SrbzV0Yu/yx/72kLTyb/6yxfOvE yu2b56uLbME43dnyua4T4c9/pMW324Hjvy3JKd6d4F1k2LZpuyPqlD4tWbp2 Ij/gLbuwlCMosR5HpOw6IbpH5sADQ0fsf2d6of9iJwwpwgL1b/7tN0vwh8h2 QkOc7uaH47dw4vNNRbOFDnxN19037nIbXpIz6843OkAkDvzu2OWCaqvnkRpm HdgFrslbii5wf6Cdz2vYAf8Xd38Tli6IuRzjNn2qA4IN24OtS1xAJ3map5q/ AwzcUet/bVwhUcVknjXejl+eyTQSbXfAcLhEnM6uHSVGZi9cv7jD61Tb52iL drw0vpPGsuQOf6F3yzJm7VBx9zzbx+eBeLFFuXvn2hFHDB//89ADwuspN/WO tKPr0zda97OeCGy4vnPTrzaklPk8vkD2Qv8emVStx214aprCnhftgzM/5EVo /dpgSUN/mTvHB3o2tisFXm1oUGVee1nvg43FTWeO3mpDanHlvp4NHxT9/Ox7 xagNiZ0FH3HjPrpMXV28BNugKb0vuFfeF3yj0yx5Na2YLfx8j2fuAewz75tM fWmFVEkBLcsWP0jsm7fjKWmFn8CfW6z8fmDdG9kel92K+1sTduiZ+uGtpIpq WUwrtteb93xp8sPz5iexH+1aUXusZtU47yE8/ZpZNNlbwVSz2UPnySN0jX2d 9GBpxdoHnWX1nEeQkxh+n7O1FXd0B28Ytj9ClXPQb5G/LVhleCZUwBaAOxNi nFqTLWimtcwLjQ1A3qmju9SKW9D+bq3ALyMQ0swGHT+vtUCxxc7WYyAIL2dD ZBPMWhBgVsR4hiYYsZv6dp0zbsE27WsiUoeCMawoIPBBuwUuhdMbyrbBiFvr t0w61oJfid+97NeDwcgh4SjE0oKltRMCG3yhqDggM6Ls3QzKoEbNnHI4VkcT p7a7NmPv5kXf7+fDsf3gyfNDts2wUF8dp7EIh3rtafEnF5sRFUWXejwwHPSf T4fJyjZjn1n5NE9bOD7Trix7zDfhG82B5M8WT3DEmce0zbwJdnz0d4WfReDV L67oExebcF00LsA8NQJdV9eT83SbcDkpnz+pKAJj1nuF3yk3oa/Ojk51NAK1 jCvmbVxNEKFOS66KPwWZ2MdNM9CI9VzPcr6GpyDouccqjRtxVF6Y7fWOSFyI CuRZ1G3E60Zzv3ieSOTOvQ/hOt0Im39pIONoJFjI3aOPjjfiohW7db9pJIIa vu8P3tcI+WcrSulZkXhrlbnZaKgBQS5pqz91n0PiwpDXxI0G+CZ8a7d4HYXD 4xVKTy43QLEnKj4wNwrugnuqCaMGdHAru3+sjcL2EmXhZM0GcL24rSeyHIUT Mv6jr0T/WcVCcOR9zWjcm9Z7enKpHuV037lGVqJhJzz7nHhQjwuLj8uuGcRA m+JkUeVRD1/TmdIQuxgwh4udOO9cDzU+zstfHsYg5xLzbleLejQsq3ie+RgD nwypyjn1epQuvxEb5IhFq1Lz05gd9bBqadfZGIiFx5GDrB2xdVjL92eSc3gJ BodPebwVtaj2rNxSbhwPw4sndjOU1EJRJWjl5I14RIi5G85+rIV8wJ379bfj MdfX+LD8bS2i5xjdJ4Pi0bijSzs0ohaPAjMXjD/Hg8PXufq9eS3ipL/95jz0 Bi+iPsdtpq8FqZyXi33pDWwD7kyF6NZAUYL6cOVVIt4mx2WnnKnBWNiKSHXm P1xWYvjlVA0cFEU1Xn1KhPhAggTd8RoI9r4ZM+lLxCZ7KXIibw1yPRre7mNP AufTN752y9VQOBwb+zo0CT02sd3bYqoRuybD+eVBMojdtL+3zVXh3bZ8D/d7 qeAmeV2kTlRB6MQ2lsuhqRB79ntLObkKdscyv2m8SsVFjYrz3j1ViPVxeyn6 ORXO5RpXOL5WwZaSECu9kYorxwfZcmOrIHvH1kDZOw2npnP8I89WQcTLpNvg YTq+RujeT8+thDJJ+bPbmwwknRRkvkSqxMYR1SeB2RnorePUYX5XiSzGc1te lWfg8h6tBbfESkTQck91jGbghn3qPYuISvx93XDTnfcdtPez0oU4VoKbvTA8 KekdKpKV6tnFK3HvXIqs67tMvK58rTWa+RVjG8cl2ere4zrzXFJURgVeev88 lqiTAz9xmJ9s+YKFnJ7HHUW5KLllIyn9oxx/FA/I6vvlY+xiFZuuTDn6y3Xp ee2K8K3L9m5ncBkeGerXvT5Tgmz3pjd8daUIMj/rlKxZhqC5gbq/qZ9RPpC5 lWa8HIEWPmyrr0pQsa6kYRZSgXStG09WIz4hxA8hrPaVaC0q+W2VXgzN3bT7 qlSqcSaS0An7VIRotTSmbP1abGv3KlomF2Lwik0or1M9XGeCMjkPFWK+wGFw yqcRB2rV68SvFoD9ippecUsz/Hbtefo8Lx8GUSczyhhawVUbGnGaPR9OCy7t 9IfbcO+YSGrC7Y8wiedJS7dvR1Cv9/vJ0TyIbEQ3+qR14FU7820mrTxoDK5Q khi7cFW5ZfxPTS6cvLizao27ETbmaBetlYsjwj2JM1k9sD5/kGBp+oBdRtWZ H0X+5bQLXo9DTT6gezxIRP5FPwwdhToEJ3LgZfbjqJ7kID7Z3HYXd8vB8FcZ 98P1Q2jOK86l5chBhZBtg7jwCPhHu67vzM5GWFyFa93mUbDoO13qM8jGzsLk v787R1FUoRaw8JeEopsrDL2pZDDRvy22TCHhslZCDyV8DPTJ2qLchiQ4OzIy mDtQUHHre2ipPgmG9ty+2k4U6B/KFr2iR0JaaI2Zwh0KNNNO7k3QIcHOevNx dm8KcpUP5AmdIcGvwMOtJZQC5swP08rKpH//Xp73QhYFI9E/xuOESfhx7RVd 5hwFp3zcw1UPkyBocDcq+RsF2ZynnGYFSZhbXQ5+tUKBpdpdiiL/v/t8Zl48 WafA/2m10wg3CVtUtRQ9d1Bhr5tw7AgbCQIMJ1OuiVFBL/HTcXA3CS+Lzqub S1HxwvjDSAArCc1BBppXj1JR9ZrHemQnCbteHHO8okSFzrEL+yO2koBfXqrX tKhwTNVhwxYSAmj7p6/rUhExD7VZRhJqJEW/3zCgQii55pw6PQkLbAH8tqZU pNurCa1sIuFXa5W2w1Uq1Cp95RPpSMh7L91324IKy1EHH11aErjjXlS6WlNB 8/9FQhR1N6uHHRX/A+ZiTH4= "]]}, Annotation[#, "Charting`Private`Tag$11510#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->NCache[{{0, 1}, {0, Rational[3, 5]}}, {{0, 1}, {0, 0.6}}], PlotRangeClipping->True, PlotRangePadding->{{0.00002, 0.001}, {0.002, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.955525340975567*^9, {3.955525372942809*^9, 3.9555254804138546`*^9}, { 3.955525518535816*^9, 3.955525602944092*^9}, {3.955525813131405*^9, 3.955525865324666*^9}}, CellLabel-> "Out[544]=",ExpressionUUID->"72329243-ac8c-4c56-8d42-6c88f30ae45f"], Cell[BoxData["\<\"choloKS.pdf\"\>"], "Output", CellChangeTimes->{ 3.955525340975567*^9, {3.955525372942809*^9, 3.9555254804138546`*^9}, { 3.955525518535816*^9, 3.955525602944092*^9}, {3.955525813131405*^9, 3.9555258654257407`*^9}}, CellLabel-> "Out[545]=",ExpressionUUID->"d992b578-e957-4855-b964-6603b3ad9d83"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}]], "Input", CellChangeTimes->{{3.9555258156966248`*^9, 3.9555258276886177`*^9}}, CellLabel-> "In[530]:=",ExpressionUUID->"a959d1c0-5840-4922-80ae-4cd74a14fa15"], Cell[BoxData["\<\"C:\\\\Users\\\\Gomez028\\\\Dropbox\\\\QuiverEE\\\\Math_\ files\"\>"], "Output", CellChangeTimes->{{3.9555258167007446`*^9, 3.9555258280049314`*^9}}, CellLabel-> "Out[530]=",ExpressionUUID->"a24f3d40-5906-4bdb-b165-039ffcfeb25a"] }, Open ]], Cell[BoxData[ RowBox[{"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.9555247088137903`*^9, 3.955524709636255*^9}},ExpressionUUID->"2b0e6b22-adb8-4acd-870a-\ 5a03ee95e09c"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"\[Epsilon]", ">", "0"}], "&&", RowBox[{"\[Tau]", ">", "0"}], "&&", RowBox[{ RowBox[{"k", "[", "\[Tau]", "]"}], ">", "0"}], "&&", RowBox[{"gs", ">", "0"}], "&&", RowBox[{"ls", ">", "0"}], "&&", RowBox[{ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}], ">", "0"}], "&&", RowBox[{"M", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"64", SuperscriptBox["\[Pi]", "3"]}], ")"}], SqrtBox[ FractionBox[ RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"20", "/", "3"}]], " ", RowBox[{"h", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "4"]}], "1536"]]}], "/.", RowBox[{"h", "->", RowBox[{"(", " ", RowBox[{ RowBox[{ SuperscriptBox["M0", "2"], " ", SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "8"}], "/", "3"}]], RowBox[{"\[ScriptH]", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", RowBox[{"M0", "->", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "//", "Simplify"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"%", SuperscriptBox[ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"5", "/", "6"}]], SuperscriptBox["\[Pi]", "3"]}], SqrtBox["3"]], RowBox[{"(", RowBox[{ SuperscriptBox["ls", RowBox[{"2", " "}]], "gs", " ", "M", " ", SuperscriptBox["\[Epsilon]", "2"]}], ")"}]}], ")"}], RowBox[{"-", "1"}]]}]}], "Input", CellChangeTimes->{{3.955523153012766*^9, 3.9555231717625732`*^9}, { 3.955523327837039*^9, 3.9555233988914447`*^9}, {3.955523688930215*^9, 3.955523766176487*^9}}, CellLabel-> "In[284]:=",ExpressionUUID->"81c6d373-276a-40da-bfb7-1193374e0af6"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"5", "/", "6"}]], " ", "gs", " ", SuperscriptBox["ls", "2"], " ", "M", " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["\[Epsilon]", "2"], " ", RowBox[{"k", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SqrtBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}], SqrtBox["3"]]], "Output", CellChangeTimes->{{3.9555231638459215`*^9, 3.9555231721560574`*^9}, { 3.9555233251606426`*^9, 3.9555233995333014`*^9}, {3.955523692590393*^9, 3.9555237666703844`*^9}, 3.955523805852928*^9}, CellLabel-> "Out[284]=",ExpressionUUID->"b3cd65b1-9fa2-4998-b1c5-83828ee5b32e"], Cell[BoxData[ RowBox[{ RowBox[{"k", "[", "\[Tau]", "]"}], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "2"], " ", SqrtBox[ RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]]}]], "Output", CellChangeTimes->{{3.9555231638459215`*^9, 3.9555231721560574`*^9}, { 3.9555233251606426`*^9, 3.9555233995333014`*^9}, {3.955523692590393*^9, 3.9555237666703844`*^9}, 3.9555238058744636`*^9}, CellLabel-> "Out[285]=",ExpressionUUID->"0735dcc7-7718-489e-b8e4-229e9482276f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"5", "/", "6"}]], SuperscriptBox["\[Pi]", "3"]}], SqrtBox["3"]], "//", "FullSimplify"}]], "Input", CellChangeTimes->{{3.9555238351134796`*^9, 3.9555238370956116`*^9}}, CellLabel-> "In[286]:=",ExpressionUUID->"dacc115c-135c-4001-acfa-cbbd867128a0"], Cell[BoxData[ FractionBox[ RowBox[{"2", " ", SuperscriptBox["2", RowBox[{"5", "/", "6"}]], " ", SuperscriptBox["\[Pi]", "3"]}], SqrtBox["3"]]], "Output", CellChangeTimes->{3.9555238375088253`*^9}, CellLabel-> "Out[286]=",ExpressionUUID->"43f86e21-fb31-4e8b-8357-90dabf5954ac"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ FractionBox[ SuperscriptBox["\[Pi]", "3"], RowBox[{"12", " ", SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]], SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["ls", RowBox[{"2", " "}]], "gs", " ", "M", " ", SuperscriptBox["\[Epsilon]", "2"]}], ")"}], "2"]}], "//", "TeXForm"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"k", "[", "\[Tau]", "]"}], "2"], " ", SuperscriptBox[ RowBox[{"Sinh", "[", "\[Tau]", "]"}], "4"], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]}], "//", "TeXForm"}]}], "Input", CellChangeTimes->{{3.955523403971901*^9, 3.955523405517335*^9}, { 3.9555235394190702`*^9, 3.9555235418991013`*^9}}, CellLabel-> "In[232]:=",ExpressionUUID->"bc871433-d33a-4289-bc04-48a863f3afbd"], Cell["\\mathit{h}(\\tau ) k(\\tau )^2 \\sinh ^4(\\tau )", "Output", CellChangeTimes->{3.955523405734025*^9, 3.9555235424271107`*^9}, CellLabel-> "Out[233]//TeXForm=",ExpressionUUID->"513423a9-b3e8-4591-9733-a63dd95cef44"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"h", "[", "\[Tau]", "]"}], "/.", RowBox[{"h", "->", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["\[CapitalLambda]kk", RowBox[{"-", "2"}]], " ", SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "4"}], "/", "3"}]], RowBox[{"2", "^", RowBox[{"(", RowBox[{"2", "/", "3"}], ")"}]}], RowBox[{"\[ScriptH]", "[", "#", "]"}]}], "&"}], ")"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"h", "[", "\[Tau]", "]"}], "/.", RowBox[{"h", "->", RowBox[{"(", " ", RowBox[{ RowBox[{ SuperscriptBox["M0", "2"], " ", SuperscriptBox["\[Epsilon]", RowBox[{ RowBox[{"-", "8"}], "/", "3"}]], RowBox[{"\[ScriptH]", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", RowBox[{"M0", "->", RowBox[{ RowBox[{"(", RowBox[{"gs", " ", "M", " ", SuperscriptBox["ls", "2"]}], ")"}], SuperscriptBox["2", RowBox[{"1", "/", "3"}]]}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"%", "-", "%%"}], "/.", RowBox[{"\[CapitalLambda]kk", "->", RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"2", "/", "3"}]], "/", RowBox[{"(", RowBox[{"gs", " ", SuperscriptBox["ls", "2"], " ", "M"}], ")"}]}]}]}], "//", "Simplify"}]}], "Input", CellChangeTimes->{{3.955522892313156*^9, 3.955522931353022*^9}}, CellLabel-> "In[177]:=",ExpressionUUID->"4b0bc75c-1ad8-49ec-a59e-23b030d53d95"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]}], RowBox[{ SuperscriptBox["\[Epsilon]", RowBox[{"4", "/", "3"}]], " ", SuperscriptBox["\[CapitalLambda]kk", "2"]}]]], "Output", CellChangeTimes->{{3.9555228952871995`*^9, 3.95552293486384*^9}}, CellLabel-> "Out[177]=",ExpressionUUID->"a88fa5b9-d777-47a0-a018-158779e90e26"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["2", RowBox[{"2", "/", "3"}]], " ", SuperscriptBox["gs", "2"], " ", SuperscriptBox["ls", "4"], " ", SuperscriptBox["M", "2"], " ", RowBox[{"\[ScriptH]", "[", "\[Tau]", "]"}]}], SuperscriptBox["\[Epsilon]", RowBox[{"8", "/", "3"}]]]], "Output", CellChangeTimes->{{3.9555228952871995`*^9, 3.9555229348668485`*^9}}, CellLabel-> "Out[178]=",ExpressionUUID->"5abf4518-5090-4e24-94d8-a05ae7c4f073"], Cell[BoxData["0"], "Output", CellChangeTimes->{{3.9555228952871995`*^9, 3.955522934873082*^9}}, CellLabel-> "Out[179]=",ExpressionUUID->"c8af6461-b798-4404-91c3-67758073dd59"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["gs", "2"], " ", SuperscriptBox["ls", "4"], " ", SuperscriptBox["M", "2"], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["\[Epsilon]", "4"]}], "/.", RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[CapitalLambda]s", "\[Equal]", FractionBox[ SuperscriptBox["\[Epsilon]", RowBox[{"2", "/", "3"}]], RowBox[{ SuperscriptBox["ls", "2"], " ", SqrtBox[ RowBox[{"gs", " ", "M"}]]}]]}], ",", RowBox[{"\[CapitalLambda]kk", "\[Equal]", FractionBox[ SuperscriptBox["\[Epsilon]", RowBox[{"2", "/", "3"}]], RowBox[{"gs", " ", SuperscriptBox["ls", "2"], " ", "M"}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Epsilon]", ",", "gs"}], "}"}]}], "]"}]}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.9555232712825413`*^9, 3.955523292841275*^9}}, CellLabel-> "In[211]:=",ExpressionUUID->"08d8772c-b60a-4fb3-8154-7dfe4893cbd0"], Cell[BoxData[ TemplateBox[{ "Solve", "nongen", "\"There may be values of the parameters for which some or all solutions \ are not valid.\"", 2, 211, 12, 25893529869710066460, "R4"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9555232929583387`*^9}, CellLabel-> "During evaluation of \ In[211]:=",ExpressionUUID->"61e0b77d-a655-454d-8db2-ccdaa59b1d42"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox["ls", "16"], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["\[CapitalLambda]s", "16"]}], SuperscriptBox["\[CapitalLambda]kk", "10"]], ",", FractionBox[ RowBox[{ SuperscriptBox["ls", "16"], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["\[CapitalLambda]s", "16"]}], SuperscriptBox["\[CapitalLambda]kk", "10"]]}], "}"}]], "Output", CellChangeTimes->{{3.955523274168397*^9, 3.955523292963853*^9}}, CellLabel-> "Out[211]=",ExpressionUUID->"d64b8857-8fa1-4628-a9ad-3f1ffe68576d"] }, Open ]] }, Open ]] }, Evaluator->"R4", WindowSize->{958.5, 729.75}, WindowMargins->{{Automatic, 0}, {Automatic, 0}}, Magnification:>0.7 Inherited, FrontEndVersion->"13.2 for Microsoft Windows (64-bit) (January 30, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"8c43e751-c5d6-43bd-9e00-dd4dc8466664" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 555, 12, 56, "Text",ExpressionUUID->"e99dbb82-c588-4e16-9e80-69f987e30657"], Cell[1116, 34, 690, 17, 71, "Input",ExpressionUUID->"50b07b87-a7f8-4c13-83fc-ae32391f9bec", InitializationCell->True], Cell[1809, 53, 190, 3, 24, "Text",ExpressionUUID->"94450691-5e01-4c14-a868-0f463c3d2bf5"], Cell[2002, 58, 340, 7, 21, "Input",ExpressionUUID->"4e08dff0-ec11-4586-baf4-b7b11d7c85e6"], Cell[CellGroupData[{ Cell[2367, 69, 371, 6, 47, "Section",ExpressionUUID->"f9a58a06-eee8-47b0-bccb-fcab8aeb5bc7"], Cell[2741, 77, 173, 3, 24, "Text",ExpressionUUID->"871d1392-d216-44bd-80bd-064f8d5f56f6"], Cell[CellGroupData[{ Cell[2939, 84, 1530, 46, 49, "Input",ExpressionUUID->"e530ac45-4b6b-45f9-a9b0-81ed9d026544", InitializationCell->True], Cell[4472, 132, 1628, 37, 40, "Output",ExpressionUUID->"17fd753b-c7cb-4d63-bed5-d9d191f0b7b7"] }, Open ]], Cell[6115, 172, 315, 6, 24, "Text",ExpressionUUID->"8e5aa5c3-ea2e-4333-89cc-b724ee21972a"], Cell[CellGroupData[{ Cell[6455, 182, 2591, 84, 69, "Input",ExpressionUUID->"29b8eb17-8fe0-4ff1-9a07-48482ac8b610"], Cell[9049, 268, 1515, 34, 36, "Output",ExpressionUUID->"7fc318cc-3cff-4585-a66d-c4f183a54105"], Cell[10567, 304, 805, 11, 22, "Output",ExpressionUUID->"06c40906-deb6-4aef-9ff7-74872774840a"] }, Open ]], Cell[11387, 318, 153, 3, 24, "Text",ExpressionUUID->"4ac843f4-fbe0-4b4f-ad24-c978b6b9c9e8"], Cell[11543, 323, 680, 21, 46, "Input",ExpressionUUID->"77e160a1-26ab-4722-9114-4d61a1785665", InitializationCell->True], Cell[12226, 346, 241, 4, 24, "Text",ExpressionUUID->"d0a37084-3973-44d3-8125-c3557db45cbd"], Cell[12470, 352, 778, 23, 45, "Input",ExpressionUUID->"fd873106-efed-4930-90a6-4d1eb2ba9a7c", InitializationCell->True], Cell[13251, 377, 457, 11, 30, "Input",ExpressionUUID->"667dc60d-c0b4-4ccf-aa3c-9a0ae7304d07", InitializationCell->True], Cell[13711, 390, 1248, 36, 59, "Input",ExpressionUUID->"060f8f8a-885d-4d96-bec5-acc608cff0dc", InitializationCell->True], Cell[14962, 428, 1236, 28, 58, "Input",ExpressionUUID->"0dc76d9a-0ac6-41eb-9b79-3d331cff2c7d", InitializationCell->True], Cell[16201, 458, 195, 3, 24, "Text",ExpressionUUID->"a6d58908-5ac4-4f52-bc67-5446eec6e150"], Cell[CellGroupData[{ Cell[16421, 465, 1165, 34, 33, "Input",ExpressionUUID->"7d49494f-c4f1-4f6e-bb29-98c8921ec59f", InitializationCell->True], Cell[17589, 501, 1776, 45, 40, "Output",ExpressionUUID->"92013171-86e3-4279-b078-d88eba23f47f"] }, Open ]], Cell[CellGroupData[{ Cell[19402, 551, 2780, 74, 73, "Input",ExpressionUUID->"e76015d9-a436-4348-8575-8f0003bd55c2"], Cell[22185, 627, 432, 6, 22, "Output",ExpressionUUID->"1c465249-2d9d-41ed-bacb-52b881f9c9a9"] }, Open ]], Cell[22632, 636, 1680, 50, 93, "Text",ExpressionUUID->"2e8ed14e-eb66-48f4-b845-3369b5aabc5f"], Cell[24315, 688, 5549, 95, 30, "Text",ExpressionUUID->"92f5b118-c2ab-42b5-913a-4ee7d95d67be"], Cell[29867, 785, 294, 4, 24, "Text",ExpressionUUID->"79986201-4eca-4549-87bf-24be6bb74d6f"], Cell[CellGroupData[{ Cell[30186, 793, 1238, 36, 63, "Input",ExpressionUUID->"5adef399-2391-4fb4-86d8-7444b71555cf"], Cell[31427, 831, 967, 17, 36, "Output",ExpressionUUID->"d95df904-743c-463a-adc3-f244e29bd87f"], Cell[32397, 850, 896, 15, 36, "Output",ExpressionUUID->"b785cfed-2904-422f-ad48-5ee6db487ff5"], Cell[33296, 867, 792, 10, 22, "Output",ExpressionUUID->"f4c997f8-4a9c-4a1d-aecd-568c083065b2"] }, Open ]], Cell[34103, 880, 469, 12, 24, "Text",ExpressionUUID->"a5935bc3-92c9-47f2-a2b9-bc1f2f1c6199"], Cell[CellGroupData[{ Cell[34597, 896, 1338, 41, 21, "Input",ExpressionUUID->"ea952132-2e83-4f6c-9adc-03570f6a5c5c"], Cell[35938, 939, 323, 4, 22, "Output",ExpressionUUID->"b2b05ee2-f702-4b01-89d5-c0ad908e9bad"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[36310, 949, 207, 4, 39, "Section",ExpressionUUID->"3bd4fce2-4f31-4f50-9b3a-937c9c48ddf6"], Cell[CellGroupData[{ Cell[36542, 957, 231, 4, 37, "Subsection",ExpressionUUID->"5cc1e249-f7e6-4441-867d-7663d3cf0d55"], Cell[36776, 963, 877, 24, 32, "Input",ExpressionUUID->"497d94dd-9f07-422a-b5d7-bd760401d353", InitializationCell->True], Cell[37656, 989, 488, 13, 30, "Input",ExpressionUUID->"17c95b3a-1b0d-48d2-b0db-2dec0438570c", InitializationCell->True], Cell[38147, 1004, 23667, 560, 440, "Input",ExpressionUUID->"fa9eb125-b44f-400a-8d1d-3e0edd37cd76", InitializationCell->True], Cell[CellGroupData[{ Cell[61839, 1568, 1426, 38, 68, "Input",ExpressionUUID->"d68a8acd-58a8-435e-851c-1f94e5e06971"], Cell[63268, 1608, 504, 10, 23, "Output",ExpressionUUID->"862d709e-b966-457f-a44d-73e77c7243bd"], Cell[63775, 1620, 336, 5, 22, "Output",ExpressionUUID->"dcefa538-6ebc-45ca-95f8-91b2b84ce7ea"] }, Open ]], Cell[64126, 1628, 1092, 31, 92, "Input",ExpressionUUID->"b46c1ad5-c358-4d03-9d32-e7a493b91552", InitializationCell->True], Cell[65221, 1661, 12519, 339, 365, "Input",ExpressionUUID->"8f94740d-d964-4607-9907-4d8fc4e61afb", InitializationCell->True], Cell[CellGroupData[{ Cell[77765, 2004, 720, 19, 33, "Input",ExpressionUUID->"6642fc27-7e9a-46e2-b245-a0e7e99085e9"], Cell[78488, 2025, 2219, 70, 36, "Output",ExpressionUUID->"ee6b299e-8db5-40c2-bce9-69a66582c57d"], Cell[80710, 2097, 1831, 56, 64, "Output",ExpressionUUID->"bdb290b1-a84d-416a-8741-2fa1a91c4f48"] }, Open ]], Cell[CellGroupData[{ Cell[82578, 2158, 1788, 48, 81, "Input",ExpressionUUID->"1c8ac7a9-ab7c-4fef-9e22-dfc913c48594"], Cell[84369, 2208, 657, 12, 22, "Output",ExpressionUUID->"9432a3ed-c2c6-4cc8-822e-56f6a651735a"], Cell[85029, 2222, 535, 11, 19, "Message",ExpressionUUID->"e3d8f712-726d-4484-af11-0033048087b7"], Cell[85567, 2235, 522, 8, 22, "Output",ExpressionUUID->"1b2b3f85-85e1-42b0-b850-2c45b57603a3"] }, Open ]], Cell[86104, 2246, 1184, 31, 92, "Input",ExpressionUUID->"178c5efe-9f03-4dd7-ad90-606056dbe03e", InitializationCell->True], Cell[87291, 2279, 2163, 49, 151, "Input",ExpressionUUID->"500797b5-0cfd-435d-ada6-3b3923c50889", InitializationCell->True], Cell[89457, 2330, 2039, 45, 164, "Input",ExpressionUUID->"23565d0d-6625-4a54-84da-03d7caa71f51", InitializationCell->True], Cell[91499, 2377, 7503, 202, 528, "Input",ExpressionUUID->"d8e53640-e2d4-40ba-a3fa-79a4a33d67e9", InitializationCell->True], Cell[99005, 2581, 247, 6, 24, "Text",ExpressionUUID->"792bde06-c577-4357-8ff3-fab16cd3dc02"], Cell[99255, 2589, 898, 16, 19, "Input",ExpressionUUID->"a3eff2ad-2a15-4001-b5dc-54514bda595f"], Cell[100156, 2607, 225, 4, 19, "Input",ExpressionUUID->"6776eade-da7f-4ea2-a31a-0bab2f97fcc5"], Cell[CellGroupData[{ Cell[100406, 2615, 190, 2, 19, "Input",ExpressionUUID->"716cf1a3-bbb0-432f-afbb-e73e2422a5c8"], Cell[100599, 2619, 11830, 232, 76, "Output",ExpressionUUID->"390ef93a-3ee0-4b54-bff7-96352beae453"] }, Open ]], Cell[112444, 2854, 541, 12, 33, "Input",ExpressionUUID->"13ecc728-3808-4d1d-a113-13bd9e6b3da1"], Cell[112988, 2868, 233, 5, 19, "Input",ExpressionUUID->"f7bcfd02-0336-4d29-8102-a9017649f5d7"], Cell[113224, 2875, 282, 6, 33, "Input",ExpressionUUID->"486d1c5f-9512-4987-8edd-86446eb6e543"], Cell[113509, 2883, 177, 3, 24, "Text",ExpressionUUID->"75390898-655f-46f8-b6a3-0183c33a1349"], Cell[CellGroupData[{ Cell[113711, 2890, 537, 15, 30, "Input",ExpressionUUID->"244bf7ef-6532-4d50-8d02-e4d258e8bbff", InitializationCell->True], Cell[114251, 2907, 475, 10, 22, "Output",ExpressionUUID->"0781500a-1a34-45a0-b347-1fc6097a80ee"] }, Open ]], Cell[CellGroupData[{ Cell[114763, 2922, 580, 16, 46, "Input",ExpressionUUID->"ddaec892-3033-4617-8f9b-dc83697b8a55"], Cell[115346, 2940, 419, 6, 22, "Output",ExpressionUUID->"252e0b17-5d9b-4c73-b271-72f34c4a8565"] }, Open ]], Cell[115780, 2949, 330, 9, 19, "Input",ExpressionUUID->"72807864-04e5-45bc-aac0-deb5170dc055"], Cell[CellGroupData[{ Cell[116135, 2962, 1978, 58, 119, "Input",ExpressionUUID->"6b4912ff-9bdb-4745-bc32-8b8178878ea5"], Cell[118116, 3022, 187341, 3186, 129, "Output",ExpressionUUID->"84c89c93-1a90-42c6-8b9a-3cb9262ddb17"], Cell[305460, 6210, 224, 3, 22, "Output",ExpressionUUID->"452a0c76-e19e-45a7-b1b8-7154b52bcdfa"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[305733, 6219, 247, 4, 27, "Subsection",ExpressionUUID->"c75473cc-d1be-442b-9c46-2e50b6cb65a5"], Cell[305983, 6225, 305, 6, 40, "Text",ExpressionUUID->"dc47bc63-8b0b-4e34-a09a-8b67395e35e1"], Cell[CellGroupData[{ Cell[306313, 6235, 994, 30, 48, "Input",ExpressionUUID->"db7a7e26-a56f-4bce-87ec-e269a2e42026"], Cell[307310, 6267, 1090, 32, 45, "Output",ExpressionUUID->"20937206-4b89-4626-9d04-6bb55766ec24"], Cell[308403, 6301, 3758, 99, 83, "Output",ExpressionUUID->"55761d66-1027-4651-9581-e51da6d04014"] }, Open ]], Cell[312176, 6403, 248, 6, 24, "Text",ExpressionUUID->"bfadfb7f-1043-407c-b775-e504b979470f"], Cell[CellGroupData[{ Cell[312449, 6413, 826, 24, 33, "Input",ExpressionUUID->"149b81d4-f0a6-474d-8669-e7e2f17b0e6d"], Cell[313278, 6439, 6228, 173, 140, "Output",ExpressionUUID->"ef81b067-e3fc-4baf-abe7-46020144cbb6"] }, Open ]], Cell[319521, 6615, 503, 9, 40, "Text",ExpressionUUID->"786c454e-3e57-4fa6-849d-1b41284671a2"], Cell[CellGroupData[{ Cell[320049, 6628, 2314, 69, 52, "Input",ExpressionUUID->"fb838763-939c-4c69-9a8b-35af3ad692ba"], Cell[322366, 6699, 1095, 29, 34, "Output",ExpressionUUID->"4d196d1c-50cf-4566-b764-275274123cdb"] }, Open ]], Cell[CellGroupData[{ Cell[323498, 6733, 979, 29, 32, "Input",ExpressionUUID->"7be358dc-0a15-40a9-9848-e45b928b42b9"], Cell[324480, 6764, 469, 12, 34, "Output",ExpressionUUID->"7565e10e-bf74-4beb-8862-605ae0f8f2c9"] }, Open ]], Cell[324964, 6779, 386, 7, 40, "Text",ExpressionUUID->"820b1735-0938-4903-bad3-03bfb64725e6"], Cell[325353, 6788, 494, 13, 43, "Input",ExpressionUUID->"96f40fc7-d1a3-4b4e-942b-2515c9a263a7", InitializationCell->True], Cell[CellGroupData[{ Cell[325872, 6805, 2483, 75, 52, "Input",ExpressionUUID->"ba57fbf2-4a8b-489e-b3e2-aed2d3e728dc"], Cell[328358, 6882, 3352, 84, 63, "Output",ExpressionUUID->"12019a42-5ae8-4073-ac92-45bc9492696f"] }, Open ]], Cell[CellGroupData[{ Cell[331747, 6971, 2345, 59, 50, "Input",ExpressionUUID->"cc163dd8-5c1b-4a0d-801c-d2301693e9d2"], Cell[334095, 7032, 1031, 28, 40, "Output",ExpressionUUID->"e8dbe8a2-62ec-4bd1-9322-5af13aae79d7"] }, Open ]], Cell[335141, 7063, 1339, 35, 51, "Input",ExpressionUUID->"02fc5f95-5c18-41c7-b6e5-18dd76fc1357", InitializationCell->True] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[336529, 7104, 220, 4, 47, "Section",ExpressionUUID->"74984531-25e8-4ad6-8450-ea918ce9acd4"], Cell[CellGroupData[{ Cell[336774, 7112, 280, 6, 37, "Subsection",ExpressionUUID->"7c5e4b6f-6c02-4217-b17f-a4290803f25b"], Cell[337057, 7120, 2037, 60, 48, "Input",ExpressionUUID->"e2cb2c7a-c505-4acc-adfc-41600a8c3c36", InitializationCell->True], Cell[CellGroupData[{ Cell[339119, 7184, 773, 19, 33, "Input",ExpressionUUID->"04a1049f-cea2-4e53-a1e5-dd2c55378013", InitializationCell->True], Cell[339895, 7205, 5533, 148, 98, "Output",ExpressionUUID->"dff62dd4-4e66-43df-b15e-f71c034ae33e"] }, Open ]], Cell[345443, 7356, 1488, 43, 46, "Input",ExpressionUUID->"b7b85e92-7dae-4afb-a37d-3fbefa43bdba", InitializationCell->True], Cell[CellGroupData[{ Cell[346956, 7403, 461, 9, 33, "Input",ExpressionUUID->"b7d1292d-6064-4b76-a96b-674ab4f08703"], Cell[347420, 7414, 3992, 104, 68, "Output",ExpressionUUID->"4514d746-0838-463b-ac85-8639003b7436"], Cell[351415, 7520, 2531, 72, 68, "Output",ExpressionUUID->"90425561-4a82-4357-8152-46a2aeeef8bf"] }, Open ]], Cell[CellGroupData[{ Cell[353983, 7597, 966, 20, 58, "Input",ExpressionUUID->"aef85ba4-48dc-4223-85c0-96a41c36fe0b", InitializationCell->True], Cell[354952, 7619, 1205, 29, 37, "Output",ExpressionUUID->"b46bd256-31ad-4b5b-82d2-5698ee181d51"] }, Open ]], Cell[CellGroupData[{ Cell[356194, 7653, 459, 12, 21, "Input",ExpressionUUID->"5b9bf14c-72b1-44b5-88ce-f796c7f6b978"], Cell[356656, 7667, 841, 26, 38, "Output",ExpressionUUID->"245b9527-b3f1-4118-bb4f-129011cc8725"] }, Open ]], Cell[CellGroupData[{ Cell[357534, 7698, 430, 10, 30, "Input",ExpressionUUID->"80a24b53-d450-417d-98c0-f48da829e33c", InitializationCell->True], Cell[357967, 7710, 1000, 26, 39, "Output",ExpressionUUID->"59f325ef-d65a-4005-a407-560d9c7f65c7"] }, Open ]], Cell[CellGroupData[{ Cell[359004, 7741, 700, 19, 46, "Input",ExpressionUUID->"82300a3d-19af-4e2b-a53f-2a7a0cd73a1f", InitializationCell->True], Cell[359707, 7762, 968, 27, 38, "Output",ExpressionUUID->"ba8bafb9-b727-42f9-99d5-93caa43e0065"] }, Open ]], Cell[CellGroupData[{ Cell[360712, 7794, 786, 18, 44, "Input",ExpressionUUID->"c7e2e804-941f-4a60-8bbb-5691c81fa117", InitializationCell->True], Cell[361501, 7814, 2260, 61, 58, "Output",ExpressionUUID->"2f4a0067-19ad-45df-bbb4-2461bbe40559"] }, Open ]], Cell[CellGroupData[{ Cell[363798, 7880, 854, 21, 58, "Input",ExpressionUUID->"a696f74e-f53f-4c94-9ebe-9e0f1492ae8b", InitializationCell->True], Cell[364655, 7903, 2534, 69, 88, "Output",ExpressionUUID->"ae84d287-f7bf-47e4-aed2-49b53f662c5c"], Cell[367192, 7974, 2463, 68, 88, "Output",ExpressionUUID->"be230d65-3c96-4262-8ac5-4722944b65d9"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[369704, 8048, 338, 5, 27, "Subsection",ExpressionUUID->"846f3d98-df6c-40f7-bce8-976d2fa1701d"], Cell[370045, 8055, 1171, 31, 47, "Input",ExpressionUUID->"f851d53b-e544-450b-a832-b20c2f2adc3a", InitializationCell->True], Cell[CellGroupData[{ Cell[371241, 8090, 737, 21, 32, "Input",ExpressionUUID->"48c1e2dd-8f4b-447d-b201-841da62db86d", InitializationCell->True], Cell[371981, 8113, 3425, 95, 61, "Output",ExpressionUUID->"bc7ec02a-8303-449a-8537-821b0fdfa432"] }, Open ]], Cell[375421, 8211, 4809, 117, 245, "Input",ExpressionUUID->"3e13e582-59e1-4915-a189-ab2aa39d565d", InitializationCell->True], Cell[380233, 8330, 4806, 116, 258, "Input",ExpressionUUID->"69d5697f-c1ad-442b-b615-65af7dd386e1", InitializationCell->True], Cell[385042, 8448, 4895, 118, 298, "Input",ExpressionUUID->"269d34a1-b6ac-4d7c-82c0-d9fe9a7529f7", InitializationCell->True] }, Open ]], Cell[CellGroupData[{ Cell[389974, 8571, 255, 4, 37, "Subsection",ExpressionUUID->"5a2f66bd-1d7e-4aac-bd7f-f500a21e8865"], Cell[390232, 8577, 857, 19, 47, "Input",ExpressionUUID->"f7230cc3-19e8-4ee2-988e-51de02395941"], Cell[CellGroupData[{ Cell[391114, 8600, 200, 4, 21, "Input",ExpressionUUID->"580aed6a-2d00-467b-b628-2b1f709d62b6"], Cell[391317, 8606, 642, 14, 33, "Output",ExpressionUUID->"3b27a69c-6144-4628-911b-31eadfe9fad0"] }, Open ]], Cell[CellGroupData[{ Cell[391996, 8625, 220, 4, 21, "Input",ExpressionUUID->"868b9122-e985-4ea8-83b1-1197ba8fb99f"], Cell[392219, 8631, 614, 15, 33, "Output",ExpressionUUID->"1aa61931-ab0e-4f57-b1b5-749f3b6002cf"] }, Open ]], Cell[CellGroupData[{ Cell[392870, 8651, 458, 10, 34, "Input",ExpressionUUID->"3b8e8ded-22d4-4968-ae3f-b522ad6b0b22"], Cell[393331, 8663, 686, 16, 46, "Output",ExpressionUUID->"39f54298-96f4-4a3a-a154-cd18f8e5c730"] }, Open ]], Cell[CellGroupData[{ Cell[394054, 8684, 197, 4, 21, "Input",ExpressionUUID->"0edd0136-c80d-4e6c-b77f-e7e9d28cf106"], Cell[394254, 8690, 590, 12, 33, "Output",ExpressionUUID->"7747a35d-2660-4eef-b57f-082b17ceabea"] }, Open ]], Cell[CellGroupData[{ Cell[394881, 8707, 471, 11, 21, "Input",ExpressionUUID->"c72c23ae-c979-41ab-843f-5806041f7e6f"], Cell[CellGroupData[{ Cell[395377, 8722, 441, 8, 17, "Print",ExpressionUUID->"8b2a211d-e99d-49eb-85cb-87319b50a1a8"], Cell[395821, 8732, 442, 8, 17, "Print",ExpressionUUID->"af9ea3bf-ff0a-4b23-bdc5-e29f29bf48ec"], Cell[396266, 8742, 442, 8, 17, "Print",ExpressionUUID->"085407c3-7b3f-4ca3-9adb-daa305031fe8"] }, Open ]], Cell[396723, 8753, 37719, 672, 88, "Output",ExpressionUUID->"17418925-00fc-492f-b803-16ed1992ebe2"] }, Open ]], Cell[434457, 9428, 412, 13, 24, "Text",ExpressionUUID->"855adb39-53b7-4a41-8c04-0735ee5dd17d"], Cell[CellGroupData[{ Cell[434894, 9445, 219, 4, 21, "Input",ExpressionUUID->"68f60677-cc84-4a30-a89c-c4c71496a9ab"], Cell[435116, 9451, 264, 5, 33, "Output",ExpressionUUID->"dbeedce2-f086-46ff-8bbb-b00703d3cae9"] }, Open ]], Cell[435395, 9459, 921, 20, 74, "Input",ExpressionUUID->"b8ba5889-e7b9-44bd-a896-7fba7bc0cad2"], Cell[436319, 9481, 331, 9, 21, "Input",ExpressionUUID->"731092de-83eb-45fe-b6d8-e5ecd1b2353d"], Cell[436653, 9492, 771, 19, 60, "Input",ExpressionUUID->"afa28d90-e4df-4dec-87ca-9da103366d0a"], Cell[437427, 9513, 827, 19, 60, "Input",ExpressionUUID->"9b7e95a5-2f0e-4326-bbc3-6bf6903ba298"], Cell[438257, 9534, 717, 17, 47, "Input",ExpressionUUID->"58c5f655-007f-4c00-987e-e5a295db3bcf"], Cell[438977, 9553, 351, 8, 21, "Input",ExpressionUUID->"a2417a4e-a319-47cc-80a2-c6ff70a70b12"], Cell[439331, 9563, 335, 8, 21, "Input",ExpressionUUID->"78ad4c6c-903c-4d97-8624-3eaa4b9e6925"], Cell[439669, 9573, 301, 7, 21, "Input",ExpressionUUID->"1166e9e6-d485-47bd-a76b-d29423d8ec98"], Cell[439973, 9582, 502, 12, 34, "Input",ExpressionUUID->"4ef3d03c-f07f-4b31-86d3-8ac90620aadc"], Cell[440478, 9596, 231, 5, 21, "Input",ExpressionUUID->"a79fb30d-167b-4a6b-827f-5acd62a962e5"] }, Open ]], Cell[CellGroupData[{ Cell[440746, 9606, 366, 6, 37, "Subsection",ExpressionUUID->"3b33202e-4c50-4493-8b0a-d1323819cc66"], Cell[441115, 9614, 374, 8, 21, "Input",ExpressionUUID->"51fa5d27-9cc6-48e2-9ba4-111bf9d1b87f"], Cell[441492, 9624, 302, 7, 21, "Input",ExpressionUUID->"d529a577-1c4c-4c14-bef7-70df9743d060"], Cell[441797, 9633, 621, 16, 21, "Input",ExpressionUUID->"5ccb090a-cfb2-456e-9105-58cd57df65ef"], Cell[442421, 9651, 407, 10, 21, "Input",ExpressionUUID->"947e564a-4390-42d4-b981-1db998a4ccfe"], Cell[CellGroupData[{ Cell[442853, 9665, 938, 30, 66, "Input",ExpressionUUID->"0c08d894-83cd-4820-8c98-aead2bdfe2b6"], Cell[443794, 9697, 402, 11, 52, "Output",ExpressionUUID->"15c4f0f5-3a31-44e3-b628-5e2b02df5ed3"], Cell[444199, 9710, 331, 9, 52, "Output",ExpressionUUID->"ddcfd140-fac8-4b0c-b70e-085fd53b8fca"], Cell[444533, 9721, 227, 4, 33, "Output",ExpressionUUID->"b3d9b288-2788-4e87-be25-f408368404e5"] }, Open ]], Cell[CellGroupData[{ Cell[444797, 9730, 2091, 58, 153, "Input",ExpressionUUID->"cea52c61-07d4-4039-8fbc-2eed4f8da0ae"], Cell[446891, 9790, 7417, 164, 165, "Output",ExpressionUUID->"a3833d16-ebcf-4d53-a7da-c2b09788f5ae"], Cell[454311, 9956, 447, 7, 33, "Output",ExpressionUUID->"dcb22f4d-f34f-420e-8f79-b65a54a280af"] }, Open ]], Cell[CellGroupData[{ Cell[454795, 9968, 1911, 54, 139, "Input",ExpressionUUID->"deb48de4-549f-405f-8ba0-718babf86fab"], Cell[456709, 10024, 4319, 111, 165, "Output",ExpressionUUID->"4ed53c05-d9b2-46fb-a604-5a8a6f63001f"] }, Open ]], Cell[461043, 10138, 225, 5, 21, "Input",ExpressionUUID->"bca1cdb0-a431-4297-9983-1c92c0a779e5"], Cell[461271, 10145, 551, 15, 21, "Input",ExpressionUUID->"39679286-a493-4b28-9524-dcf8a40c52f8"], Cell[461825, 10162, 1487, 43, 40, "Input",ExpressionUUID->"88fd649b-ff6f-4097-be65-ce92f63a1143"], Cell[463315, 10207, 1604, 45, 40, "Input",ExpressionUUID->"f77de7d7-4ce2-4561-a57a-455122c3c8f5"], Cell[464922, 10254, 1389, 38, 52, "Input",ExpressionUUID->"21a244a4-783c-49eb-a12b-65cc4a403f4d"], Cell[466314, 10294, 1337, 38, 36, "Input",ExpressionUUID->"745c4c84-2508-45aa-8bae-e315d4eb853c"], Cell[CellGroupData[{ Cell[467676, 10336, 2161, 67, 64, "Input",ExpressionUUID->"f24772c9-bb15-4d41-a70e-bad8803fee83"], Cell[469840, 10405, 821, 20, 46, "Output",ExpressionUUID->"28ac4e01-1796-4645-bdea-9ede26b0b827"], Cell[470664, 10427, 1640, 42, 53, "Output",ExpressionUUID->"ba2bb016-9179-4236-9aad-858d4706099a"] }, Open ]], Cell[472319, 10472, 1101, 29, 21, "Input",ExpressionUUID->"a675d142-8ed5-4b37-969b-c17eeeac545e"], Cell[473423, 10503, 1016, 27, 22, "Input",ExpressionUUID->"fd4193e6-2b33-452a-b75a-58e9511007b8"], Cell[474442, 10532, 1350, 38, 48, "Input",ExpressionUUID->"e12b9d8a-47d9-47ff-b4f4-63b7a181d5d3"], Cell[CellGroupData[{ Cell[475817, 10574, 2090, 49, 117, "Input",ExpressionUUID->"a8ebda2d-e920-4794-aa0c-9d9b26835a10"], Cell[477910, 10625, 8554, 185, 165, "Output",ExpressionUUID->"23b5e069-e357-4ce1-a8ea-3f1bf2944df0"], Cell[486467, 10812, 700, 10, 33, "Output",ExpressionUUID->"82b5e27d-a3a1-49dc-a4d2-f7010b4d167c"] }, Open ]], Cell[487182, 10825, 1187, 32, 37, "Input",ExpressionUUID->"ba979bb8-0472-4bfe-95a0-c700b7636eb6"], Cell[488372, 10859, 1249, 33, 34, "Input",ExpressionUUID->"7b2bbf64-9017-4b16-b267-f413f209a7a5"], Cell[CellGroupData[{ Cell[489646, 10896, 2039, 47, 117, "Input",ExpressionUUID->"9effe235-c1e3-40a7-8b45-2de6285ea3b9"], Cell[491688, 10945, 13843, 289, 176, "Output",ExpressionUUID->"27f7ca44-5a69-4075-8408-9cad2b29d51a"], Cell[505534, 11236, 348, 5, 33, "Output",ExpressionUUID->"52365f6d-e1f3-4265-8b58-90c4989f691f"] }, Open ]], Cell[505897, 11244, 1457, 39, 100, "Input",ExpressionUUID->"976dcd9b-12f3-43fc-baf2-4e89aa65fc95"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[507403, 11289, 203, 4, 47, "Section",ExpressionUUID->"3755f523-3d43-446c-a3a0-e8a5401be531"], Cell[CellGroupData[{ Cell[507631, 11297, 400, 12, 26, "Input",ExpressionUUID->"573c6d52-90cf-4a70-bd1a-93c4c3c50a92"], Cell[508034, 11311, 378, 9, 20, "Message",ExpressionUUID->"23d831df-629a-4ef1-9d6b-ae21614a72ec"], Cell[508415, 11322, 419, 12, 29, "Output",ExpressionUUID->"d40f2072-41ab-49ab-a8d9-23e2c70b2a1a"] }, Open ]], Cell[CellGroupData[{ Cell[508871, 11339, 1350, 40, 41, "Input",ExpressionUUID->"86e73157-29c0-47df-b39e-5b74aa0465d2"], Cell[510224, 11381, 484, 13, 42, "Output",ExpressionUUID->"52f6437f-efe5-4223-9298-c8bd88477963"] }, Open ]], Cell[CellGroupData[{ Cell[510745, 11399, 4702, 135, 202, "Input",ExpressionUUID->"5df1678b-e655-4ade-8469-641a48d18874"], Cell[515450, 11536, 3148, 88, 71, "Output",ExpressionUUID->"012e453a-5e59-45f8-84dc-40628320faba"], Cell[518601, 11626, 28504, 677, 148, "Output",ExpressionUUID->"1efbf993-3858-49ee-8eda-912d26c7732d"], Cell[547108, 12305, 477, 8, 22, "Output",ExpressionUUID->"0ed2b234-6a73-4313-a1b9-1aaabf5f0607"] }, Open ]], Cell[CellGroupData[{ Cell[547622, 12318, 2684, 81, 144, "Input",ExpressionUUID->"b0022b20-3889-4e83-b125-1e6d102fba53"], Cell[550309, 12401, 7623, 144, 170, "Output",ExpressionUUID->"f7b9b3fc-8314-40e0-8d24-76c222f439da"], Cell[557935, 12547, 243, 4, 21, "Output",ExpressionUUID->"aad4704e-648d-4ea9-bc54-8d00b007e264"] }, Open ]], Cell[CellGroupData[{ Cell[558215, 12556, 4318, 129, 245, "Input",ExpressionUUID->"b49ee71b-21ca-4e5e-a425-a65eb2199e26"], Cell[562536, 12687, 2844, 83, 101, "Output",ExpressionUUID->"fd68b603-1cb0-49e7-b008-d18a8b2bd7e0"], Cell[565383, 12772, 27666, 672, 147, "Output",ExpressionUUID->"8db71c9b-78bb-4016-80ac-67c25fba8757"], Cell[593052, 13446, 173, 3, 21, "Output",ExpressionUUID->"28fb4b52-98e6-40aa-a588-a823e6f347bf"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[593274, 13455, 164, 3, 45, "Section",ExpressionUUID->"5f75b587-81a0-4e5e-b41b-545054adf474"], Cell[593441, 13460, 28701, 474, 100, "Input",ExpressionUUID->"7ee17385-488e-4b01-b7b1-e5e3ab361e31"], Cell[622145, 13936, 7594, 129, 54, "Input",ExpressionUUID->"72211c76-5659-4742-9395-2569fb2473fe"], Cell[629742, 14067, 28701, 474, 100, "Input",ExpressionUUID->"068c2eb3-c90a-4618-8cb3-8fe87809bc6c"], Cell[658446, 14543, 7594, 129, 54, "Input",ExpressionUUID->"77f85317-01ab-455b-9bb9-ba973493b546"], Cell[CellGroupData[{ Cell[666065, 14676, 7414, 199, 342, "Input",ExpressionUUID->"cf0f51a1-bfbf-462e-846c-957b598e5f96"], Cell[673482, 14877, 1442, 26, 32, "Output",ExpressionUUID->"26289b97-17d0-4128-9b5c-237b0ae18d75"], Cell[674927, 14905, 2331, 53, 38, "Output",ExpressionUUID->"db758893-15ed-488b-8f7d-fea68f63e159"], Cell[677261, 14960, 1083, 15, 21, "Output",ExpressionUUID->"916d2afd-6b84-474c-81eb-88e9806a3395"] }, Open ]], Cell[CellGroupData[{ Cell[678381, 14980, 1828, 54, 87, "Input",ExpressionUUID->"b173bffd-1557-4126-a1bd-0084e6cb9e58"], Cell[680212, 15036, 609, 16, 35, "Output",ExpressionUUID->"637b7a5c-0c0f-4444-a58e-17c2cc54cd50"] }, Open ]], Cell[CellGroupData[{ Cell[680858, 15057, 194, 3, 18, "Input",ExpressionUUID->"2fae4920-47e5-498c-91aa-3b8e282e63b9"], Cell[681055, 15062, 11240, 224, 75, "Output",ExpressionUUID->"bad8cc9e-12c6-4b91-a221-bd8271f7fe0a"] }, Open ]], Cell[CellGroupData[{ Cell[692332, 15291, 2628, 77, 136, "Input",ExpressionUUID->"c6e312dd-0f14-4d4f-b5b8-45c0e55b0bb1"], Cell[694963, 15370, 7546, 142, 159, "Output",ExpressionUUID->"c749ee4f-dd77-4e07-a412-66bafcea5fc0"] }, Open ]], Cell[CellGroupData[{ Cell[702546, 15517, 3177, 93, 164, "Input",ExpressionUUID->"5608d300-9d65-478a-8559-4b6b8f926999"], Cell[705726, 15612, 9346, 168, 163, "Output",ExpressionUUID->"72329243-ac8c-4c56-8d42-6c88f30ae45f"], Cell[715075, 15782, 324, 6, 21, "Output",ExpressionUUID->"d992b578-e957-4855-b964-6603b3ad9d83"] }, Open ]], Cell[CellGroupData[{ Cell[715436, 15793, 257, 5, 18, "Input",ExpressionUUID->"a959d1c0-5840-4922-80ae-4cd74a14fa15"], Cell[715696, 15800, 250, 4, 21, "Output",ExpressionUUID->"a24f3d40-5906-4bdb-b165-039ffcfeb25a"] }, Open ]], Cell[715961, 15807, 280, 5, 85, "Input",ExpressionUUID->"2b0e6b22-adb8-4acd-870a-5a03ee95e09c"], Cell[CellGroupData[{ Cell[716266, 15816, 2213, 67, 115, "Input",ExpressionUUID->"81c6d373-276a-40da-bfb7-1193374e0af6"], Cell[718482, 15885, 738, 18, 37, "Output",ExpressionUUID->"b3cd65b1-9fa2-4998-b1c5-83828ee5b32e"], Cell[719223, 15905, 492, 11, 22, "Output",ExpressionUUID->"0735dcc7-7718-489e-b8e4-229e9482276f"] }, Open ]], Cell[CellGroupData[{ Cell[719752, 15921, 359, 10, 36, "Input",ExpressionUUID->"dacc115c-135c-4001-acfa-cbbd867128a0"], Cell[720114, 15933, 299, 9, 36, "Output",ExpressionUUID->"43f86e21-fb31-4e8b-8357-90dabf5954ac"] }, Open ]], Cell[CellGroupData[{ Cell[720450, 15947, 850, 25, 49, "Input",ExpressionUUID->"bc871433-d33a-4289-bc04-48a863f3afbd"], Cell[721303, 15974, 225, 3, 31, "Output",ExpressionUUID->"513423a9-b3e8-4591-9733-a63dd95cef44"] }, Open ]], Cell[CellGroupData[{ Cell[721565, 15982, 1527, 49, 50, "Input",ExpressionUUID->"4b0bc75c-1ad8-49ec-a59e-23b030d53d95"], Cell[723095, 16033, 438, 12, 35, "Output",ExpressionUUID->"a88fa5b9-d777-47a0-a018-158779e90e26"], Cell[723536, 16047, 481, 13, 35, "Output",ExpressionUUID->"5abf4518-5090-4e24-94d8-a05ae7c4f073"], Cell[724020, 16062, 179, 3, 21, "Output",ExpressionUUID->"c8af6461-b798-4404-91c3-67758073dd59"] }, Open ]], Cell[CellGroupData[{ Cell[724236, 16070, 1097, 32, 38, "Input",ExpressionUUID->"08d8772c-b60a-4fb3-8154-7dfe4893cbd0"], Cell[725336, 16104, 379, 9, 18, "Message",ExpressionUUID->"61e0b77d-a655-454d-8db2-ccdaa59b1d42"], Cell[725718, 16115, 632, 17, 35, "Output",ExpressionUUID->"d64b8857-8fa1-4628-a9ad-3f1ffe68576d"] }, Open ]] }, Open ]] } ] *)