(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 629045, 13172] NotebookOptionsPosition[ 607668, 12857] NotebookOutlinePosition[ 608107, 12874] CellTagsIndexPosition[ 608064, 12871] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[TextData[{ "Please note that before starting you need to fix the Working precision \ (wpc). Normaly 30 is enough;\n\nSame for AccuracyGoal (", StyleBox["acc = 5", "Code"], " is enough)." }], "Text", CellChangeTimes->{{3.9678625436239123`*^9, 3.967862579195866*^9}, { 3.9678646982326717`*^9, 3.9678647370745554`*^9}},ExpressionUUID->"53956451-8c08-42c8-8c2b-\ d9dda0245af3"], Cell[BoxData[{ RowBox[{ RowBox[{"wpc", "=", "40"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"acc", "=", "7"}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.967862581048873*^9, 3.967862588486355*^9}, { 3.9678646811725035`*^9, 3.9678646948476086`*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"80d43b72-adbe-43b9-b262-c134799272cb"], Cell[CellGroupData[{ Cell["Entanglement entropies of disks in confining backgrounds", "Section", CellChangeTimes->{{3.921757046377088*^9, 3.921757064775625*^9}},ExpressionUUID->"2aa95b7d-f96f-49a5-9026-\ 8f0450835673"], Cell[CellGroupData[{ Cell["General equations", "Subsection", CellChangeTimes->{{3.921757068875296*^9, 3.92175707586945*^9}},ExpressionUUID->"74ef4181-66b4-4ebe-9cd8-\ d18f3bb0f77d"], Cell[CellGroupData[{ Cell["Equation that we want to solve", "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106125437221*^9, 3.922106130015802*^9}, {3.922106457179372*^9, 3.922106463976871*^9}},ExpressionUUID->"ae3f92ff-ed1f-4aec-b666-\ 38cf1d443901"], Cell["The equation that we want to solve is:", "Text", CellChangeTimes->{{3.9221051479914007`*^9, 3.922105157255438*^9}},ExpressionUUID->"3c613755-22c2-42fc-b106-\ 629fe58a336b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"equation", "=", RowBox[{ RowBox[{ RowBox[{"\[Rho]", "''"}], "[", "R", "]"}], "+", RowBox[{ FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{ RowBox[{"\[Rho]", "'"}], "[", "R", "]"}], "3"], SuperscriptBox["R", "3"]}], "2"], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", "Q"}], "-", "4"}], ")"}], RowBox[{"f", "[", "R", "]"}]}], " ", "+", " ", RowBox[{"R", " ", RowBox[{ RowBox[{"f", "'"}], "[", "R", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{"4", "-", "Q"}], ")"}], FractionBox[ SuperscriptBox[ RowBox[{ RowBox[{"\[Rho]", "'"}], "[", "R", "]"}], "2"], RowBox[{"\[Rho]", "[", "R", "]"}]]}], " ", "+", " ", RowBox[{ RowBox[{"(", RowBox[{ FractionBox["Q", "R"], "+", FractionBox[ RowBox[{ RowBox[{"f", "'"}], "[", "R", "]"}], RowBox[{"f", "[", "R", "]"}]]}], ")"}], RowBox[{ RowBox[{"\[Rho]", "'"}], "[", "R", "]"}]}], "+", FractionBox[ RowBox[{"4", "-", "Q"}], RowBox[{ SuperscriptBox["R", "4"], RowBox[{"f", "[", "R", "]"}], RowBox[{"\[Rho]", "[", "R", "]"}]}]]}]}]], "Input", CellChangeTimes->{3.921757091420328*^9, 3.921944075557972*^9}, CellLabel->"In[4]:=",ExpressionUUID->"b3c01d61-9d67-44c6-9d8e-a6f6266c389f"], Cell[BoxData[ RowBox[{ FractionBox[ RowBox[{"4", "-", "Q"}], RowBox[{ SuperscriptBox["R", "4"], " ", RowBox[{"f", "[", "R", "]"}], " ", RowBox[{"\[Rho]", "[", "R", "]"}]}]], "+", RowBox[{ RowBox[{"(", RowBox[{ FractionBox["Q", "R"], "+", FractionBox[ RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "R", "]"}], RowBox[{"f", "[", "R", "]"}]]}], ")"}], " ", RowBox[{ SuperscriptBox["\[Rho]", "\[Prime]", MultilineFunction->None], "[", "R", "]"}]}], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"4", "-", "Q"}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]", "\[Prime]", MultilineFunction->None], "[", "R", "]"}], "2"]}], RowBox[{"\[Rho]", "[", "R", "]"}]], "+", RowBox[{ FractionBox["1", "2"], " ", SuperscriptBox["R", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", RowBox[{"2", " ", "Q"}]}], ")"}], " ", RowBox[{"f", "[", "R", "]"}]}], "+", RowBox[{"R", " ", RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "R", "]"}]}]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]", "\[Prime]", MultilineFunction->None], "[", "R", "]"}], "3"]}], "+", RowBox[{ SuperscriptBox["\[Rho]", "\[Prime]\[Prime]", MultilineFunction->None], "[", "R", "]"}]}]], "Output", CellChangeTimes->{3.921944076376354*^9, 3.921947952923645*^9, 3.922004538030388*^9, 3.9220052603981323`*^9, 3.92200736902675*^9, 3.922094859357222*^9, 3.922105158021019*^9, 3.922197899787896*^9, 3.9678616662562647`*^9, 3.9678679809371824`*^9}, CellLabel->"Out[4]=",ExpressionUUID->"027c99f5-1e0e-4321-91a3-5cbb88df24aa"] }, Open ]], Cell[TextData[{ "Let us express q in terms of the confining scale (by solving ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"f", "(", SubscriptBox["R", "conf"], ")"}], " ", "=", " ", "0."}], TraditionalForm]],ExpressionUUID->"43319b43-b0ce-4d30-a252-f3bf29d85996"] }], "Text", CellChangeTimes->{{3.922105163357758*^9, 3.9221052037453814`*^9}},ExpressionUUID->"5028dfb6-5d48-4330-8393-\ a6ea0da64541"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", FractionBox["\[Mu]", SuperscriptBox["R", RowBox[{"Q", "-", "1"}]]], "-", FractionBox[ SuperscriptBox["q", "2"], SuperscriptBox["R", RowBox[{ RowBox[{"2", "Q"}], "-", "4"}]]]}], "==", "0"}], ",", "q"}], "]"}], "/.", RowBox[{"R", "->", "Rconf"}]}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.921761223732546*^9, 3.921761267160142*^9}}, CellLabel->"In[5]:=",ExpressionUUID->"3caf4b2e-bd19-418f-9e25-a4a407a0125e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"q", "\[Rule]", RowBox[{ RowBox[{"-", SuperscriptBox["Rconf", RowBox[{ RowBox[{"-", "2"}], "+", FractionBox["Q", "2"]}]]}], " ", SqrtBox[ RowBox[{ SuperscriptBox["Rconf", "Q"], "-", RowBox[{"Rconf", " ", "\[Mu]"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{"q", "\[Rule]", RowBox[{ SuperscriptBox["Rconf", RowBox[{ RowBox[{"-", "2"}], "+", FractionBox["Q", "2"]}]], " ", SqrtBox[ RowBox[{ SuperscriptBox["Rconf", "Q"], "-", RowBox[{"Rconf", " ", "\[Mu]"}]}]]}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.9217612538402967`*^9, 3.9217612676200867`*^9}, 3.921944079111896*^9, 3.9219479532494383`*^9, 3.922004538669154*^9, 3.922005260702937*^9, 3.922007369049286*^9, 3.922094859490368*^9, 3.922105205431621*^9, 3.9221978998601503`*^9, 3.9678616684417605`*^9, 3.9678679810163126`*^9}, CellLabel->"Out[5]=",ExpressionUUID->"49d558eb-5c07-4922-8dbb-dd4e9160b42d"] }, Open ]], Cell[TextData[{ "Using ", Cell[BoxData[ FormBox[ RowBox[{"\[Zeta]", " ", "=", " ", RowBox[{ SubscriptBox["R", "conf"], "/", "R"}]}], TraditionalForm]], ExpressionUUID->"d836356a-2d04-46d7-83c9-1c20a1f2f4b5"], ", now ", Cell[BoxData[ FormBox["f", TraditionalForm]],ExpressionUUID-> "78d111ab-74a3-496a-9194-70aee28c4942"], " becomes" }], "Text", CellChangeTimes->{{3.922105209616465*^9, 3.9221052900308104`*^9}},ExpressionUUID->"5ebba7e8-cb1a-46ea-b616-\ 86cf7ec04b16"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rulef", "=", RowBox[{"{", RowBox[{"f", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"Q", ">", "0"}], "&&", RowBox[{"Rt", ">", "0"}], "&&", RowBox[{"\[Zeta]", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"1", "-", FractionBox["\[Mu]", SuperscriptBox["R", RowBox[{"Q", "-", "1"}]]], "-", FractionBox[ SuperscriptBox["q", "2"], SuperscriptBox["R", RowBox[{ RowBox[{"2", "Q"}], "-", "4"}]]]}], "/.", RowBox[{"q", "\[Rule]", RowBox[{ SuperscriptBox["Rconf", RowBox[{ RowBox[{"-", "2"}], "+", FractionBox["Q", "2"]}]], " ", SqrtBox[ RowBox[{ SuperscriptBox["Rconf", "Q"], "-", RowBox[{"Rconf", " ", "\[Mu]"}]}]]}]}]}], "/.", RowBox[{"\[Mu]", "->", RowBox[{"\[Mu]t", " ", SuperscriptBox["Rconf", RowBox[{"Q", "-", "1"}]]}]}]}], "/.", RowBox[{"R", "->", RowBox[{"Rconf", "/", "\[Zeta]"}]}]}], "//", "Simplify"}]}], "]"}], "//", "Evaluate"}]}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{ 3.921757144742592*^9, {3.921761206228943*^9, 3.9217612162404127`*^9}, { 3.921761275913702*^9, 3.92176128298899*^9}, {3.921944304154552*^9, 3.9219443095726643`*^9}, {3.9219443787463818`*^9, 3.9219443907435913`*^9}, {3.9219479702879343`*^9, 3.9219479914067507`*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"c7bc49b9-861a-439f-9512-646df9c86b5b"], Cell[BoxData[ RowBox[{"{", RowBox[{"f", "\[Rule]", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{"1", "+", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{ RowBox[{"-", "4"}], "+", RowBox[{"2", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{ RowBox[{"-", "1"}], "+", "Q"}]], " ", "\[Mu]t"}]}]}], "]"}]}], "}"}]], "Output", CellChangeTimes->{{3.92176121719558*^9, 3.921761219027961*^9}, { 3.9217612778603487`*^9, 3.921761283506187*^9}, {3.9219440800101213`*^9, 3.921944109972782*^9}, {3.921944293160592*^9, 3.921944310475563*^9}, { 3.9219443791771107`*^9, 3.921944391566971*^9}, 3.921944487175096*^9, { 3.921947954547923*^9, 3.9219479916522207`*^9}, 3.922004540522174*^9, 3.922005260904283*^9, 3.922007369054965*^9, 3.922094859536512*^9, { 3.9221052062700243`*^9, 3.9221052221826763`*^9}, 3.922105291120728*^9, 3.922197899915578*^9, 3.967861672009112*^9, 3.9678679812531347`*^9}, CellLabel->"Out[6]=",ExpressionUUID->"08ca0fd5-94e6-4628-adfc-aa7279f31616"] }, Open ]], Cell[TextData[{ "Let us now work out the change of variables between ", Cell[BoxData[ FormBox["R", TraditionalForm]],ExpressionUUID-> "05410a5e-8433-4d39-a7ca-f60ed730fca1"], " and ", Cell[BoxData[ FormBox["\[Zeta]", TraditionalForm]],ExpressionUUID-> "7e362c34-925d-47df-ac50-788b2abf9d4c"], ":" }], "Text", CellChangeTimes->{{3.922105304839332*^9, 3.922105329204535*^9}},ExpressionUUID->"f76b37e4-8c10-4144-abd0-\ cb6113114423"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"d\[Zeta]dR", " ", "=", " ", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"Rconf", "/", "R"}], ",", "R"}], "]"}], "//", "Simplify"}], ")"}], "/.", RowBox[{"R", "->", RowBox[{"Rconf", "/", "\[Zeta]"}]}]}], "//", "Simplify"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"changeRto\[Zeta]", "=", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"func_", "''"}], "[", "R", "]"}], "->", " ", RowBox[{"d\[Zeta]dR", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"d\[Zeta]dR", " ", RowBox[{ RowBox[{"func", "'"}], "[", "\[Zeta]", "]"}]}], ",", "\[Zeta]"}], "]"}]}]}], ",", RowBox[{ RowBox[{ RowBox[{"func_", "'"}], "[", "R", "]"}], "->", " ", RowBox[{"d\[Zeta]dR", " ", RowBox[{ RowBox[{"func", "'"}], "[", "\[Zeta]", "]"}]}]}], ",", RowBox[{ RowBox[{"func_", "[", "R", "]"}], "->", RowBox[{"func", "[", "\[Zeta]", "]"}]}]}], "}"}], "//", "Simplify"}]}]}], "Input", CellChangeTimes->{{3.9219441627370462`*^9, 3.9219442439617977`*^9}, { 3.9219444581841497`*^9, 3.9219444678159657`*^9}, {3.922105337969179*^9, 3.922105338477524*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"1981e5b2-49ac-4618-a39e-80e4fdeb150e"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["func_", "\[Prime]\[Prime]", MultilineFunction->None], "[", "R", "]"}], "\[Rule]", FractionBox[ RowBox[{ SuperscriptBox["\[Zeta]", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{ SuperscriptBox["func", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "+", RowBox[{"\[Zeta]", " ", RowBox[{ SuperscriptBox["func", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}], ")"}]}], SuperscriptBox["Rconf", "2"]]}], ",", RowBox[{ RowBox[{ SuperscriptBox["func_", "\[Prime]", MultilineFunction->None], "[", "R", "]"}], "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ SuperscriptBox["\[Zeta]", "2"], " ", RowBox[{ SuperscriptBox["func", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "Rconf"]}]}], ",", RowBox[{ RowBox[{"func_", "[", "R", "]"}], "\[Rule]", RowBox[{"func", "[", "\[Zeta]", "]"}]}]}], "}"}]], "Output", CellChangeTimes->{{3.9219442004363117`*^9, 3.921944244476285*^9}, { 3.921944315554669*^9, 3.92194435874928*^9}, 3.921944393889104*^9, { 3.9219444606407967`*^9, 3.921944488274873*^9}, 3.921947824963581*^9, { 3.921947973988963*^9, 3.9219479933717127`*^9}, 3.922005264698628*^9, 3.9220073690845833`*^9, 3.9220948597069693`*^9, 3.922105338784195*^9, 3.9221978999244556`*^9, 3.967861673545226*^9, 3.967867981266164*^9}, CellLabel->"Out[8]=",ExpressionUUID->"559a7183-a300-4d23-890a-5ecf3a1a0663"] }, Open ]], Cell["Then the dimensionless equation is:", "Text", CellChangeTimes->{{3.922105377895526*^9, 3.922105385589139*^9}},ExpressionUUID->"44c542e4-4fd2-401d-aecc-\ 2508c2be9f7f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"equation", "/.", "changeRto\[Zeta]"}], "/.", RowBox[{"\[Rho]", "->", " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["Rconf", RowBox[{"-", "1"}]], " ", RowBox[{"\[Rho]t", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", RowBox[{"R", "->", RowBox[{"Rconf", "/", "\[Zeta]"}]}]}], "//", "Simplify"}], "\[IndentingNewLine]", RowBox[{"Collect", "[", RowBox[{ RowBox[{ SuperscriptBox["Rconf", "3"], SuperscriptBox["\[Zeta]", RowBox[{"-", "4"}]], "%"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], ",", RowBox[{ RowBox[{"\[Rho]t", "''"}], "[", "\[Zeta]", "]"}], ",", RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", "\[Zeta]", "]"}]}], "}"}], ",", "FullSimplify"}], "]"}]}], "Input", CellChangeTimes->{{3.922005282019519*^9, 3.922005323265423*^9}, { 3.922005416581835*^9, 3.922005457868864*^9}, {3.92210535454839*^9, 3.922105354831131*^9}, {3.9678616827342424`*^9, 3.9678616873871164`*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"74e30b0c-fbe6-42b3-8f3b-e85c899884bb"], Cell[BoxData[ FractionBox[ RowBox[{ SuperscriptBox["\[Zeta]", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox[ RowBox[{"f", "[", "\[Zeta]", "]"}], "2"], " ", RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "3"]}], "+", RowBox[{"2", " ", "\[Zeta]", " ", RowBox[{"(", RowBox[{"4", "-", "Q", "+", RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], " ", RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], " ", RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"f", "[", "\[Zeta]", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", "\[Zeta]", " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "2"]}], "+", RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "+", RowBox[{"\[Zeta]", " ", RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "3"]}], "+", RowBox[{"2", " ", "\[Zeta]", " ", RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}], ")"}]}]}], ")"}]}]}], ")"}]}], RowBox[{"2", " ", SuperscriptBox["Rconf", "3"], " ", RowBox[{"f", "[", "\[Zeta]", "]"}], " ", RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}]}]]], "Output", CellChangeTimes->{{3.921947980818211*^9, 3.921947994249017*^9}, { 3.9220052667052193`*^9, 3.922005323778288*^9}, 3.92200542191569*^9, { 3.922005452225397*^9, 3.922005458797927*^9}, 3.922007369096072*^9, 3.922094859729669*^9, {3.922105343227697*^9, 3.922105386301343*^9}, 3.922197899947751*^9, {3.967861677197486*^9, 3.9678616879536705`*^9}, 3.9678679812885427`*^9}, CellLabel->"Out[9]=",ExpressionUUID->"a4a5e733-53fb-4aae-bf5e-55c284b78831"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ FractionBox[ RowBox[{"2", "-", "Q"}], "\[Zeta]"], "+", FractionBox[ RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], RowBox[{"f", "[", "\[Zeta]", "]"}]]}], ")"}], " ", RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", RowBox[{"f", "[", "\[Zeta]", "]"}]}], "\[Zeta]"]}], "+", FractionBox[ RowBox[{ SuperscriptBox["f", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "2"]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "3"]}], "+", FractionBox[ RowBox[{ FractionBox[ RowBox[{"4", "-", "Q"}], RowBox[{"f", "[", "\[Zeta]", "]"}]], "+", RowBox[{ RowBox[{"(", RowBox[{"4", "-", "Q"}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "2"]}]}], RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}]], "+", RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]], "Output", CellChangeTimes->{{3.921947980818211*^9, 3.921947994249017*^9}, { 3.9220052667052193`*^9, 3.922005323778288*^9}, 3.92200542191569*^9, { 3.922005452225397*^9, 3.922005458797927*^9}, 3.922007369096072*^9, 3.922094859729669*^9, {3.922105343227697*^9, 3.922105386301343*^9}, 3.922197899947751*^9, {3.967861677197486*^9, 3.9678616879536705`*^9}, 3.967867981315586*^9}, CellLabel->"Out[10]=",ExpressionUUID->"88f400e4-2a5f-472e-a099-87aacf3dd930"] }, Open ]], Cell["We factor out the dimensionful quantities:", "Text", CellChangeTimes->{{3.922105377895526*^9, 3.922105385589139*^9}, { 3.9678617008461266`*^9, 3.9678617241441784`*^9}},ExpressionUUID->"efd6a0d8-7820-4aca-83b5-\ 708b3e6ca2f5"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"equation", "/.", "changeRto\[Zeta]"}], "/.", RowBox[{"\[Rho]", "->", " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["Rconf", RowBox[{"-", "1"}]], " ", RowBox[{"\[Rho]t", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", RowBox[{"R", "->", RowBox[{"Rconf", "/", "\[Zeta]"}]}]}], "/.", "rulef"}], "//", "Simplify"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "''"}], "[", "\[Zeta]", "]"}]}], "]"}], "//", "Flatten"}], "//", "Simplify"}], ";"}], "\[IndentingNewLine]", RowBox[{"equationdimless", "=", RowBox[{ RowBox[{"%", "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}], "-", RowBox[{"%", "[", RowBox[{"[", RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.921944245314149*^9, 3.9219442840158167`*^9}, 3.921944407823996*^9, {3.92194453792607*^9, 3.921944577840716*^9}, { 3.921947846577091*^9, 3.9219478491870537`*^9}, {3.922105366488098*^9, 3.922105367466049*^9}}, CellLabel->"In[11]:=",ExpressionUUID->"13ffe9ed-1bf4-489a-a8f4-46d4200fed2a"], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]", "4"]}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}], " ", RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}], RowBox[{"\[Zeta]", " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]", "4"], "+", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}]}]]}], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]", "Q"], " ", "\[Mu]t"}]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "3"]}], RowBox[{"2", " ", SuperscriptBox["\[Zeta]", "2"]}]], "-", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]", "4"], "+", RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]", "4"], "+", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "2"]}]}], ")"}]}], RowBox[{ RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]", "4"], "+", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}], " ", RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}]}]], "+", RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}]}]], "Output", CellChangeTimes->{{3.921944249610873*^9, 3.9219442850970907`*^9}, { 3.921944316401469*^9, 3.921944359147599*^9}, {3.9219443947037287`*^9, 3.921944411072504*^9}, {3.921944461529172*^9, 3.921944488858902*^9}, { 3.9219445399309607`*^9, 3.921944577975926*^9}, 3.921947851299356*^9, { 3.921947913019677*^9, 3.921947920583927*^9}, 3.921947996196164*^9, 3.922007369265332*^9, 3.9220948599402514`*^9, {3.922105363577932*^9, 3.922105387023511*^9}, 3.9221979002076406`*^9, 3.967861726195073*^9, 3.967867981547513*^9}, CellLabel->"Out[13]=",ExpressionUUID->"ef036231-e26b-4140-a4fe-ee8b6c16bf8e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Some parameters for the numerical routine", "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106125437221*^9, 3.922106130015802*^9}, {3.9678617400714293`*^9, 3.9678617432406125`*^9}},ExpressionUUID->"98b125fd-ed90-4fb0-b2b6-\ 8030dc066fa8"], Cell["\<\ For numerics, it is convenient to define the equation in terms of its \ parameters:\ \>", "Text", CellChangeTimes->{{3.922105568044594*^9, 3.922105587708232*^9}, 3.967861747474291*^9},ExpressionUUID->"4ffed226-fe62-45fe-bb4c-\ 6aa469980ed0"], Cell[BoxData[{ RowBox[{"Clear", "[", "eqNum", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"eqNum", "[", RowBox[{"Q_", ",", "\[Mu]t_"}], "]"}], "=", "equationdimless"}], ";"}]}], "Input", CellChangeTimes->{{3.921945504186429*^9, 3.921945514940633*^9}, { 3.9219487052242603`*^9, 3.921948710666965*^9}}, CellLabel->"In[14]:=",ExpressionUUID->"c2a7db7c-02fa-4892-86d5-ab577f27a134"], Cell[BoxData[{ RowBox[{ RowBox[{"\[Epsilon]IRnow", "=", SuperscriptBox["10", RowBox[{"-", "5"}]]}], ";", RowBox[{"\[Epsilon]UVnow", "=", SuperscriptBox["10", RowBox[{"-", "5"}]]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"plotrange", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}]}], "}"}]}], ";"}], "\n", RowBox[{ RowBox[{"aspectRatio", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"imageSize", "=", "300"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"labelStyle", "=", RowBox[{"Directive", "[", RowBox[{"Black", ",", RowBox[{"FontFamily", "->", " ", "\"\\""}], ",", RowBox[{"FontSize", "->", "14"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.921945680696344*^9, 3.9219456818011513`*^9}, { 3.9220075908908443`*^9, 3.922007661430492*^9}, {3.922105600198962*^9, 3.922105600628498*^9}, {3.9221061412242737`*^9, 3.9221061589645348`*^9}, { 3.922108052999639*^9, 3.922108061054297*^9}, {3.9678667813115854`*^9, 3.967866796439118*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"b0948edb-33af-419a-8eed-799f96d80257"], Cell["We define the following function to plot the solutions:", "Text", CellChangeTimes->{{3.9221061463218317`*^9, 3.9221061574566298`*^9}},ExpressionUUID->"8f1b602e-26a5-4b57-aa51-\ 452777112dde"], Cell[BoxData[ RowBox[{ RowBox[{"plotSol", "[", "sol_", "]"}], ":=", "\[IndentingNewLine]", RowBox[{"(", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"sol", "[", RowBox[{"[", "0", "]"}], "]"}], "=!=", " ", "List"}], ",", RowBox[{ RowBox[{"Print", "[", "\"\\"", "]"}], ";", RowBox[{"Return", "[", "]"}], ";"}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}]}], "/.", "sol"}], ",", RowBox[{"-", "\[Zeta]"}]}], "}"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "/.", "sol"}], ",", RowBox[{"-", "\[Zeta]"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"sol", "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",", RowBox[{"sol", "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "plotrange"}], ",", RowBox[{"AspectRatio", "\[Rule]", "aspectRatio"}], ",", RowBox[{"ImageSize", "\[Rule]", "imageSize"}], ",", RowBox[{"PlotStyle", "->", "Thick"}], ",", RowBox[{"LabelStyle", "->", "labelStyle"}]}], "]"}]}], "\[IndentingNewLine]", ")"}]}]], "Input", CellChangeTimes->{{3.9221080381075897`*^9, 3.922108065015017*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"796083ed-0d2a-48e1-ab61-6315ef238ec7"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Boundary conditions:", FontWeight->"Bold"], " Embedding for small spheres" }], "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.9221064689024563`*^9, 3.922106478443304*^9}},ExpressionUUID->"09159dbf-f17b-4ca5-9a01-\ a9462fefa691"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"orcusp1", "=", "1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"solcusp1", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"cR", "[", "0", "]"}], "->", FractionBox[ RowBox[{"\[Sigma]1", " ", "2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "3"}], "+", "Q"}]], " ", "\[Zeta]s"}], SqrtBox[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}]]]}], ",", RowBox[{ RowBox[{"cR", "[", "1", "]"}], "\[Rule]", RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", "Q"}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", "5"]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], "3"], " ", SuperscriptBox["\[Zeta]s", RowBox[{"4", "+", "Q"}]], " ", "\[Mu]t"}], "-", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", RowBox[{"2", " ", "Q"}]}]], " ", SuperscriptBox["\[Mu]t", "2"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"1", "+", RowBox[{"2", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", SuperscriptBox["\[Sigma]1", "2"]}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"3", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", "\[Mu]t", " ", SuperscriptBox["\[Sigma]1", "2"]}]}], ")"}]}], ")"}], "/", RowBox[{"(", RowBox[{"2", " ", SqrtBox[ RowBox[{ RowBox[{"-", "3"}], "+", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "Q"}], ")"}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}], ")"}], RowBox[{"3", "/", "2"}]], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]s", "4"], "+", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}], " ", "\[Sigma]1"}], ")"}]}], ")"}]}]}]}], "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.921944986140375*^9, 3.92194501690136*^9}, 3.921948012195068*^9, {3.921948072419404*^9, 3.921948125397109*^9}, { 3.922105403618349*^9, 3.9221054039064503`*^9}, 3.9678633032483797`*^9}, CellLabel->"In[22]:=",ExpressionUUID->"7d085a8e-7e0e-4fda-906f-2b8ad45f8725"], Cell[TextData[{ "Here \[Sigma]1 is either + or minus; it orresponds to just picking one of \ the branches. It is enough to pick one of them, due to the symmetry with \ respect to \[Rho] = 0. The plus sign picks the ", StyleBox["\[Rho]t", FontWeight->"Bold"], " positive branch" }], "Text", CellChangeTimes->{{3.921945278936058*^9, 3.921945349270913*^9}, { 3.922105457905079*^9, 3.922105472240712*^9}, {3.922105983214981*^9, 3.922105989199827*^9}, {3.967861767655071*^9, 3.967861772859516*^9}},ExpressionUUID->"5f9c6eb0-7110-4187-aa0a-\ 554df4eee2a7"], Cell[BoxData[ RowBox[{ RowBox[{"orcusp1", "=", "1"}], ";"}]], "Input", CellChangeTimes->{{3.9219450239853497`*^9, 3.9219450366717777`*^9}, { 3.921945103007259*^9, 3.9219451212763157`*^9}, {3.921948009427899*^9, 3.921948010123589*^9}, {3.921948106876389*^9, 3.921948106963477*^9}, { 3.9678618053137026`*^9, 3.967861805447836*^9}, {3.967861900909746*^9, 3.967861901024233*^9}, {3.9678632873208466`*^9, 3.9678633009291735`*^9}}, CellLabel->"In[24]:=",ExpressionUUID->"cc9d85b4-fee0-4ec0-b912-f6fa0fd8847a"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"0", "<", "\[Zeta]", "<", "\[Zeta]s", "<", "1"}], "&&", RowBox[{"Q", ">", "2"}], "&&", RowBox[{"\[Mu]t", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"equationdimless", "/.", RowBox[{"{", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "0"}], "orcusp1"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Zeta]s", "-", "\[Zeta]"}], ")"}], RowBox[{"kk", "+", FractionBox["1", "2"]}]]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", ",", "\[Zeta]s"}], "]"}], RowBox[{"orcusp1", "+", FractionBox["3", "2"]}]]}]}], "]"}]}], "}"}]}], "/.", "solcusp1"}], "//", "Simplify"}], ")"}], "/.", RowBox[{ SuperscriptBox["\[Sigma]1", "n_"], ":>", RowBox[{"If", "[", RowBox[{ RowBox[{"EvenQ", "[", "n", "]"}], ",", "1", ",", "\[Sigma]1"}], "]"}]}]}], "//", "Simplify"}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "==", "0"}], ",", RowBox[{"cR", "[", "orcusp1", "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"0", "<", "\[Zeta]", "<", "\[Zeta]s", "<", "1"}], "&&", RowBox[{"Q", ">", "2"}], "&&", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}], "<", "0"}]}], ",", RowBox[{"%", "//", "Simplify"}]}], "]"}]}], "Input", CellChangeTimes->{{3.921944613477893*^9, 3.92194474272048*^9}, { 3.921944857270976*^9, 3.921945003466131*^9}, {3.921945042883078*^9, 3.921945072854514*^9}, {3.9219451162836227`*^9, 3.921945118758246*^9}, { 3.921945152394061*^9, 3.921945173298196*^9}, 3.9219452050584583`*^9, { 3.9219480178652153`*^9, 3.921948057925906*^9}, {3.9678618138011427`*^9, 3.967861814268445*^9}, 3.967863290189299*^9}, CellLabel->"In[25]:=",ExpressionUUID->"2c28fb2e-9127-4f0b-a212-966bf7cbf316"], Cell[BoxData[ InterpretationBox[ SqrtBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", "-", "\[Zeta]s"}], "]"}]], SeriesData[$CellContext`\[Zeta], $CellContext`\[Zeta]s, {}, 1, 1, 2], Editable->False]], "Output", CellChangeTimes->{{3.92194472233834*^9, 3.921944745148157*^9}, { 3.9219448585775433`*^9, 3.921944972446638*^9}, {3.921945019900906*^9, 3.9219450677753763`*^9}, {3.9219451003110323`*^9, 3.921945104613258*^9}, { 3.9219451676317043`*^9, 3.9219452084598627`*^9}, {3.92194801377183*^9, 3.921948058349721*^9}, {3.9219481032296963`*^9, 3.921948128741538*^9}, { 3.922007362667446*^9, 3.9220073712262793`*^9}, 3.922094862023313*^9, 3.9221054759260483`*^9, {3.922105560960845*^9, 3.9221055905437403`*^9}, 3.9221059942011538`*^9, 3.9221979020667677`*^9, {3.967861769023923*^9, 3.967861813533738*^9}, {3.9678618959735093`*^9, 3.967861902425397*^9}, 3.9678621000917206`*^9, 3.967867983432863*^9}, CellLabel->"Out[25]=",ExpressionUUID->"792ce038-09d5-49d8-b97c-1650b2f655d8"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", "}"}], "}"}]], "Output", CellChangeTimes->{{3.92194472233834*^9, 3.921944745148157*^9}, { 3.9219448585775433`*^9, 3.921944972446638*^9}, {3.921945019900906*^9, 3.9219450677753763`*^9}, {3.9219451003110323`*^9, 3.921945104613258*^9}, { 3.9219451676317043`*^9, 3.9219452084598627`*^9}, {3.92194801377183*^9, 3.921948058349721*^9}, {3.9219481032296963`*^9, 3.921948128741538*^9}, { 3.922007362667446*^9, 3.9220073712262793`*^9}, 3.922094862023313*^9, 3.9221054759260483`*^9, {3.922105560960845*^9, 3.9221055905437403`*^9}, 3.9221059942011538`*^9, 3.9221979020667677`*^9, {3.967861769023923*^9, 3.967861813533738*^9}, {3.9678618959735093`*^9, 3.967861902425397*^9}, 3.9678621000917206`*^9, 3.9678679834460745`*^9}, CellLabel->"Out[27]=",ExpressionUUID->"3c86ae59-0be0-4c48-abc0-fef34d72989b"] }, Open ]], Cell[TextData[{ "One could in principle find more terms but it is actually not necessary. It \ just takes some time (due to not having specified ", Cell[BoxData[ FormBox["Q", TraditionalForm]],ExpressionUUID-> "02942b96-a4fd-48d9-98e6-b0d599f6a58d"], " I think." }], "Text", CellChangeTimes->{{3.9219452104895144`*^9, 3.921945232074752*^9}, { 3.9221054842644377`*^9, 3.922105512647938*^9}},ExpressionUUID->"b4db5500-d88a-4d16-9e30-\ 7357103a89cb"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Clear", "[", RowBox[{"\[Rho]tcust1", ",", "d\[Rho]tcust1"}], "]"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Rho]tcust1", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "0"}], "orcusp1"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Zeta]s", "-", "\[Zeta]"}], ")"}], RowBox[{"kk", "+", FractionBox["1", "2"]}]]}]}], "/.", "solcusp1"}], "/.", RowBox[{"\[Sigma]1", "->", "1"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"d\[Rho]tcust1", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Zeta]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.921945244249751*^9, 3.921945262297624*^9}, { 3.921945375569442*^9, 3.921945441569409*^9}, 3.922105479776905*^9, 3.922105870539217*^9}, CellLabel->"In[28]:=",ExpressionUUID->"989d6cf8-f948-4f87-975a-0f05fa66a360"], Cell[TextData[{ "The following function will compute the solution and store it in ", StyleBox["solnumerical", FontWeight->"Bold"], ", for each choice of the parametes" }], "Text", CellChangeTimes->{{3.96786186783537*^9, 3.9678618948713875`*^9}},ExpressionUUID->"24f09210-7e48-4686-a201-\ b33722b292f0"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"computeSol", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Zeta]s_"}], "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{"solnumerical", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Zeta]s"}], "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"eqNum", "[", RowBox[{"Q", ",", "\[Mu]t"}], "]"}], "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"\[Rho]tcust1", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"d\[Rho]tcust1", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}]}], "}"}], ",", "\[Rho]t", ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "wpc"}], ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "Flatten"}]}], ")"}]}], ";"}]], "Input", CellChangeTimes->{{3.921945468659129*^9, 3.9219455691595917`*^9}, { 3.921945616748568*^9, 3.921945621759766*^9}, {3.921948715474118*^9, 3.921948715552459*^9}, 3.922105603619556*^9, {3.9678625213926077`*^9, 3.9678625216770535`*^9}}, CellLabel->"In[31]:=",ExpressionUUID->"9e160167-9223-4b80-ab6b-f350e9e22a92"], Cell["\<\ Here we are actually going way fancier than we need. We could just use big \ numbers in the boundary conditions, see for example\ \>", "Text", CellChangeTimes->{{3.922105607060308*^9, 3.922105648627779*^9}},ExpressionUUID->"fbb58c4e-57c9-427b-8a02-\ 69c4c9c6f5e1"], Cell[BoxData[ RowBox[{ RowBox[{"computeSol", "[", RowBox[{"5", ",", "0", ",", RowBox[{"1", "/", "2"}]}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.922105740372168*^9, 3.922105745368483*^9}}, CellLabel->"In[32]:=",ExpressionUUID->"f5fe0651-c4ed-4dec-8762-a303352d8e68"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Q", "=", "5"}], ",", RowBox[{"\[Mu]t", "=", "0"}], ",", RowBox[{"inf", "=", SuperscriptBox["10", "8"]}], ",", RowBox[{"\[Zeta]s", "=", RowBox[{"1", "/", "2"}]}], ",", "aux1"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"aux1", "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"eqNum", "[", RowBox[{"Q", ",", "\[Mu]t"}], "]"}], "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", SuperscriptBox["inf", RowBox[{"-", "1"}]]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", "inf"}]}], "}"}], ",", "\[Rho]t", ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "wpc"}], ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "Flatten"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "/.", "aux1"}], ")"}], "-", RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}]}], "/.", RowBox[{"solnumerical", "[", RowBox[{"5", ",", "0", ",", RowBox[{"1", "/", "2"}]}], "]"}]}], ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.922105659529273*^9, 3.922105845022271*^9}, { 3.922105877760291*^9, 3.922105881156567*^9}, {3.92210591454904*^9, 3.922105969829212*^9}, {3.96786252549511*^9, 3.967862528063547*^9}}, CellLabel->"In[33]:=",ExpressionUUID->"22b22a37-04de-4d19-a662-6865c5ec50d2"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwd1Hk8lG0XB/BB2ckukWyJlJAKlRGREBKishZZEhWylO1BlCJMREmoPLZo kQddty0lS8ieGGQf+5Lde673r/l8P79zznWuue8ZcXt3Ewd6EomkSEci4c+X fiVjBzb+qJNIBa9ISlSUM8zZoe92kkwKumBKB/7koepjpGVKJpGMzRjAMu4m 6hmnLcFZLVvAiW6uW5aNrMHJmYzgLYc1B6Wz7cC7m5jBxz4a6p6VvwLWN2QD d8y3+A65O4Cf5rCDPZUvZvsXOMJ528Q48fnvr3K+VnYGe+lwg3XnJshHvV2g 3nGZB/xHyfNG4ydXyIPK+cA73wW1rKhdh/zg4+3g4hlGxpg77uC6xB3g7MTq ZB4bD/DjjyLgUx0G9W9Sb0B/irw4OPC8pUKzpCeYKioHNrwtUvOsCkwa/rEf LJLQa3fVwQu884kCuKjNIW7ttTdYxP4weNrs5qL0Xl+875ImGHkdip75DiZx nNMBR1GW9pS6+kHeUXEaf3+tAZZnc/0hF+g3BtuaPij1VwgAG+yyBct7Gprp NIGD8iWvgNfiuCe5bgaCTY47getGa7f9tAwCG+d7gJ1kTU44JQeD1Skh4NRM 64xY0VCYl3kxCxxeRIiVeIGDzGTywW7fxJ4P1OGcjbMQrDbST1H2DwNTpCrA rXuu3mtrDwdfDPgFZn3j7rLjcSS4Z5DnINy3sHFIcwS7WmsHuL1a8bIr+T7M rysWB2cMzV0snQCTtOYVwOrSPmes9aIgZ6QYg2+9ClJIY4gGy0fHgy987Mv5 fgF7IfA5WOOLpuxcAZi0EfkafO8mPbeEQgzkXaNFYNPYKpZbPdiLHT3gySbd Vb6jsVCv631AmYokz57tsZiPB9/8bwCceNGigWUnBerdmKbAnI42qFgbO9F1 Bbzk55YikgAmPfDmPkRFDRmR1lTVJ5DrJWiAfZbKe64GJuB9mdNx/kKp15s1 CeqzK30OU9HJLNUfew6CgyZ6wsH/fdAgOi5iF3NRwBk1hi/UcnH93KcCsO+c i82GUTLkrXw0sNSp9N4wyjNwEbPDESrym+Slxou9wO9P/1UVKpqJNvX11QUH 1fv6gJ0UKTzWHjjfuycSbOYpoL2nDPtbRRZ4+1321u4DqWCxjUnwLP02Nfcf 4CDTB/6qVJTJybclnjMN8kntV2pUdNnmg3G4RBq+X1oRWDTf9LnPYWxP/jow 5SzlsJU1rj94Yg4cEi/gLJ2Hc6U8zaNUZLVDqKHoTDr4JHUQzCMtmvg7KgPP jzh+nIrqzVF+UBq2e6YZOOKedY1kEfbNfjfw5kjKivMAdt2rFDAte5fVouor mOfrRKdORdWK4hLbhrH/bakF+x6XytE48QY8fMBTg4qopnvL0hf+BQ/s5T9J Rd3VHxVbWbJgnsS4IrhD5UQ6oyj2WqUhuEnEItxZB/s1EQGu+BNmcCABO7Z3 HZzh2ddRrJIN81yqaNrwfccnzjT550DeJ/n7FLz/PxklSfRvwUcGmQ1g392x tv2C4KDKOnnwyO2dKVX7sa83mYKpwspCkZbY4kovwU2X7bbxFOB+3bNHz1BR 5/LvdW6FfLAKu5ch/H9FqoxJ9ubj5+2yYUxFd/6dqDh1/B3kxZvO5lTEbznD 9J32Aby1PsyeihoVrFwEr38C014muMPvhfmLQcDuYuj/whoVSEU2zBSD/LxS 8OhgXAwVGfhs9IrIEXhe3HI6Fe2YL/BtmiwD530WL6GiXWXbeVYUKqBe+q1+ MxVJRN11OfCoEjx3iW6SihS43rLTD1ZBPScrK0cfMsyMP14sVQ32t3uzvw+5 aPjIBwZ+hfrBMxfO9aEE2rY82cpvkIdHmfr0oYrEVxNU8e9gQZ/4jD60tMZ0 +5BfLdRTHuq39yF1L9Fo95I6yPedL2HrRyETSlcLBRvA6jmndfpRu+9qff+l H2BD1vDAfiRso0tuO9MItn2Wg/qRHl3s7fIVcNDHlLvbBlBw7qHbu5414d9b YpvNACqy7Ghj0G8GF9Se/W8AzdvZ/SpcBJMkG7VE/iAVz5Nvup/8BM8gvvA/ yD9c+mfEyRa8X5ck3SCqTrOvfjOE/V6S/c4gEhQOs6aEtUI9ywu7rUPoatxr cxalNnCi/mTuECL4JQSmm7GH/bUthpFA4rNDVsHt4C7Jx7IjyEvqhshxqQ6Y l/7wN8coEuBKbSuRxu5fCuEeRUWrDTFqsmCS5i5Z/lG01rxvq4o8zp3f3hYZ RSHBIxNKKtiUKFG5UfSox4aQMcAWrU7WHUWZiYb2fJ7YaQEPQkdRF/u+zPFK PC/HI4d+DN2Z7/JPrcY5NUiGaQzt7I40MqvB3nyYyTaGbLOHF1EDrm968YFv DA2dTteO7cS+pLImPYbmwncMqEzh+qgMdYMxxE7HIhq+oxPyhHcvn44h9YXB OLEb4DIrtm7yOGLWfqf05hZYoyik7+Q4ao4PaNrvjfOVgZHT48hBWXDbUX/s J5zr58ZR1C3d+2Zh2INKqk7jqHMmK+j+UzyfYrkcM448J93d5stxPv68ZGAc ZQ0v63zj6YJ97DwiY2nI86DOZig/uOyX05dEGlIPjP10Yju2qDPTCxpqEpCT KdkJ1rge/Tybhpa0L7HkyeD+EAOeLzSknYFq49TBpBVh3mUaotr+Y2zjgv3f LyGHCcTfxX5hsRzbUF/LaBIZEjSD11V4vta+r+aTKCKjjmz+Fc+feGtkPYnW rkftLqzD9e+Sr7tNogEG9hmvdly/LvXnwSQq2M8WsUDDTo56VzOJzgSzFM4L /oL69nvk01Mo3HE0M2MH9n4/17NTqEy/Jtl0J1iDSTnFcgopC0QGf5DAdkzZ 7jKFhLOZz3ju/4XfL0bHB1NotIXpz5wm7idNPfwxhcJkGHnm3MBi95zVDkyj IS+GRk8PcBmZ9d7BaaRbSXq0eBOcShHpODKN2K1XWVZug6l6OyM0plF83DQd XQjO9cgSJtMoY6NrhvMJPi8u9JT3NKpoedu0F+F90mpZK6aRlERudE4Z7ve0 G6meRuHuWWfkK/H5Y+draqeRHuurGsVvOPcXorROoyZyUrlKM9g28LDJ6DSi ZoUW6Azh/COTFfcM2giyfGzP2Q1mSpG8MoNsv7c57eAGB2kOjjjPoApeU41m Xmwfiw/uMyj8teHUCSGwRkS2tf8M4qjTOiMuhXPta0xxM0hEUJ6FqornGT1q qZxBarn0wVYOYNtvZxrkZtGzxUALfidwaohPstIs2iCvH6h3AYt1199QnUUV zX97jnlgfzJQPTWLTi/Rjon4g0nNu+QvzyILrfalrhjsp9/Dns0i785sD4tS cJmenSXfHCI90OHtR3i+2InHwnPo/rG+j67l2PFTjRJzKOWFwGpANe4XmHVS nEPVDsFhrxpxfktji9EcEpg1T5r9g3MrOpmoOVTISl8VxfEb9lcpWOWcRxql zxwFuMBBn2zvC86j725HWFJ5wKluPbvF5lFP4zXD94JgKt3RUMV5xJjQ3tEp jvPIjN+m88hcMndC+jBYbGtN2/N5tHjUQrDcGuf0F6JVFtB0ePj8cTuwRuy5 m5oLaKzpQ1PxZTxP5b69wQLqucod9cEJn69Q7Wq7gKrjvpMyb2KrtcpGLqCE 8WNjj8LBZW7SL38vIJVk8c+X8rA/u6rGLyKlIaOkznx83oLd2dRFtE8x4Lb5 e7wP+UJgziIS+9qlaFyE7zuYLPJlEbHMxb3WqsD7FDaY/l1EXXqMMXvb8Hnc 7T42f5H/ypj90jrOiy3vkJeQ94mnltmkHug/9yPVaAl5RJwytmYAl9kdHbNZ QlcEMo5XMWOrFk0GLSEDJavtMbxgMTabiqolJOLyo36PLFijl0PJdBkJFNyt 6pIDU6/4dDsuI64luZKH8uCg1ct5vstoS3hE5txBfF7l5eoXy4j28sQ/hDru l3v7ZWIZfe58r3LeFPc3uro+XkFFYvYHWM/jernbha9X0LurXNKfLfG8c/Uq pSvo9cI1Xkkb3O9IRxteQY+4pScnncGpKgwqmqvI+nRienggmLTJ3Ei/hixi dJJUQ8D5HJOCImvIpH0+hhYKbrxy/tWhNaTjcDbA5D6e9+XRQ+c1JB/MailK wfU3VBJa1tBm0R3Owiyca3X/LFpHEk66jWq5YGMLmY6WdXRSkC+WeIv3N5M5 MLOOIryy+Ws+/P9+xT17NxCXUpdINwJ7mOz0S9tAEtlH5Oh/gqeFfx/K2EQn LzBMhLfi/QWSjao3kSPLjzy2DpwTvK0jmyj7qqMS/28wV1rSY0ESoSxFUZUZ Bo9c3PC2JRE6z2dPGa5ib4gFb5AIJwPE8nMdHMMnlcRLR9xfjaw9T+olkyJC lxhl6YgfluJGdlvBPttCx03pCAsBY3PPbWDj8szFfDrC74vw9mVu8DfZ4K5v dMQzz+HOu3xg5n+thfroCGpzgNU9IXBHLHMBDz3hHJ17JUkS7OQ6lu1HT0Sp +0rvksbzJkrqKPRE3sTJkXQZ8MgJsesF9MSsfrdr7n6wh5qB1hg94cfMdqvs CO4n8QfYMxDPPrUpa6uBU9NyGUIYCOSYtlhzDMwld1syjYFg+KLq9/MEuChM 78gfBiIq2Cl4SB/Pl57T9dhCKNjeIBcagi30132ebiFa1P3Ww86CZa47Zldu IUTWHvjuPo/vX/n1lPBWIsf77Y0r9mDbtOKMjq2EsVnRAWUHfP8n0apsjMT8 wfIJBid8frH3PjIjcWym2TndDRyTvHYpm5GodV206/fBeee1fxKYiOt6m7ve +eP7udcYtjMRPLLMPcEB+Lz3PRpCzMSFIaEL4qHgJbenv9OZiY0qie0z4WBd brFMGjORli7XVhaJ9/fpmjrCQozZHjexjQZnLsnWt7EQj8g6XAqx+P7SW//s ZSWURI0aNuPxeUOx5iGshN8vW70XSXgfRU25Y2yEaLEzs/tz8LSKwHgKG1GR eLNaPRU/T/vA/q3sBKt5qGbPK3zfugr+fnYiT/khKS8T/MykfJ8FB2HC+wTd zcb3lToo18JBJDW+UdtZAC4N/Pyrl5NQf5u/RHuP8/SVGI9tRP/D/wpLC8Gi 116WbuEi9urXKl0qBfMN3OrJ5iIaZFum5Qhw/+jOWCZu4ibz77zVcvCTfoqF MzchMDx4rbYK328H20wTN1H8ZXJv8le8LwevlSYPYZ3xd8TlO5hGcXhRwkPQ /0N6o1YPPsbdUK3OS7y2Y3FgbQRfs2lUrecl9DR4JLuawRKxjv1OfMSkqHDf v61gx8TTQ7z8ROy65AvfDnDWBkdDIz9xuHuf1elfYKXIDaZ0AaKr+JCwUA9+ vwxahaIFiYCn6p0jVFx/mHo9aTsh4XMqoWgAP6/lVVqdEFFtbmwWMQQOHTn6 V0GYcDlkyWsxCo6d4MxsFSE4+eyb9tDAPOfkpZpEiXezLtF/J3vJQWHTNaLp YoR5060zX2cgF99VbXJEglh5e4ctYR5ySuXFUUspIuVRWI3jX8h3zByK9dlD aLo9und4pZesoSOqa5y7jxjST9BmXO8lUzXT+rwklInIvakMbZu9ZPKr4XbK nSvE/wAOoCQ7 "]]}, Annotation[#, "Charting`Private`Tag$8156#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.922105709652163*^9, 3.922105724846299*^9}, { 3.922105810293035*^9, 3.922105881667609*^9}, {3.922105914963574*^9, 3.922105996286644*^9}, 3.922106165875429*^9, 3.922197902527482*^9, { 3.9678620819077253`*^9, 3.967862109142295*^9}, 3.967862614851929*^9, 3.9678679843166466`*^9}, CellLabel->"Out[33]=",ExpressionUUID->"f4fe5f53-2409-4e90-81b8-76b7ae2dedf4"] }, Open ]], Cell[TextData[{ "So the error is order ", Cell[BoxData[ FormBox[ RowBox[{"~", SuperscriptBox["10", RowBox[{"-", "3"}]]}], TraditionalForm]],ExpressionUUID-> "65bec610-1ca7-4f70-83c5-6be2f050945b"], ". Note however that it gets bigger near the cusp, where \[Rho]t is actually \ small, meaning the absolute error is not so small.\n\nThe plot looks like:" }], "Text", CellChangeTimes->{{3.92210599980015*^9, 3.922106104042033*^9}, { 3.922106184567071*^9, 3.922106191343045*^9}},ExpressionUUID->"ce3c06b1-b1e3-408f-a63d-\ c769178e0816"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"computeSol", "[", RowBox[{"5", ",", "0", ",", RowBox[{"1", "/", "2"}]}], "]"}]], "Input", CellChangeTimes->{{3.921945632686475*^9, 3.921945639036745*^9}, { 3.921945696562271*^9, 3.921945697053267*^9}, {3.921947678747489*^9, 3.921947680093298*^9}, {3.9220073807162848`*^9, 3.9220073809728203`*^9}}, CellLabel->"In[34]:=",ExpressionUUID->"685901c1-82b5-4f73-ad2d-a5116b8a954d"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Rho]t", "\[Rule]", InterpretationBox[ RowBox[{ TagBox["InterpolatingFunction", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, TemplateBox[{ PaneSelectorBox[{False -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxOpener"]], ButtonFunction :> (Typeset`open$$ = True), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`40.*^-5", ",", "0.49999`40."}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}], True -> GridBox[{{ PaneBox[ ButtonBox[ DynamicBox[ FEPrivate`FrontEndResource["FEBitmaps", "SummaryBoxCloser"]], ButtonFunction :> (Typeset`open$$ = False), Appearance -> None, BaseStyle -> {}, Evaluator -> Automatic, Method -> "Preemptive"], Alignment -> {Center, Center}, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[{{ GrayLevel[0.6], AbsolutePointSize[5], PointBox[{1, 1}], PointBox[{2, 4}], PointBox[{3, 2}], PointBox[{4, 3}]}, {{}, {}, { AbsoluteThickness[1], Opacity[1.], LineBox[CompressedData[" 1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm /j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA 42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK 7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 /z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn q5SZmRFAL++xNeOlE0Dwt3AR "]]}}}, AspectRatio -> 1, Axes -> False, Background -> GrayLevel[0.93], Frame -> True, FrameStyle -> Directive[ GrayLevel[0.7], Thickness[Tiny]], FrameTicks -> None, ImageSize -> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}], PlotRange -> {{0, 5}, {0, 5}}], GridBox[{{ RowBox[{ TagBox["\"Domain: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ RowBox[{"{", RowBox[{"{", RowBox[{"1.`40.*^-5", ",", "0.49999`40."}], "}"}], "}"}], "SummaryItem"]}]}, { RowBox[{ TagBox["\"Output: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"scalar\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Order: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["3", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Method: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\"Hermite\"", "SummaryItem"]}]}, { RowBox[{ TagBox["\"Periodic: \"", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["False", "SummaryItem"]}]}}, GridBoxAlignment -> { "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> { "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, BaseStyle -> { ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, BaselinePosition -> {1, 1}]}, Dynamic[Typeset`open$$], ImageSize -> Automatic]}, "SummaryPanel"], DynamicModuleValues:>{}], "]"}], InterpolatingFunction[{{1.`40.*^-5, 0.49999`40.}}, { 5, 3, 2, {125}, {4}, 0, 0, 0, 0, Automatic, {}, {}, False}, {{ 1.`40.*^-5, 0.0000155961002726318808840076855196669691621680917639023788`40., 0.0000211922005452637617680153710393339383243361835278047575`40., 0.0000323844010905275235360307420786678766486723670556095152`40., 0.0000547688021810550470720614841573357532973447341112190305`40., 0.0000917499168473145700005230809594331408303204053110795018`40., 0.0001185206654100329538346555627586230837316470046454440664`40., 0.0001323393235866549485337259874902256854550711205801167618`40., 0.0001424308018101902848093934748420317546814067817998427478`40., 0.0001463401323087468536642150297114967442058987157734373788`40., 0.000148273818026447438397669309779520331132018475551317082`40., 0.0001488212320844509878170660011519481521083248062165060238`40., 0.0001489762015027783116670350357354270860148546380075488346`40., 0.0001490470698006736360594402706466855095494027088921468012`40., 0.0001490794782313226586131337400979905870318738918432182943`40., 0.0001490942987703834930267370858273101328908541294578424064`40., 0.0001491010762777682988766915210538259059124655411708399838`40., 0.00014910417566613484535369090174549548459059613780666084`40., 0.0001491055930320927518415390064437206530612870992243527993`40., 0.0001491066378932296877836835515731566510228233342563944537`40., 0.0001491076827580866497766541202006142780363050441440181794`40., 0.0002882153655161732995533082404012285560726100882880363587`40., 0.0005664307310323465991066164808024571121452201765760727176`40., 0.001002364166924553404147702506548098200024669146382038946`40., 0.0014382976028167602091887885322937392879041181161880051745`40., 0.0020832564316902202151661494032597573314327770389763587662`40., 0.0027776021842570443176979716793359585498307980183064538473`40., 0.0032643221713420297919640776757947177463507162386913707561`40., 0.0035312956718049738469428709855679809895478304243886323187`40., 0.0037450543872310400357493481690490883551785944591726569179`40., 0.0038448341861188749929426823774893006598194767337729180781`40., 0.0038859906830379367505300424397756077043294976515412947526`40., 0.0039019342688095633431797970902730168552107388068688054086`40., 0.0039077074617215776875389789001388172486506824314161502267`40., 0.0039093418157071680445842686484223658492698584227769704787`40., 0.0039098044908664644447295342816236663943557397293178325116`40., 0.003909935471244593864508041588714585643099992453183606043`40., 0.0039099953692332157996599534807486286943085313189725403019`40., 0.0039100227608860128961172628910418479221767692115179036893`40., 0.0039100352872272176476066349530581708116781134628802609964`40., 0.0039100445214142142096804729746056373950619544649714538506`40., 0.0039100537556875303328014201893229998992079926995100339466`40., 0.0059809797450049042198117017072581464719102013820890215211`40., 0.0096283428088182364609006783197800888744242867436823274727`40., 0.0132757058726315687019896549323020312769383721052756334243`40., 0.0190531929445267688669755206619707426883996856283118665074`40., 0.0285812016191825663586762305928798157682945495654333395424`40., 0.0457579524794820348311475820228652623929492756642938764096`40., 0.0629347033397815033036189334528507090176040017631544132769`40., 0.0897366665553934256649764932611707807778250389982536827356`40., 0.1359839971837659310303505975140473271289683253182987960723`40., 0.1810229253742463466924254368620985248428047740172548857971`40., 0.2310209253742463466924254368620985248428047740172548857971`40., 0.2775744259043235229304463518158894481328152016246777295548`40., 0.3078945758178099506135425686686935406846317221460774701854`40., 0.3349783048283301397291955673958159702228638164299727496887`40., 0.3587543114614050486910620145917323689109762816023571878617`40., 0.3794156089835027891352156939683863538758936972781398406435`40., 0.3972477946415390020406216091566453849027844026100647587572`40., 0.41256365255030445372249535330731186970243773916377841366`40., 0.4256720108878805804815440524670904055139596881963903760882`40., 0.4368621457655915447117118463810535621711962189350566426297`40., 0.4463966475480206432929639501113175268069392703533155578648`40., 0.4545091040232894461570028478425591953750549306196139103949`40., 0.4614044782522490928332437994783165909498728329413175618444`40., 0.4672609083308643360310009917703198335564272591739040362848`40., 0.4722321695322342672179728300620002332098827141046610270754`40., 0.4764503550359994875802867444138562301204853077175421320354`40., 0.4800285251616708229635753143214102871129287697345550784211`40., 0.4830631926514810506106099515477993645451055068928742252978`40., 0.4856365819000358855202742208660378292887987690745263267335`40., 0.4878186411850855644618536775696310579421727573903632071199`40., 0.4896688102170261731906931067050896603849131605041459325683`40., 0.4912375577225689583803302429705789877460647996635276939208`40., 0.4925677096634567681239684963732723375845353906978992651179`40., 0.4936955907496660676783814264601077480177206046366227518566`40., 0.4946520017869709480497250078400709369093203989122177739829`40., 0.4954630541061646487344050777870470177999538719020999603019`40., 0.4961508804615480289591227258612141545310495483753450236489`40., 0.496734239718243312576035308000104260058506481839488846776`40., 0.4972290305776452305963111032207774351849824394659309408533`40., 0.4976487276304173752806866155891270339063635909712542090758`40., 0.4980047512325250693301945973764363121508658992454882502716`40., 0.4983067810935178709620706930066941635941865711528707070514`40., 0.4985630220495257749496411145745430145251954370967705867113`40., 0.4987804292571512563743020063110848472875195074360868001544`40., 0.4989648989740086698094921471796592682657911264084794439785`40., 0.4991214301701723122760761048622757854310519806793144556013`40., 0.499254261424956392887545783947695546009013066412337853303`40., 0.4993669868886789924106651910600192932958502159778579813923`40., 0.4994626545140382147691202094080180037977350674802728816917`40., 0.4995438492726446989656735039269893266737443014756315739085`40., 0.4996127636568735555682672622829701677987254870241234667341`40., 0.4996712574148046372771490877154046080063298046887628352897`40., 0.4997209081673105599389820674247746482720851070619432497471`40., 0.499763054303304499369769334662448294051317464336092783611`40., 0.4997988313348896762455069267104001936297928871174946254427`40., 0.4998292027127733782382647515836677646990269672062816971341`40., 0.4998549859488024101961910007158560015862841283874121322987`40., 0.4998768747625757645274053746555291599814170050456376186584`40., 0.4998954578591697045379643259806126805003293667834152906129`40., 0.4999112348519967576846199416886808342681160252194025187761`40., 0.499924629766109341409635356608300835883652265367334164223`40., 0.4999360024906466447031674691135339437707825195776512259582`40., 0.4999456584927426006779147321752455192120865419679249787314`40., 0.4999538570575062368431011882417329063246725220949457442181`40., 0.4999608182781179126421980921187038157257504289447594734919`40., 0.4999667289874984455336486995180152062315180666810231210279`40., 0.4999717477781678801480783572675513666719563885081372667014`40., 0.4999760093877085027593212465135504618039488544040513260942`40., 0.4999796271860861990559600514888513480810417061283537500208`40., 0.499982707365006866358912100924045502700495242095044580632`40., 0.499985242596160304464116531735895868075308550987425979658`40., 0.4999868094712052427282832674041111152654311447188425630951`40., 0.4999881058805144164172612900848803664368291887379028448953`40., 0.4999888550914989485856955006711496590248312234480474781598`40., 0.4999894126645910590065033757841594912148449705190275522805`40., 0.4999897074076512718931089216800751145497317877785840592991`40., 0.4999898621908725231540239168544909797484465998685572533166`40., 0.4999899344416748208683041705316258212392798461143153853974`40., 0.4999899724852067785023342907502101728284187787447429045559`40., 0.4999899872228632903039949202223055021293131650498490389718`40., 0.4999899929320734577964905461824584401668682899126382329504`40., 0.499989996465097210275966207697889373258863813592008593724`40., 0.49999`40.}}, {{ 0.3887131950850776565954734122111076388141597406173551866242`40., \ -0.0000128629541593356876471790181152938158960088995185076258`40., \ -1.2862954210385681944796732459533365241213024045641161586212`40.}, { 0.3887131949929542440139305992594922968805535382639740301312`40., \ -0.0000200611923429374620294034793614423468846386922661486198`40., \ -1.2862954314692497660686851757445395264019601758276841017835`40.}, { 0.3887131948605487685858012520072342930737562847897903630662`40., \ -0.0000272594305964213493642673249817563576340129176173985017`40., \ -1.2862954459895151125742524967771056564525208912906815721499`40.}, { 0.3887131944748916272479417805669844925223254430017537550903`40., \ -0.0000416559074025038703989782837202121068014743963112380449`40., \ -1.2862954868302134134729045488457261949781263690935656996298`40.}, { 0.3887131932201925622479040478696847368432700653704759397513`40., \ -0.0000704488628096730209870590978276873485293785627185968173`40., \ -1.2862956135942493539264253183923681204698347426226521869931`40.}, { 0.3887131897353442526927737995658488141460874247760053740126`40., \ -0.0001180175141019024103978544014024673503052395341595054611`40., \ -1.2862959477149168941249195438628720135523101740324055067054`40.}, { 0.3887131861150002448919591384515165027811703696909780724305`40., \ -0.0001524526238020579625780905520071118190293577518437239021`40., \ -1.2862962821302967649891037568241206614866848323387856631596`40.}, { 0.388713183885496987070021717526088447664873278188742333375`40., \ -0.0001702275138121091120258761906721841836633359086167423286`40., \ -1.2862964842143169871339950475067001154898567590285172851651`40.}, { 0.3887131821021528482975920563965465326665796902450865075491`40., \ -0.0001832081475702803886293183531720244019006013098627645368`40., \ -1.2862966442513220280312890881356631529891746957317612469359`40.}, { 0.3887131813761025003050830527546736658085618046105032129473`40., \ -0.0001882367063979950584002113137847296966620130835463705987`40., \ -1.286296709050141689780351789234943934656558509955966684796`40.}, { 0.3887131810097070475451399611067084920023710311054391819326`40., \ -0.0001907240000044948508561326357099516582384690286327926373`40., \ -1.2862967416775649602587536793436743130039984033485803491962`40.}, { 0.388713180905109321519392751803389725095222135782671997749`40., \ -0.0001914281369261989557438579972080397322550251336736563393`40., \ -1.286296750983265007406121616377841807747404126161841034714`40.}, { 0.3887131808754283689453746095912195757837826114148289749129`40., \ -0.000191627473585699680507575797312616441893239603972211098`40., \ -1.2862967536231816710764319198961027034847728582690108031539`40.}, { 0.3887131808618448259682178935554226420471760207111697181746`40., \ -0.0001917186312472600404143588374777328223763832152997156761`40., \ -1.286296754831242206644126742110908819231325073038311794444`40.}, { 0.3887131808556308505004731994190731821272177173918374660748`40., \ -0.0001917603181064420060156721127025517279913690706230105625`40., \ -1.2862967553838644657747091408429653018046845346062732081721`40.}, { 0.3887131808527887179491606258473768353783962329458328747145`40., \ -0.0001917793817177508700844978453121085678319693244606161451`40., \ -1.2862967556366169825513675876266217840116599865008265265975`40.}, { 0.3887131808514889022305475079994070084297258703382749890461`40., \ -0.0001917880996035116407735729893152253239644017219119012936`40., \ -1.2862967557522094230636409673539800329938856454395274348266`40.}, { 0.3887131808508944702475770755427828932170326521486001774734`40., \ -0.00019179208633671242756718240623556830056600470169478949`40., \ -1.2862967558050719854949998236496382446929463005923859136489`40.}, { 0.3887131808506226293813698927398348877940262069931507968097`40., \ -0.0001917939094899458883628540682615960418599295336114569178`40., \ -1.2862967558292466276334883489331540424341205104311906994791`40.}, { 0.3887131808504222306768953758696966583998872950089986973428`40., \ -0.0001917952534914366304337950330176694207754190921270747254`40., \ -1.2862967558470679455528673399016357276081762500767802219061`40.}, { 0.3887131808502218298546375941870856178634180176347881640859`40., \ -0.0001917965974977124485665068507597978531722269893539603042`40., \ -1.2862967558648894378642003785071186610966401234908227348427`40.}, { 0.388713141724301952611923225569967804246015306782826966434`40., \ -0.0003707305680214347023809219845248982704812284141001154681`40., \ -1.2863000799754947949522815168099489622664826851066115429134`40.}, { 0.3887129887989787248221626544523310852971390067324962359331`40., \ -0.0007286005221248584470968397918663870947929711396363815332`40., \ -1.2863120539815342565091962847666913514600866518149234920838`40.}, { 0.3887125489527040899331520602124955179298743753369463228021`40., \ -0.0012893533328621160171090233365931963488912807367046642816`40., \ -1.2863438629992803479294215416952989841579105451066857822608`40.}, { 0.3887118646520323346080324317325875136507385797440513773936`40., \ -0.001850123259789263446857764574299288372806886598978410146`40., \ -1.2863904000458712113793792580194960466521716529516894518403`40.}, { 0.3887104038415661307109427650699292256364470665641487608769`40., \ -0.0026798208582244498489962051714098925087978277902501539335`40., \ -1.2864844239763179592304807247172255786034339003341302237282`40.}, { 0.3887082329919254059235041438642173774843691301428431807119`40., \ -0.0035731301257889495900976043104699332971423725309030119329`40., \ -1.2866172503155526592366091416315990750292884137977974016298`40.}, { 0.3887063414763522044724623330247081816380566111911363723615`40., \ -0.0041993790316372291977877668244484376373960878006533839437`40., \ -1.2867289446709689765209352839944232724530508921902618528263`40.}, { 0.3887051744969366697588759804491931512390526043078549977445`40., \ -0.0045429104823731380750474001838098830464576783123121419522`40., \ -1.2867965027761222581636440696474881800920034886554128000609`40.}, { 0.3887041740111368641969335546942774057116719706831563745869`40., \ -0.0048179805182601029922535542574143422290224184518757177238`40., \ -1.2868537446310252747909252563530049201299051731785443172854`40.}, { 0.3887036868680007860064562655235688686071697509679948173785`40., \ -0.0049463839014573054593480598531942459021330607771258591979`40., \ -1.2868814126241123320508316225955716639648285541128263440797`40.}, { 0.3887034822022670232300420671424325144991761027911324908872`40., \ -0.004999347670441338962021720013525789825362216120008950274`40., \ -1.2868929995790063803278231554563357949480670796035338404523`40.}, { 0.3887034023311756796550108748726258349734018243000089519824`40., \ -0.0050198653953393436629717316502688737007366928535456059973`40., \ -1.286897515573470444049256239790737120205563723953547577341`40.}, { 0.3887033733290783605614988918336892087296834239938354950891`40., \ -0.0050272949076849323834815785434769270493535086670697637215`40., \ -1.2868991545807127971907862105176261761809027864101370905934`40.}, { 0.3887033651109801647431064114430809535675812736996915172981`40., \ -0.005029398156826712952013648518822771888464983690799066518`40., \ -1.2868996189360857613288583493492475459712665630645385645631`40.}, { 0.3887033627838648291547969303796227205609926983308769301277`40., \ -0.0050299935733433196358437399660045549981514447835775482787`40., \ -1.2868997504212015369628799064458391549047840392071912092829`40.}, { 0.3887033621250233299940057070799766987338373052975138119527`40., \ -0.0050301621319616823169566214098533023476535399461429551276`40., \ -1.2868997876461272057166695825640259785390064571485638315318`40.}, { 0.3887033618237244272976571509700619880122972608077234407018`40., \ -0.0050302392146710301507555985106474063094847051204573606915`40., \ -1.2868998046696164278991948916522465155403281879592640427261`40.}, { 0.3887033616859373784608858356241027803268433217482371142169`40., \ -0.0050302744649837709340349931534838367881130599461510917478`40., \ -1.2868998124546157093348896892631814911241247215411780176915`40.}, { 0.3887033616229263431957248249294428273215009449707854312015`40., \ -0.0050302905851299403689715033711428714876783204984939026962`40., \ -1.2868998160147501957934599984424445845040601446347686314883`40.}, { 0.3887033615764756444184808161097169764876011667630052609468`40., \ -0.0050303024686034994079284620174363260060196953826717906318`40., \ -1.2868998186392214982743703114804272951605088922362361922789`40.}, { 0.3887033615300244016924928774668923278814805018712617560008`40., \ -0.0050303143521881673094508800253449510221147956714485207288`40., \ -1.286899821263722445018892176477824416648634306534298707849`40.}, { 0.388690184069797830025842415282189372551282658318219497605`40., \ -0.007696084559771177528114262667330180640674349261947187046`40., \ -1.2876126624378465126774689691871525255521472031969171153518`40.}, { 0.3886535452881335994720365176026671407459408946598153003238`40., \ -0.0123955790003290541418379913453772706116526305717575159847`40., \ -1.2894281523396501723688236441526008445643654973138693912583`40.}, { 0.3885997521947611964923475790765029648226120007356734747122`40., \ -0.0171028968548977692347959511079276932699971653110621011144`40., \ -1.2918918729106988370029533974517125861063375356056643528499`40.}, { 0.3884793527491709939107984023254342588582482529400435469958`40., \ -0.0245808472389156279409763588794672232654524707106209653013`40., \ -1.2969946761632302442512531377935846847876528277434032517551`40.}, { 0.3881861156424593114674041333543146213713886114340240351395`40., \ -0.0369897726399177489300935277571008461336424078800223744096`40., \ -1.3083017976603539726187586977477911857286299518182905796732`40.}, { 0.3873564741067647210654308025059992246618120573325897679792`40., \ -0.0596921134323488151714444610445653412311621847873481865672`40., \ -1.3367013171465154455916294559702686422878851900954310662092`40.}, { 0.3861322254794715459029078928227329321094832518420195205927`40., \ -0.0829627699119696840422784495180762691448407128572352838681`40., \ -1.374315365174542156550870233901391332529456402201992072673`40.}, { 0.3834065921246595217082884264496885888880844111455572199932`40., \ -0.1207658777674146646799410157427955648294053185501219106677`40., \ -1.4499911015939074542149238138476881917976447916894777432444`40.}, { 0.3762125823943188625913849710044821753104789148775385416172`40., \ -0.1917265787571418499460565324624094114456175663287622690348`40., \ -1.6294993420285347890138938467350606565722379388236076332336`40.}, { 0.3658485113269980367790686277390617783925724179252947466556`40., \ -0.2703374860699439090891914118057138415365020823953991828094`40., \ -1.874671410926046783057979478920030645819906651100374778671`40.}, { 0.3498420915240376292365705158727608658030316832440706534924`40., \ -0.3731909142733040867924725370906323846923883992039485935268`40., \ -2.2656415972605288547977774961740107146381498130386123746303`40.}, { 0.3298349258268520353001200974339589179103659680348961936591`40., \ -0.4906316054351443593986535914817754841534404737197850772459`40., \ -2.8209949250400369609708701175115922163505941588093227277577`40.}, { 0.313586835629586272614634110629752713710693148539072463636`40., \ -0.583847599787258369483524070532326604806349117613350040487`40., \ -3.3589963750458875972908774117114183946123051312565046393277`40.}, { 0.296465679560968380077744857282502817231320962230989763302`40., \ -0.6835548250092944118391503568494901873400924326763442861911`40., \ -4.0455893766018438573020069586390215879556724378685974567971`40.}, { 0.2789953157751988379504977866007581953110053236567648566672`40., \ -0.7894729026103495592703253351515061391357193024171512645952`40., \ -4.918753505937492203957838426149148101755773931864625015281`40.}, { 0.2615623659033959156031401153850068042715363025654253559794`40., \ -0.9018342770990864048187803007157442740703986781305222626447`40., \ -6.0287948421487809280615267001895161089915784109989849586514`40.}, { 0.2444544981539355654161640077535519756266635506703757783303`40., \ -1.0211089467765209653576210692022565632514409595001227313811`40., \ -7.4404459014467811127763000480179526971874914745872818598491`40.}, { 0.2278792447845699751164562561209731893468066933469130539517`40., \ -1.1479154392934081941753306015378107898386634852378029810679`40., \ -9.2365623044711116799668305259370082267106109709138755354828`40.}, { 0.2119793172171045554675619474128957652500485542751868627501`40., \ -1.2829834250263561299229488967371023047373130654288698337173`40., \ -11.5231274292710970380327470874405383118351867198665340245107`40.}, { 0.1968462949538596376323870769608971093448198277939738485509`40., \ -1.4271358250504212251847391184685772219602006902698373850443`40., \ -14.4357266790975233025748032923896360762631635331117354303036`40.}, { 0.1825324320885690363602689257455953593517373189849664226961`40., \ -1.5812807782123238833572475478307693272218589361161328971685`40., \ -18.1478424323489165187378176125607768431620209678674893908641`40.}, { 0.1690604219672173927656821937595957895110141968175829202651`40., \ -1.746409398039008381342088162209419615331461019643638850236`40., \ -22.8814595011858692030116752594867679512287492141739241119077`40.}, { 0.1564312231474808876941615295141798713255839541616757669978`40., \ -1.9235971812026855353181592404155370408184462471329206795333`40., \ -28.9206206598904550402511562534052412864949989300332898939939`40.}, { 0.1446301926504136740632885433891052499890488708462818501776`40., \ -2.1140078481956041912948030579205018818009336625796103313242`40., \ -36.6287543483134810554024652313749201094880003470708618174473`40.}, { 0.1336318141185860420978090113774266046189011159126771775441`40., \ -2.3188989130295586007372076607302726574227870646183549952418`40., \ -46.4708267244934262684811243783367616385378031269491745330941`40.}, { 0.1234032955439649443130585940656459560074795078927782047585`40., \ -2.5396285854375305069269578678613565790191322828198714931026`40., \ -59.0416630618962175819667481144364603952805889165680865549173`40.}, { 0.1139072756058214191117832692049301401745578995996140724294`40., \ -2.7776637933838325519431176362286214225758791568899437239077`40., \ -75.1021573150293043726513043176171265776383593728240166566545`40.}, { 0.1051038364976920061419307513738008788327825699048581596943`40., \ -3.0345892246785523077925716738216770415179013254953789568521`40., \ -95.6255663607753470327070996442695786689681048075032301668176`40.}, { 0.0969519823231786258128482597272115148932901478794358750849`40., \ -3.3121173538633189432175146406958368641365221013054504513283`40., \ -121.8566959531661811660866126217542524147886518339117442401794`40.}, { 0.0894107086666767109088731013332053206046861536163753376136`40., \ -3.6120994624403843604019843857230215330741160101140794525596`40., \ -155.3875657641217561807451625707788354075413167804512402032696`40.}, { 0.0824397613779754028078292131858319445355424129609633884653`40., \ -3.9365376878682563338730052102092695227630307158735357731535`40., \ -198.2541382115113730087257622190002498334178757207209972938985`40.}, { 0.0760001605052029086035705225604916544545384459713558868248`40., \ -4.2875981559759574593889463038298988601588591835832502328628`40., \ -253.0599703870348511280263891290707241898328533120305046985763`40.}, { 0.0700545478703664179526508352240286871331518955570818758989`40., \ -4.6676252662799831813558796854970463502531057523433234202397`40., \ -323.1342773265344357115665667945226434837120149645729702728762`40.}, { 0.0645674031601427309411654484992327409462324784305119126391`40., \ -5.0791572122574851547256920129848729876767509079829115219822`40., \ -412.7339765567157269315718382902108043073655772518478883096386`40.}, { 0.059505162834848985307185821662423625093546968071580927043`40., \ -5.5249428301571998392106299754020074541845500114155224901094`40., \ -527.3019441008062112590294054609347991121146252782648009333205`40.}, { 0.0548362679927229778334306236041174755635383351764544622687`40., \ -6.0079598811247811210094345222293777954362999502444468171914`40., \ -673.7971116800481066424016056770795589869239079608227946718952`40.}, { 0.0505311610374262869844498345652042836600128821198123147998`40., \ -6.5314348827084122862357816403519114270578523342930092649764`40., \ -861.1163791189666584289493119182722630155324935648401534683938`40.}, { 0.0465622461640599253979171192044356365485290291140402521051`40., \ -7.0988646174691336418991402105008347625255791825014188399494`40., \ -1100.6338674297461519067710925199238051217181687586100526602852`40.}, { 0.0429038249728005584546969043298825672862987579285972045056`40., \ -7.7140394586436695260485204612526632353036748793000491522182`40., \ -1406.8901321162689133812173452770581318012803200010467157426635`40.}, { 0.0395320156820828930061479168180681086203502438883525175779`40., \ -8.3810686657503895284149073887485200930526181963397365222802`40., \ -1798.4730214815281032058329822814372045553274906774759898291686`40.}, { 0.0364246622453361156773380780768828301433458056650425471866`40., \ -9.1044078168264773539093925639781301534573755628536058165111`40., \ -2299.1434487857961436620796428102448231977741417724636510881598`40.}, { 0.0335612380221597115263989446174587109128278446007971124878`40., \ -9.8888885587632656078760702442307848806059114776585950991115`40., \ -2939.2741497661507760782572749484801519929448839991131368395708`40.}, { 0.0309227473972744644123779160818442225328771862243183853776`40., \ -10.7397508730919799882262809097364961953646691726004169759813`40., \ -3757.6884124674756086024756219529494758968477110712084980924898`40.}, { 0.0284916277867085937333276335867687937875121336086547017943`40., \ -11.6626780716905857499845042722570395944528645244143501013181`40., \ -4804.0099371258212175566366293840337696306310146529657423533965`40.}, { 0.0262516537496981918563081895978284718163617516896836860854`40., \ -12.6638347553650337246995634919499083931183363101448054868648`40., \ -6141.6658699607498466948405651607467353231883793566617073726758`40.}, { 0.0241878443822153855977835170300815808466970636643447739884`40., \ -13.7499079882419762313618867062378548387654725964341897600752`40., \ -7851.7245217135765404634311379539686717348253237148803938184477`40.}, { 0.0222863747619716993690283032414049370767415716202563171012`40., \ -14.9281519625395155756809632461010067090570055555673002018124`40., \ -10037.7997133762798191824007935510556650653541293815850275729657`40.}, { 0.0205344919129433942245953755372198930857536679363765288762`40., \ -16.2064364517112484399371400088384236571239200867903364710419`40., \ -12832.3181337283929193870973136561145749015072863463057528777224`40.}, { 0.0189204355351518476442503724321812568433996471641296953574`40., \ -17.5932993753505763296364026437259814214253032163385083483552`40., \ -16404.5284380835429945868795646151677041990453038227921828051085`40.}, { 0.0174333635835691370929137014680926628162298069538176034806`40., \ -19.0980038267724548928434177988687918396305021682812466632039`40., \ -20970.7360382284599612793920236601042175051728673646296388419152`40.}, { 0.0160632826639921907747832326577302545684637149748047282421`40., \ -20.7305999440470522870176181138695031458211708424913454786858`40., \ -26807.3819845492927450513424765943711539221412533761666088743939`40.}, { 0.0148009831323277519655888264604782671218711389456728110189`40., \ -22.5019920376473568933781320675792021887404490614330943597109`40., \ -34267.7561425942675201196228757319737948642403166860634072705896`40.}, { 0.0136379787283653042028512133091057844593082174563184930066`40., \ -24.4240114230099102964203440207228502792000401713992472218968`40., \ -43803.3543931220694091799746452384156560505916574732476795389788`40.}, { 0.012566450539213505122200142644144848411738948413186095217`40., \ -26.5094954444315648479719363381570986015907062001300800824047`40., \ -55991.1700943372144167625765154305848681275984983030345479747577`40.}, { 0.0115791950661171403069819160856362639478067929827050147623`40., \ -28.7723732180919363784023565892212394470927740346241799789064`40., \ -71568.5684773556828880789625618519591916349287493300705756953444`40.}, { 0.0106695761575294161108857244372865796625511671402650026774`40., \ -31.2277586668787556056692226642000433276589852850501657118482`40., \ -91477.8506462400381790864176506174829685713910527104732573193567`40.}, { 0.0098314805681793933670088186875599563941768547825987154253`40., \ -33.8920514684025231182154597407123833828680806346574916473539`40., \ -116923.1990798981073680631162894018916986391872348386768266513301`40.}, { 0.0090592769062420755816729372526525904328947151575360634587`40., \ -36.7830465904439231054781178095759727774495503352005638449655`40., \ -149443.4443249579678338844547766012426678294634140314398642693308`40.}, { 0.0083477777369253869729493968629911336329101587732839456464`40., \ -39.9200531454359965146570939987646916312592427450759724102946`40., \ -191005.0480830603332140311511145423970001956157878128122769284094`40.}, { 0.0076922046195845478993838747370312001303544611811911504271`40., \ -43.32402335782715572213631386596748728973785159427947825552`40., \ -244120.9188326154558557440275403722204359113746017376018502433683`40.}, { 0.0070881558659287995032795217047169699642834215516232833226`40., \ -47.0176925057112397403234750146398612280378241466249991303116`40., \ -312002.2362107758013519200805806351861893342903938811258383179417`40.}, { 0.0065315768182975910037707551055322452090761050459662818681`40., \ -51.0257307714683607283107055531124801207056305508366959572177`40., \ -398752.4538235057144096252930796039755463231557022932193384961899`40.}, { 0.0060187324589557317843442288255870135672882489000762768528`40., \ -55.3749080149502780906863091882953082085921409776723082002598`40., \ -509615.197301734531448081713900205717475529663201577953188743123`40.}, { 0.0055461821723739880582754077500479324185950880385148993276`40., \ -60.094272578433287802753968068373575442582804298141466786969`40., \ -651291.0294060574839275866187261665048263858629735622510039299776`40.}, { 0.0051107565044715750348174286123755673435662863982354821626`40., \ -65.2153452090046588779808197502055393904994078045587888493729`40., \ -832342.2086551721565273536256636054815432431171387455318633213769`40.}, { 0.0047095356659952351006706221323473746574621793943630169022`40., \ -70.7723307514749370969116679712623984269476658388368706676179`40., \ -1.0637099423183772865341663290978776372867283485150126562703666883`40.*^6}, { 0.0043398306879950853726649493891241199005501365608333489632`40., \ -76.8023320442607776169918311356102680001979753867587772276612`40., \ -1.3593745350632918949036393478617390341587028404822475849778695538`40.*^6}, { 0.0039991559364096631615762066072659331234940656067572345248`40., \ -83.3457798392356373775571674987991750810623577247713641830277`40., \ -1.7372106133786465480183373275466904697891256053498995575047646674`40.*^6}, { 0.0036853114097171363450101859991882353429482567466802825268`40., \ -90.4444249227701935851085476944599492023595730932481001966299`40., \ -2.2199076858659714964926426620033663456925927034044227098212133121`40.*^6}, { 0.0033953154513780595396657746491056569349241667263037921629`40., \ -98.1701158507719156862500168648366895010761558158921193265289`40., \ -2.8386843315860512476299485003999708969500860367046132101470484332`40.*^6}, { 0.0031365717842871929673802699825684319513060201098956463637`40., \ -106.269107532667858449741878319380429332054002049654674974758`40., \ -3.600740273549396084119245764195161187547929588114107972540577086`40.*^6}, { 0.0029653898107150224436272516490729770333531571414204214591`40., \ -112.4041183519013321849590500094137474199895543929012980607452`40., \ -4.2610057224139047956513350311506705548563470666578296384154009682`40.*^6}, { 0.0028158998083723590487229700863592423067788266357335506678`40., \ -118.3718033732467476504336112498482663459866097452524568549699`40., \ -4.9762924531226214045049845064457256363149971083892700399322509284`40.*^6}, { 0.0027257719156671566064609636228070043568091658854203224908`40., \ -122.2860132544414598873596745753617716205539208465229490371434`40., \ -5.4864187585450027929643708284145124545858266866789278069672236243`40.*^6}, { 0.0026567136706301268899970707877613298132371600782436754044`40., \ -125.4648787359356777936766077113488481806118142169508714207897`40., \ -5.9254759376947194389400157002818003836438059632370991183638685653`40.*^6}, { 0.0026194727387875528994473507804905925834199965947549396967`40., \ -127.2487039929527114422173474204264555091997002883173072959358`40., \ -6.1818126834445138054159208989464078725668878465990275477335747625`40.*^6}, { 0.0025997021609405148704824299609432668962716920322162013668`40., \ -128.2164737305005075066437932620673043883209468877022929890135`40., \ -6.3239249155962160540973982649058669206509664817368487558119549621`40.*^6}, { 0.0025904218527568888690757874368594555116536216819755910414`40., \ -128.6758391877932173996770147762648307593161883231574824845032`40., \ -6.3921359781370302027914509286631214521953986480863081367404822656`40.*^6}, { 0.002585521934892191424529072198004963752914066348771193999`40., \ -128.919710122726936110281507280466125388655527912896211320587`40., \ -6.4285468116631425108862836734307083592689268335905772947640540331`40.*^6}, { 0.0025836212618378792199514069056540246948261045851126359778`40., \ -129.0145563971983614874312950041963112422997654453217283208612`40., \ -6.4427449723979490224480278431122108169065531248872972268648990256`40.*^6}, { 0.0025828845855898998835439776606317347454861774021668271606`40., \ -129.0513551196127033101103563942616471966879919435642191888624`40., \ -6.4482592385481466464758458784863326518524483864450692018027303709`40.*^6}, { 0.0025824286038354529701985105437744354669511710092052309258`40., \ -129.0741430067607855487114759577095826506042764927417988032119`40., \ -6.4516755666014703670958230850740784604950528818329376984353627213`40.*^6}, { 0.002581972298971556082142383307765124482652187091006133111`40., \ -129.096955098572286642739802845942031675633283298147244863585`40., \ -6.4550967317862479670641475435097727623483286274413119710182416762`40.*^6}}, \ {Automatic}], Editable->False, SelectWithContents->True, Selectable->False]}], "}"}]], "Output", CellChangeTimes->{{3.921945639400935*^9, 3.921945707990652*^9}, 3.921947680767172*^9, 3.921948133812182*^9, 3.9219487197499866`*^9, { 3.922007376112072*^9, 3.9220073812795563`*^9}, {3.922007622906486*^9, 3.922007665659194*^9}, 3.922094862181967*^9, 3.9221979026165*^9, 3.967862391058137*^9, 3.9678626271595173`*^9, 3.9678679845053773`*^9}, CellLabel->"Out[34]=",ExpressionUUID->"65b3b32e-b2ba-49b5-9d39-ceb618a46ef5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"plotSol", "[", RowBox[{"solnumerical", "[", RowBox[{"5", ",", "0", ",", RowBox[{"1", "/", "2"}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.9219456592534323`*^9, 3.921945701035653*^9}, { 3.92194768502328*^9, 3.921947686371949*^9}, {3.922007384521222*^9, 3.922007384799097*^9}}, CellLabel->"In[35]:=",ExpressionUUID->"911b23cb-998c-409c-b6fa-9134fed18fe8"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nk018sbB3BJkmQpKfuadMtSV0mlUOriIhKRNWRJERGplEtJssXXLlfI viW73rbIUnY+xPfTVVSSX1QkyW/6Y86c13lmOTNn5pmRPONm5MDKwsLSSsrv ev8NIYP81xRmnN4EP/n+9umsOQ789nGlWXem0xZ0HJlc89scG3ObNtcrY69K Ylke8Xu+0eMNLw6CV65H87ftb9+e3n3+CFrWhBfkEvcFpZaGeGojor17IYf4 SGDlFdpXH9fNEmR+21zDWUKozhAxSe8Vsomj6rz+OXLYGP9dqdmcRdx2KGDi QrMJggc3jmUSsyJMO17bDANRX0MyiPcdTMxr7DgNvZBTG9KJPWof8UwbWKEw TsMvjfikmLlqqLMN1jIKG1J/r8/ytYtkri1SigQ/JxFvG516oatgj2b3jQMJ xM0insuv3Rww6BCTGEd8xmJBybv4LII2Sz67T5zwalV0qrIzOu13bIsk3iMc +my3twtcVla7hhH3mK+fbys/B959tlHBxJzDYubf9l2AmZ7PpSDiTMGMuyFX 3RCQzbcngPjfvBgmj7U7Vgu2mfoRq00J82akXsRRC+2NrsRe5+Q8O6UvwUzf 5Yvj7/27+3FtQtMl7Fi9ttiOeH1uQbq9gxd8bdvazIkLJpUHFjK9kau3x+cY 8YSzhqrMH75QF9I10iQuvcPWM93mi30pI2vViAOyW1wqz12Bscgl0V3EYh/0 kvTz/bA236lKiNjEyXzZR+k6zJZNIviJZYJF4w53X4eX51MtbuLZR6+VuD38 kdU5p7+CuMXzz+Jusxuw0l8eHqcp2D2uHDubeBMrsr5TWcSJu5q1IsUCMVy/ ++sD4gDNrQ2VXoHQYVP4wCB2Mgo+ONYRiL2Tf9sEEu/x0FH50y8IY0vy/1gS dxW/lOsfvIWP6xsTOIjZdg6uFYy8g8jw44ZLTAqT6nuDNd7fAX/+3f9miLuP x7O5HArBrvWrw4eJU9xPL1V9CoHZ7LxoDrFqET1toRMKhbRxTk3iC4rvu1NX hsMkgTqtTGx8SFu/1Twc+mrOt2SJ9xvktM0Uh8NQ2dqJkzhQpcxWUikCrfv8 rbtGKRiZ+ph7MCMwPRgleJJ4ivFTl39/FA4/zSvVGKEgKbBK8dTXaCzrfbuo RMyQ4BJfIxoDqzUZ68SJubZv4KnSikF00u7Xi68ozB2S/J9wbAz2cv+ceUzc 4axWSKsy8OGxeIsosXetl6KjfyykTl9VpIZI3H5C0ZszAeEzLuUNxJpun8S3 /pmAbQEJovnE5b5feajTCaiwLw+8SZwWxvpZNT8Bux801soRX64QK1oySIRl 0M8hd4qCFJepUlBMEizvmBa/G6Dg87hFKVriARTjZG+8JJ425mjz+esBYupO Kzwhdpj7y87S/QGMXszKBRAbqbbFyNaReGweQ4iYYX322ohiKtKKeE9o9VO4 OO40dqEzFWVcDloBvRRkZ87n3edOw7vUHb/sicc0uBeCpNLgcnw74xhxclSB ls+eNHxvb7HjIuZX/h/TwioN4T6GXtE9FFZcdueTLUiDfLqWe0o3hZGfHt4V eg/xsd66Kr6TQiSHj/poaDrciuZveBH/rbrZ7EZaOlz0nkoYEnO4VFyUrkhH z/DLj6uJr7d/T3N+k46RURR6vqTgEua7ak41A92jn6cOvyD3kd+vjftdBrL/ LdnR0kbhu/h1Y3WNR9gdeFnt1DMK1iqBTg+/ZYPtQepxeWKLbJ7hvjU5OLvo pcFKfEo4UZddLAcRfKI1uU0k3y4XKzgfzYFcsuTGpUYKGi30V4XYHOhEbzWO b6Agbbr/ZtXeXMwUrpwvB4V33rPx3X552OC58sS9SgpuZTbtyysKIWn4w/Uk sSvHFMfYpkIMn523FCV2Mr98tEm+EEc5vjflVVCw+XWvPtisEH961ma2lpP5 j1aX8xUXYuFAZtniEwqCHzl7+JSKYNfIPqteQuHHFYen0nQRztswpAxyKNQk CMUeUyvBUF/w2Is4km91xEZap0pxMFVmVu4WBV6pkIObLpTjh7CtsIUbyQ8L MxLXt1ShW1zkSqwphQcL9RJFBTX4sfhl7J0ahVDn7aUi24H240pXdMUpVLk+ t+uersPUlbf+AiwUsFfx54JSA6rWxCTqvBpEA1u0sWJYI6YqePr4SgfRFfxs bsV4E0JltkWnhQ5iWiJ3a5VMMyTH/UPTrQbBWRm22d+/BdMZlyZilAah4iAb t63xOZzfuWvJLA7gDF/N4GvJNljp5jK/NAwgzkvMdveVdiiF6n7ccHcAzE/K vm7VHQhk8L+O1BmA1Fltw7JNL+EoyP3zGucALs/yVYxZdMIulrd1oqUf5xJP KA/odaE5PvftAb9+JKglu9b/6II1o9jGRLEf3R/UXcWTutFQIbiZj+oDB+NN +0rdHnisqOTiuNaHIymuXWVzPZCcy+Piku5DcJFB0gijFywvKmqiqnvR3rDz efCRPmzPfHyN/2QvBOjz1Y8m+lAr9qkqf7IHjqYRJ2KC+qFmkm64wb0H5Z3F umt2DWBtnVWl61w3eIzk137uGYCsMV/9hHM3zvY9+sPy5iAKNLlEG0e78Mzm Kp+aDMmjY/e6hHS78Ie2SvJHci7H3e4GDKp3ImznTLDExSGIWNoW3P/wAj+k Vx14vn4Ysfet5qNMOuAgsNlgrn4YvaExf7NmtqHfnm/1l/OvoPn5SWzP5HPo 19rfOsM9gtRQ5f3+fc1o3ljucKpmBNtHWh2dU5tw1MeOq95qFOd1epN3xDZB vTHyg5rtKKQvZRdO3mvCPu665iq7UWSO5+iY+jVBIV3kZqkTad/1KmbmZBME uvq/PfIYhYdNILsMZxPebf2LDrs1ivymjvi/LjSSf8WOEouCUZhblH25Ld2A 9j1zpt+XRnFLkW2oZ1MDmq+l6+eyMKGSz9PJz9WAuiYjLauVTPCzsj+69rUe pUaFu5o4mBjYlMb1X1M9ki44rYvYwMSZc+WcTLt6uGYON2zdxsQ3p9oykYQ6 rBOAvKkx6c9mf1PqXh04LM/LcJoysX1pU4rIjTqwpgsL15ox0aK3yuqTQx3m dvpwSFszwTNf37WkVAem3s43085MsAcVGPvfAQqCHsbd8mciNGtBNaOxFgbf bq8sy2HiZLLsyIGsWnikn3i2L5+J/FHJnRWhtYg+IX4bhUyE66wqPXWyFlRx GWdrKRNa7NJce8drYHNhnG/kKRMRm6IWJZer4fFOU4K1l4lqratHWzdXgTG0 dEB/kYwvaO4iuFCJiuDWXz1LTHSwajkeGqrEsEpMnSkLjZ0G/l6c8ZUQZ+w4 YruKRlO1d12IQCWyjE7rXuKh0bUuTjyaowKV7RVmCdI05K/f7EhoeIKRWk/v CV0aq+mLKyNjnyBFs0+5TJ+GY3Vp43bXJ7BuUf4SZEgjcGAX+1H+Jxjr+ua2 xZTG4KqH+m3WpXj/5rKz/Rkavr3nTzP+K8GXNVctxnxo8h+VuhRRWILSsBGh Ej8aW2XEHZeulsB7g9rQzes0hJR/6YoKlOC7yK+TkoE0KNvC/DfqxfileMPA JpyGp9qiWtJ4AThNAjWZGTRYguVzJF0K0DH8lqUgi4ZiDL9q4lQ+7llr4Vou jXUsj2qWJ/PA68x+QLSYhtcsTyBvWw4ErgbvtqihEcvQvt+4LwcUy4cv20Fj 7H7yQ62sbMQHaZcs1tOoTjTQ6/LJgkg4p2JiC42Qhsqn0+SdkUoLlRvuocE2 KbFXVCUDb2U/TWT30xg4kOmjeSMdGbl6Gb4UDa2ZVPWSpTTIPeGWEmTSaA9d eqihlIZJVbfX71/TOPdSY0bV7F/kPu1MqXhDo9XT4/Me3gdQeB4hfOoDjbsL x8yPbUjG579nhrZO0bhwZEjv4ecEFHcbxs1P0/g3dtOWaylx8DApMWmZoWHM vU59eB0Dyq/Wb4z9SpwsJl+w5T6+WXv2np2n8VbBMd7kXDjK3vZG7vlBo+0K l5FA8C34OCsfZ1+icXV9Tk+rrANUp6O5B5Zp/B82dhuy "]]}, Annotation[#, "Charting`Private`Tag$8446#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nk01c0fB3BJkmQpKfua9MhSKak0KAohEpE1ZEmIyFKRh7pJtri41oTs W/alj+VGlrLzJe7Xo1CSX1QkyW/6Y86c1/nMcmbOmfcZ8SvuRg7MTExM7bj9 7Y8HCRgUThBowek9peLnh5eL5nDir88rLnownPZA1+nZLX/NtjOfvrtJCY4q J1UWYH/kGT/f/OYkcMv0afy1/YMH84evn4a2LZFF+dgDoenlYV7aENXZu5KH fTqkxp/004e7ZjSpvzZXdxYTaDSEuOSP8rnYMY3e/54+ZQz/+dfvzsHuQMHT bq0mQBneOZmNzQwR2onaZjAU8z0sC/vYyaSClq7LoBd2aUcmtmfDc655Ayso TlAPyMC+KGKuEu5sA1upxc3pf89nOeEinm8LqSX8X5Ox943PvdGVt4dWj51D NOxWIa/1CXcHGHaIS0rAvmKxouhTehVCd4u/eoJNe7cpNl3JGbrt9++Lxj4i GP7qsI8LuGysc43A7jPfvtxRdQ24j9nGULDZR0XMfxxzAzM935uh2Nn8WY/C brtDcC7PkWDspwVxDC5rD9jM32EagK06J8idlX4DtCy0d7pie1+T8eqWvAlm +i7fHP/e36PPW2n0m7B/89ZSO+zt+UWZ9g7e4Gfb0WGOXTSrNLSS7QP5ekd8 z2BPO6urSP3jB2oCukYa2OUPWfrmO/zgWOrYVlXs4Nw2l5pr/mAsdFP4ILbI J71k/cIA2FroVCuAbeJkvu6reBfM1k2ieLGlKMIJp3rvgrfXS01O7MXnE4qc noGQ072kvwG7zetQaa9ZEFjpr49OkQSye1EzeTXpHmzI+UnkYCcdbNWMFgmB 0abD39OwgzX2Ntd4h4AOi/wnKraTEeXkZFcIHJ09ZxOCfcRTR/lQQChMrsn9 a4ndU/pWZnD4Pnze3kJjw2Y5MLyVP/ohREeeN1xjEGhW7ShF/eND4C189N8C du/5RBYXFAYHt2+OHMVO9bi8VvslDMwWl4XzsFVKyHkLnXCQz5hi18B2U/jY m74xEkxoxGUlbGOkrd9uHgn6qs73pbGPG+R1LJRGgqGStRM7dohypa24YhS0 Hwu07hknkJGpr7knIwrmh2P4L2LPUX/r8h6PgVMvC8rVxwgkzrdJ4dL3WFjX +3FDEZsqxiG6RTgOrLZkbRPF5pDdwVWrGQexyYcnVt8RaAmJ/08wPg6Ocv5e eIHd5axaTKpQ4dML0TZhbJ8GbwXHwHiQuHxbgRjBdftpBR92GkQuuFQ1Y2u4 fxHde4gG+4JpwoXYVX7fuYjLNKi2rwq5h50RwfxVpZAGh9NaGmSwb1WLlKwZ JIFl6O8RD4JAEhymiqFxyWD50LR0ZohAvi/aFGPF0kAhQTroLfa8MVuH79k0 iGu8LF+B7bB01s7SIw2M3izKBGMbqXTESTfienwBVQCban31zphCOmSUcF/Q HCTQjSmnSbfudKjkcNAM7ieQ9ML1giecGTCTvv+PPfakOudKqEQGuJyXpZ7B Tokp0vQ9kgE/O9vsOLB5lf7HsLDKgEhfQ+/YPgJtuOXBI12UAXKZmh6pvQQa ++3pU633DD43WdcmdhMoms1XbTw8E9xLloO8sc+p7DYLysgEF72XYobYbC7V NySrM6Fv9O3nzdh3O39mOL/PhLFxKPZ6SyCXCL9NSypZ0Dv+de7UG/weeQM6 OGeyIPdp2f62DgL9FL1rrKb+HA6H3FK99IpA1sohTs9+5AJLWvp5OWyLXK7R gS15cHXVW50Z+5Jgki6rSB5E8QjX59Nx3q6Xyjtr5YFMivjOtRYCqbeR3+Xj 80Andq9xYjOBJE2P36s9mg8LxRuXq4BAMz6Lib0BBbDDa+OFxzUEcq+06Vzf UAzihr9cL2K7ss2xTe4qhtGry5bC2E7mt7TocsWgxfaTXlBNIJs/j5soZsVw yKshu70K769VV8VTWgwrJ7IrVysIxP+ZvY9HsQTsWlgX1coI9Mvf4aUkWQLX bagSBnkEqqcJxJ9RLYORAcrkmwSctzoiY+1z5XAyXWpR5j6BuCXCTu5yq4Jf graCFu44H1YWxO7uqYVeUSH/eFMCpa00iZUU1cOv1W+TM6oECneWLReSBeg8 r+ivK0qgWtfXdr3zjTDn/yGQj4lAcFTh94piM9RuiUvSeTeMmllijRUiWmCu mmuAp3wY9VBeLW2YokO41L7YjPBhNC+Wv7dWqhXEpwLDM62GEXtNxO7AwDaY z7o5Hac4jJQdpBP2tbwG5xkPTanVIXSFp354QrwDrHTzGd+ah1CCt4jtYf9O UAzX/bzj0RBifFHyc6/rghAq70S0zhCSuKptWLnrLTjyc/6+wz6Ebi3yVE9a dINdPHf7dNsgupZ0QWlIrwdaE/M/nAgYRDTVFNemXz1gTS21MVEYRL2f1FxF k3uhuZp/Nw8xgNio7zs36vaB54YaDrY7A+h0qmtP5VIfiC8VcHBIDiBKiUHy GLUfmN5U18fU9aPO5gOvKacHQDb7xR3ei/2Ij7xe93x6ABpEvtQWzvYhR9Oo C3Ghg6Bqkmm4w6MPVXWX6m45OARbG61qXJd6EZeR3NavfUMgbczTNO3ci64O PP/H8t4wFGlwCLeM96BXNrd5VKUI6J183COg24P+0VZO+dxCwJT7o+BhtW4U cWCBInZjBIQsbYuefHqDfkluOvF6+yjEP7FajjHpQg58uw2WmkahPzzuHHN2 Bxq059n87fo70PhaEd83+xrpN9jfv8I5BunhSscDB1pR684qh0v1YyA71u7o nE5HWr52HE1W43Bdpz9lfzwdqbVEf1K1HQfJm7nFs4/p6BhnY2ut3ThkT+Xp mAbQkXym0L1yJzy+513cwkU64usZ/PHccxw8bUJYpdjpaGbvWTLi/jgU0rsS z7q1IMrw/jKLonEwt6j89kCyGXUeWTL9uTYO9xVYRvp2NaPWO5n6+UwMUC7k 6ublaEaNdCNNq40M4GVmfX7nexMqNyo+SGdjwNCuDI7/6E0o2c1pW9QOBly5 VsXOsGtCrtmjzXv3MeCHU0OlEK0RbeMDOVNjPJ/F/p7E40bEZnldit2UAbJr u1KFghoRc6agYIMZA9r0Nll9cWhESwd82SStGcC13NSzptiIGHoH3s87M4A1 tMg48CGgotBnCfcDGRCes6KS1dKADH482FiZx4CLKdJjJ3IakGfmhVfHChlQ OC5+oDq8AcVeEH0AxQyI1NlUfuliAyJKK9nbyxmgySrJcXSqHtm4TfGMvWRA 1K6YVfH1OuQ5oyHG3M+AOs3bWu27axF1ZO2E/ipen9/chX+lBlVT2v/0rTGg i1nTEY3UoFHluEZTJhIOGAR6syfWIFHq/tO2m0ig1/k0hvHVoByjy7o3uUjo 2ZYgGstWjWo6q81okiTI3b3XRWuuQGMNXj7TuiRsJm9sjI6vQKkaA0qV+iQ4 1pW3yLpWIOs2pW+hhiSEDB1k1eKtQJM9P9z3mJIwvOmZfod1Ofr4/paz/RUS /PqvX6b+V4a+bbltMelL4v+oxM2o4jJUHjEmUBZAwl4pUce122XIZ4fqyL27 JAgo/dEV5itDP4X+XBQPIYGwLS58r1aK/igEGdhEkuCluqqaPFWE2E1CNBhZ JDBR5PLEXYpQ1+gHpqIcEhTieFWS5grRY2tNuJNPwjam5/XrswWI25n1hHAp Cd6LXCHcHXmI7zblsEU9CfFU7Sctx/IQwfTpmyyQMPkk5ZlmTi5KDNUuW20i oS7JQK/HNwcJRbIrJLWRENZc83J+JgtJZITLjPaRwDIrdlRYOQt9kP4ynTtI wtCJbF+NoEyUla+X5UeQoLmQrla2loFkKjgl+BkkdIavPVNXzECzKu4THydI uPZWfUHF7CnKf9mdWv2ehHYvz69HuNOQ/OsowUufSHi0csb8zI4U9PXcwsje ORLcTo/oPftKQ6W9hgnL8yQ8jd+1505qAvI0KTNpWyDBmHOb2ug2KlJ6t31n /HfsFBG5oj1P0A9rr/6ryyR8kHdMNLkWiSo/9Ecf+UVChz+HER/lPvJ1VjrP ukbC7e15fe3SDkhlPpZzaJ2E/wNo7rcj "]]}, Annotation[#, "Charting`Private`Tag$8446#2"]& ]}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->300, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0, -1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{{-1, FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, {1, FormBox["1", TraditionalForm]}}, {{0, FormBox["0", TraditionalForm]}, {-1, FormBox["1", TraditionalForm]}}}]], "Output", CellChangeTimes->{{3.9219456660047197`*^9, 3.921945708019665*^9}, { 3.921947681886627*^9, 3.921947687136796*^9}, 3.92194813589503*^9, 3.921948720945242*^9, {3.9220073775284843`*^9, 3.922007385034046*^9}, { 3.922007623740291*^9, 3.92200766578257*^9}, 3.922094862285378*^9, 3.9221061931909323`*^9, 3.9221979026357594`*^9, 3.967862392159815*^9, 3.9678626281463485`*^9, 3.9678679846101437`*^9}, CellLabel->"Out[35]=",ExpressionUUID->"b53ad188-3c47-43cd-b27c-979d8c7bbead"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Boundary conditions:", FontWeight->"Bold"], " Embedding for two spheres (not considered in the paper)" }], "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106203289302*^9, 3.922106204256793*^9}, 3.922106480493561*^9, { 3.9678626778275647`*^9, 3.9678626849466724`*^9}},ExpressionUUID->"3f6b26df-d423-4839-b7b9-\ d269a735e68a"], Cell[BoxData[ RowBox[{ RowBox[{"solcusp2", "=", RowBox[{"{", "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.9219458747573137`*^9, 3.921945876106254*^9}, { 3.921945954940557*^9, 3.921945980508485*^9}, 3.9219460203094387`*^9, 3.921946130936235*^9, 3.921946191895979*^9}, CellLabel->"In[36]:=",ExpressionUUID->"582791f7-911c-4d7a-884e-141308378fab"], Cell[BoxData[ RowBox[{ RowBox[{"orcusp2", "=", "0"}], ";"}]], "Input", CellChangeTimes->{{3.921946193831287*^9, 3.9219461975625763`*^9}}, CellLabel->"In[37]:=",ExpressionUUID->"3cf32d2c-2b67-4e96-bd8b-5d84ce17df22"], Cell[BoxData[ RowBox[{ RowBox[{"solcusp2", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"cR", "[", "1", "]"}], "\[Rule]", FractionBox[ RowBox[{"\[Sigma]2", " ", "2", " ", "\[Zeta]s"}], SqrtBox[ RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}]]]}], ",", RowBox[{ RowBox[{"cR", "[", "2", "]"}], "\[Rule]", FractionBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "2"]}], RowBox[{ RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s", " ", "\[Rho]s"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t", " ", "\[Rho]s"}]}]]}], ",", RowBox[{ RowBox[{"cR", "[", "3", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "6"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", "Q", " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}], "-", RowBox[{ RowBox[{"(", RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "4"]}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}]}], ")"}], "/", RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]s", "4"], "+", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}]}], "-", FractionBox[ RowBox[{"4", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], "2"], " ", SuperscriptBox["\[Zeta]s", "3"]}], SuperscriptBox["\[Rho]s", "2"]], "+", FractionBox[ RowBox[{"4", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "11"}], "+", RowBox[{"2", " ", "Q"}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", "3"]}], SuperscriptBox["\[Rho]s", "2"]]}], ")"}], " ", "\[Sigma]2"}], ")"}], "/", RowBox[{"(", RowBox[{"18", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}], ")"}], RowBox[{"3", "/", "2"}]]}], ")"}]}]}], ",", RowBox[{ RowBox[{"cR", "[", "4", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", "\[Zeta]s", " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{"298", "-", RowBox[{"77", " ", "Q"}], "+", RowBox[{"4", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", "7"]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{"298", "-", RowBox[{"77", " ", "Q"}], "+", RowBox[{"4", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"6", "+", "Q"}]], " ", "\[Mu]t"}], "+", RowBox[{"18", " ", RowBox[{"(", RowBox[{"22", "-", RowBox[{"19", " ", "Q"}], "+", RowBox[{"4", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", "5"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"18", " ", RowBox[{"(", RowBox[{"14", "-", RowBox[{"11", " ", "Q"}], "+", RowBox[{"2", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"1", "+", RowBox[{"2", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", SuperscriptBox["\[Rho]s", "2"]}], "-", RowBox[{"9", " ", RowBox[{"(", RowBox[{"82", "-", RowBox[{"67", " ", "Q"}], "+", RowBox[{"13", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"4", "+", "Q"}]], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "2"]}], "-", RowBox[{"45", " ", RowBox[{"(", RowBox[{"6", "-", RowBox[{"5", " ", "Q"}], "+", SuperscriptBox["Q", "2"]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"3", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", RowBox[{"2", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "596"}], "+", RowBox[{"596", " ", "\[Mu]t"}], "+", RowBox[{"351", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"Q", " ", RowBox[{"(", RowBox[{"154", "-", RowBox[{"154", " ", "\[Mu]t"}], "-", RowBox[{"279", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "8"}], "+", RowBox[{"8", " ", "\[Mu]t"}], "+", RowBox[{"54", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}], ")"}], "/", RowBox[{"(", RowBox[{"135", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]s", "4"], "+", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}], " ", SuperscriptBox["\[Rho]s", "3"]}], ")"}]}]}], ",", RowBox[{ RowBox[{"cR", "[", "5", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"16", " ", RowBox[{"(", RowBox[{"7504", "-", RowBox[{"4600", " ", "Q"}], "+", RowBox[{"945", " ", SuperscriptBox["Q", "2"]}], "-", RowBox[{"70", " ", SuperscriptBox["Q", "3"]}], "+", SuperscriptBox["Q", "4"]}], ")"}], " ", SuperscriptBox["\[Zeta]s", "14"]}], "-", RowBox[{"32", " ", RowBox[{"(", RowBox[{"7504", "-", RowBox[{"4600", " ", "Q"}], "+", RowBox[{"945", " ", SuperscriptBox["Q", "2"]}], "-", RowBox[{"70", " ", SuperscriptBox["Q", "3"]}], "+", SuperscriptBox["Q", "4"]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"13", "+", "Q"}]], " ", "\[Mu]t"}], "+", RowBox[{"16", " ", RowBox[{"(", RowBox[{"7504", "-", RowBox[{"4600", " ", "Q"}], "+", RowBox[{"945", " ", SuperscriptBox["Q", "2"]}], "-", RowBox[{"70", " ", SuperscriptBox["Q", "3"]}], "+", SuperscriptBox["Q", "4"]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"2", " ", RowBox[{"(", RowBox[{"6", "+", "Q"}], ")"}]}]], " ", SuperscriptBox["\[Mu]t", "2"]}], "-", RowBox[{"48", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "888"}], "+", RowBox[{"882", " ", "Q"}], "-", RowBox[{"257", " ", SuperscriptBox["Q", "2"]}], "+", RowBox[{"15", " ", SuperscriptBox["Q", "3"]}], "+", RowBox[{"2", " ", SuperscriptBox["Q", "4"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", "12"], " ", SuperscriptBox["\[Rho]s", "2"]}], "-", RowBox[{"24", " ", RowBox[{"(", RowBox[{"5880", "-", RowBox[{"6410", " ", "Q"}], "+", RowBox[{"2291", " ", SuperscriptBox["Q", "2"]}], "-", RowBox[{"292", " ", SuperscriptBox["Q", "3"]}], "+", RowBox[{"7", " ", SuperscriptBox["Q", "4"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"11", "+", "Q"}]], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"36", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{"33", "-", RowBox[{"28", " ", "Q"}], "+", RowBox[{"4", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", "10"], " ", SuperscriptBox["\[Rho]s", "4"]}], "-", RowBox[{"72", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{"279", "-", RowBox[{"272", " ", "Q"}], "+", RowBox[{"68", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"6", "+", RowBox[{"2", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"36", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "15"}], "-", RowBox[{"4", " ", "Q"}], "+", RowBox[{"4", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"2", "+", RowBox[{"4", " ", "Q"}]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], "2"], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"36", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "60"}], "-", RowBox[{"200", " ", "Q"}], "+", RowBox[{"417", " ", SuperscriptBox["Q", "2"]}], "-", RowBox[{"235", " ", SuperscriptBox["Q", "3"]}], "+", RowBox[{"42", " ", SuperscriptBox["Q", "4"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"9", "+", "Q"}]], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"72", " ", RowBox[{"(", RowBox[{"2376", "-", RowBox[{"4212", " ", "Q"}], "+", RowBox[{"2786", " ", SuperscriptBox["Q", "2"]}], "-", RowBox[{"813", " ", SuperscriptBox["Q", "3"]}], "+", RowBox[{"88", " ", SuperscriptBox["Q", "4"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"5", "+", RowBox[{"3", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "4"]}], "-", RowBox[{"36", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "12"}], "-", RowBox[{"128", " ", "Q"}], "+", RowBox[{"173", " ", SuperscriptBox["Q", "2"]}], "-", RowBox[{"73", " ", SuperscriptBox["Q", "3"]}], "+", RowBox[{"10", " ", SuperscriptBox["Q", "4"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"1", "+", RowBox[{"5", " ", "Q"}]}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], "2"], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"45", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], "2"], " ", RowBox[{"(", RowBox[{"4", "-", RowBox[{"12", " ", "Q"}], "+", RowBox[{"5", " ", SuperscriptBox["Q", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"6", " ", "Q"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], "2"], " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"90", " ", RowBox[{"(", RowBox[{"6", "-", RowBox[{"5", " ", "Q"}], "+", SuperscriptBox["Q", "2"]}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", RowBox[{"5", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"Q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "44"}], "+", RowBox[{"44", " ", "\[Mu]t"}], "-", RowBox[{"19", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{"4", "-", RowBox[{"4", " ", "\[Mu]t"}], "+", RowBox[{ SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{"16", " ", RowBox[{"(", RowBox[{"7", "-", RowBox[{"7", " ", "\[Mu]t"}], "+", RowBox[{"3", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "-", RowBox[{"8", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"9", "+", RowBox[{"3", " ", "Q"}]}]], " ", "\[Mu]t", " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["Q", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", RowBox[{"4", " ", "\[Mu]t"}], "+", RowBox[{"39", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "-", RowBox[{"6", " ", SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "44"}], "+", RowBox[{"44", " ", "\[Mu]t"}], "+", RowBox[{"81", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "-", RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "469"}], "+", RowBox[{"469", " ", "\[Mu]t"}], "+", RowBox[{"108", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{"3", " ", "Q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "908"}], "+", RowBox[{"908", " ", "\[Mu]t"}], "+", RowBox[{"561", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "4"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"2", " ", RowBox[{"(", RowBox[{"5", "+", "Q"}], ")"}]}]], " ", RowBox[{"(", RowBox[{"3752", "-", RowBox[{"3752", " ", "\[Mu]t"}], "-", RowBox[{"2403", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["Q", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t", "+", RowBox[{"18", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "-", RowBox[{"6", " ", SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "22"}], "+", RowBox[{"22", " ", "\[Mu]t"}], "+", RowBox[{"95", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{"3", " ", "Q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "454"}], "+", RowBox[{"454", " ", "\[Mu]t"}], "+", RowBox[{"733", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"7", "+", RowBox[{"3", " ", "Q"}]}]], " ", "\[Mu]t", " ", SuperscriptBox["\[Rho]s", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "288"}], " ", RowBox[{"(", RowBox[{"61", "-", RowBox[{"61", " ", "\[Mu]t"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{"3", " ", SuperscriptBox["Q", "3"], " ", RowBox[{"(", RowBox[{"40", "-", RowBox[{"40", " ", "\[Mu]t"}], "+", RowBox[{"33", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "-", RowBox[{"8", " ", SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{"280", "-", RowBox[{"280", " ", "\[Mu]t"}], "+", RowBox[{"87", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{"Q", " ", RowBox[{"(", RowBox[{"11432", "-", RowBox[{"11432", " ", "\[Mu]t"}], "+", RowBox[{"1389", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "-", RowBox[{"3", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"8", "+", RowBox[{"2", " ", "Q"}]}]], " ", SuperscriptBox["\[Rho]s", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"645", " ", SuperscriptBox["Q", "3"], " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}], "-", RowBox[{"32", " ", SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{"37", "-", RowBox[{"37", " ", "\[Mu]t"}], "+", RowBox[{"105", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{"2624", "-", RowBox[{"2624", " ", "\[Mu]t"}], "+", RowBox[{"219", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{"Q", " ", RowBox[{"(", RowBox[{"8672", "-", RowBox[{"8672", " ", "\[Mu]t"}], "+", RowBox[{"4677", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "-", RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", RowBox[{"4", "+", RowBox[{"4", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}], " ", SuperscriptBox["\[Rho]s", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["Q", "3"], " ", RowBox[{"(", RowBox[{"16", "-", RowBox[{"16", " ", "\[Mu]t"}], "+", RowBox[{"381", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "-", RowBox[{"8", " ", SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{"55", "-", RowBox[{"55", " ", "\[Mu]t"}], "+", RowBox[{"432", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "-", RowBox[{"18", " ", RowBox[{"(", RowBox[{"240", "-", RowBox[{"240", " ", "\[Mu]t"}], "+", RowBox[{"547", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}], "+", RowBox[{"Q", " ", RowBox[{"(", RowBox[{"2584", "-", RowBox[{"2584", " ", "\[Mu]t"}], "+", RowBox[{"10221", " ", SuperscriptBox["\[Mu]t", "2"], " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"6", "+", RowBox[{"4", " ", "Q"}]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["Q", "4"], " ", RowBox[{"(", RowBox[{"16", "-", RowBox[{"32", " ", "\[Mu]t"}], "+", RowBox[{"672", " ", SuperscriptBox["\[Mu]t", "3"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"9", " ", SuperscriptBox["\[Mu]t", "4"], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{ SuperscriptBox["\[Mu]t", "2"], " ", RowBox[{"(", RowBox[{"16", "-", RowBox[{"672", " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "-", RowBox[{"16", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "7504"}], "+", RowBox[{"15008", " ", "\[Mu]t"}], "-", RowBox[{"7236", " ", SuperscriptBox["\[Mu]t", "3"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"81", " ", SuperscriptBox["\[Mu]t", "4"], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"268", " ", SuperscriptBox["\[Mu]t", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "28"}], "+", RowBox[{"27", " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "-", RowBox[{"9", " ", SuperscriptBox["Q", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1680"}], "+", RowBox[{"3360", " ", "\[Mu]t"}], "-", RowBox[{"6784", " ", SuperscriptBox["\[Mu]t", "3"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"151", " ", SuperscriptBox["\[Mu]t", "4"], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"16", " ", SuperscriptBox["\[Mu]t", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "105"}], "+", RowBox[{"424", " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{"2", " ", SuperscriptBox["Q", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "560"}], "+", RowBox[{"1120", " ", "\[Mu]t"}], "-", RowBox[{"5448", " ", SuperscriptBox["\[Mu]t", "3"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"81", " ", SuperscriptBox["\[Mu]t", "4"], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"8", " ", SuperscriptBox["\[Mu]t", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "70"}], "+", RowBox[{"681", " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}], "+", RowBox[{"8", " ", "Q", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "9200"}], "+", RowBox[{"18400", " ", "\[Mu]t"}], "-", RowBox[{"17730", " ", SuperscriptBox["\[Mu]t", "3"], " ", SuperscriptBox["\[Rho]s", "2"]}], "+", RowBox[{"351", " ", SuperscriptBox["\[Mu]t", "4"], " ", SuperscriptBox["\[Rho]s", "4"]}], "+", RowBox[{"10", " ", SuperscriptBox["\[Mu]t", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "920"}], "+", RowBox[{"1773", " ", SuperscriptBox["\[Rho]s", "2"]}]}], ")"}]}]}], ")"}]}]}], ")"}]}]}], ")"}], " ", "\[Sigma]2"}], ")"}], "/", RowBox[{"(", RowBox[{"2160", " ", "\[Zeta]s", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "2"}], "+", "Q"}], ")"}], " ", "\[Zeta]s"}], "-", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", "Q"}], ")"}], " ", SuperscriptBox["\[Zeta]s", "Q"], " ", "\[Mu]t"}]}], ")"}], RowBox[{"5", "/", "2"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SuperscriptBox["\[Zeta]s", "4"], "+", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"2", " ", "Q"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]s", RowBox[{"3", "+", "Q"}]], " ", "\[Mu]t"}]}], ")"}], "2"], " ", SuperscriptBox["\[Rho]s", "4"]}], ")"}]}]}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.921946616366317*^9, 3.921946655868559*^9}, { 3.921946697142736*^9, 3.921946697290716*^9}, {3.921946737443343*^9, 3.9219467376162024`*^9}, {3.9219482004091053`*^9, 3.921948258464625*^9}, { 3.921948375210837*^9, 3.9219483784688187`*^9}}, CellLabel->"In[38]:=",ExpressionUUID->"8eb561e1-bc95-4ef5-8430-8773cd08ddfe"], Cell[BoxData[ RowBox[{ RowBox[{"orcusp2", "=", "4"}], ";"}]], "Input", CellChangeTimes->{{3.9219484211029167`*^9, 3.9219484227558813`*^9}}, CellLabel->"In[39]:=",ExpressionUUID->"fc86d369-c5fa-4001-983e-52de8f533cab"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"0", "<", "\[Zeta]", "<", "\[Zeta]s", "<", "1"}], "&&", RowBox[{"Q", ">", "2"}], "&&", RowBox[{"\[Mu]t", ">", "0"}], "&&", RowBox[{"\[Rho]s", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"equationdimless", "/.", RowBox[{"{", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{"\[Rho]s", "+", RowBox[{"(", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "1"}], "orcusp2"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Zeta]s", "-", "\[Zeta]"}], ")"}], FractionBox["kk", "2"]]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", ",", "\[Zeta]s"}], "]"}], FractionBox[ RowBox[{"orcusp2", "+", "1"}], "2"]]}], ")"}]}]}], "]"}]}], "}"}]}], "/.", "solcusp2"}], "//", "Simplify"}], ")"}], "/.", RowBox[{ SuperscriptBox["\[Sigma]2", "n_"], ":>", RowBox[{"If", "[", RowBox[{ RowBox[{"EvenQ", "[", "n", "]"}], ",", "1", ",", "\[Sigma]2"}], "]"}]}]}], "//", "Simplify"}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "==", "0"}], ",", RowBox[{"cR", "[", "orcusp2", "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"0", "<", "\[Zeta]", "<", "\[Zeta]s", "<", "1"}], "&&", RowBox[{"Q", ">", "2"}]}], ",", RowBox[{"%", "//", "Simplify"}]}], "]"}]}], "Input", CellChangeTimes->{{3.921944613477893*^9, 3.92194474272048*^9}, { 3.921944857270976*^9, 3.921945003466131*^9}, {3.921945042883078*^9, 3.921945072854514*^9}, {3.9219451162836227`*^9, 3.921945118758246*^9}, { 3.921945152394061*^9, 3.921945173298196*^9}, 3.9219452050584583`*^9, { 3.921945842662286*^9, 3.9219458704019327`*^9}, 3.9219459024352417`*^9, { 3.921945965564802*^9, 3.921945966875102*^9}, {3.9219461186475163`*^9, 3.921946122190624*^9}, {3.921946164311324*^9, 3.921946183118195*^9}, { 3.9219462202288637`*^9, 3.921946221392612*^9}, {3.921946773003912*^9, 3.921946781272292*^9}, {3.9219468476954613`*^9, 3.921946850214891*^9}, { 3.921946885451088*^9, 3.921946905484527*^9}, {3.921946957605476*^9, 3.921946958191718*^9}, 3.921948281950131*^9}, CellLabel->"In[40]:=",ExpressionUUID->"b8b67f27-3e75-4de1-ad16-edff17715d97"], Cell[BoxData[ TemplateBox[{ "SeriesData", "slnc", "\"Argument \\!\\(\\*InterpretationBox[SuperscriptBox[RowBox[{\\\"O\\\", \ \\\"[\\\", RowBox[{\\\"\[Zeta]\\\", \\\"-\\\", \\\"\[Zeta]s\\\"}], \ \\\"]\\\"}], \\\"1\\\"], SeriesData[\\\\[Zeta], \\\\[Zeta]s, List[], 1, 1, \ 1], Rule[Editable, False]]\\) in Log is a series with no coefficients.\"", 2, 40, 1, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9219483840143623`*^9, 3.921948423264875*^9, 3.9220073974281*^9, 3.9220948623644037`*^9, 3.922106213461463*^9, 3.922197902692852*^9, 3.9678626923539114`*^9, 3.9678679847180223`*^9}, CellLabel-> "During evaluation of \ In[40]:=",ExpressionUUID->"576a1a84-e4d6-4e6f-bab4-1ff18bcf51f2"], Cell[BoxData[ InterpretationBox[ SqrtBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", "-", "\[Zeta]s"}], "]"}]], SeriesData[$CellContext`\[Zeta], $CellContext`\[Zeta]s, {}, 1, 1, 2], Editable->False]], "Output", CellChangeTimes->{{3.921945854244863*^9, 3.921945903229722*^9}, { 3.921945967575116*^9, 3.921946050773904*^9}, {3.92194611964437*^9, 3.9219461381738*^9}, {3.921946191560004*^9, 3.921946222177099*^9}, { 3.921946802673442*^9, 3.92194685064559*^9}, {3.9219468862877007`*^9, 3.9219469661121264`*^9}, {3.92194827483042*^9, 3.921948292236383*^9}, 3.92194835170222*^9, {3.9219484171368923`*^9, 3.9219484238638067`*^9}, 3.922007400354938*^9, 3.922094865256871*^9, 3.922106216272808*^9, 3.922197905611017*^9, 3.967862725156028*^9, 3.967867987414748*^9}, CellLabel->"Out[40]=",ExpressionUUID->"c6df834e-60e4-43dc-a5c1-61a11e2d06f5"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", "}"}], "}"}]], "Output", CellChangeTimes->{{3.921945854244863*^9, 3.921945903229722*^9}, { 3.921945967575116*^9, 3.921946050773904*^9}, {3.92194611964437*^9, 3.9219461381738*^9}, {3.921946191560004*^9, 3.921946222177099*^9}, { 3.921946802673442*^9, 3.92194685064559*^9}, {3.9219468862877007`*^9, 3.9219469661121264`*^9}, {3.92194827483042*^9, 3.921948292236383*^9}, 3.92194835170222*^9, {3.9219484171368923`*^9, 3.9219484238638067`*^9}, 3.922007400354938*^9, 3.922094865256871*^9, 3.922106216272808*^9, 3.922197905611017*^9, 3.967862725156028*^9, 3.967867987423023*^9}, CellLabel->"Out[42]=",ExpressionUUID->"16a15469-56e5-4b28-b1a9-ac6cca84dbf5"] }, Open ]], Cell["\<\ Interestingly, now the sign matters. The two choices will give us two \ different branches.\ \>", "Text", CellChangeTimes->{{3.922106236680867*^9, 3.922106260641548*^9}},ExpressionUUID->"f688e42d-68d8-4dc4-9dff-\ c0f57f6c66d2"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Clear", "[", RowBox[{ "\[Rho]tcust2p", ",", "\[Rho]tcust2m", ",", "d\[Rho]tcust2p", ",", "d\[Rho]tcust2m"}], "]"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Rho]tcust2p", "[", RowBox[{ "Q_", ",", "\[Mu]t_", ",", "\[Rho]s_", ",", "\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{"\[Rho]s", "+", RowBox[{"(", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "1"}], "orcusp2"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Zeta]s", "-", "\[Zeta]"}], ")"}], FractionBox["kk", "2"]]}]}], ")"}]}], "/.", "solcusp2"}], "/.", RowBox[{"\[Sigma]2", "->", "1"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"d\[Rho]tcust2p", "[", RowBox[{ "Q_", ",", "\[Mu]t_", ",", "\[Rho]s_", ",", "\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Zeta]"}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Rho]tcust2m", "[", RowBox[{ "Q_", ",", "\[Mu]t_", ",", "\[Rho]s_", ",", "\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{"\[Rho]s", "+", RowBox[{"(", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "1"}], "orcusp2"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Zeta]s", "-", "\[Zeta]"}], ")"}], FractionBox["kk", "2"]]}]}], ")"}]}], "/.", "solcusp2"}], "/.", RowBox[{"\[Sigma]2", "->", RowBox[{"-", "1"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"d\[Rho]tcust2m", "[", RowBox[{ "Q_", ",", "\[Mu]t_", ",", "\[Rho]s_", ",", "\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Zeta]"}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.921945244249751*^9, 3.921945262297624*^9}, { 3.921945375569442*^9, 3.921945441569409*^9}, {3.9219469959919043`*^9, 3.9219471129706993`*^9}}, CellLabel->"In[43]:=",ExpressionUUID->"2088380a-b40d-4a26-b462-c3e201135885"], Cell[BoxData[ RowBox[{ RowBox[{"computeSolMutual", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Rho]s_", ",", "\[Zeta]s_"}], "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"solnumericalMutualplus", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s"}], "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"eqNum", "[", RowBox[{"Q", ",", "\[Mu]t"}], "]"}], "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"\[Rho]tcust2p", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"d\[Rho]tcust2p", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}]}], "}"}], ",", "\[Rho]t", ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "Flatten"}]}], ";", "\[IndentingNewLine]", RowBox[{ RowBox[{"solnumericalMutualminus", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s"}], "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"eqNum", "[", RowBox[{"Q", ",", "\[Mu]t"}], "]"}], "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"\[Rho]tcust2m", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"d\[Rho]tcust2m", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}]}], "}"}], ",", "\[Rho]t", ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "Flatten"}]}], ";"}], "\[IndentingNewLine]", ")"}]}]], "Input", CellChangeTimes->{{3.921945468659129*^9, 3.9219455691595917`*^9}, { 3.921945616748568*^9, 3.921945621759766*^9}, {3.9219471322977343`*^9, 3.921947209834296*^9}, {3.92194724448528*^9, 3.921947256171215*^9}, 3.921947287995777*^9, {3.9219473238243637`*^9, 3.9219473252883463`*^9}, { 3.921948727479514*^9, 3.921948729800626*^9}}, CellLabel->"In[48]:=",ExpressionUUID->"9432f8bd-e5b2-4cbe-a07d-647438193c0a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"computeSolMutual", "[", RowBox[{"5", ",", "0", ",", RowBox[{"1", "/", "2"}], ",", RowBox[{"1", "/", "2"}]}], "]"}]], "Input", CellChangeTimes->{{3.921947229161235*^9, 3.921947234874165*^9}}, CellLabel->"In[49]:=",ExpressionUUID->"7a1894b0-8a92-4fd8-b1dc-718950f85f86"], Cell[BoxData[ TemplateBox[{ "N", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 49, 2, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679874613676`*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"6700094c-fa41-4978-a40b-46c843cb455e"], Cell[BoxData[ TemplateBox[{ "SetPrecision", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 49, 3, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679874852314`*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"fcb55b89-0976-47a7-a37d-3e0c32acb088"], Cell[BoxData[ TemplateBox[{ "N", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 49, 4, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.967867987492824*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"36eb7ab9-8e0c-4d84-aba9-c13b3d5c7701"], Cell[BoxData[ TemplateBox[{ "N", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 49, 5, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679875085526`*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"b102dca5-77ac-4992-afb6-dc40b70b6929"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \ \\\"precsm\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 49, 6, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679875085526`*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"1d495da0-1a02-4ce9-bf5c-c098cae68c0d"], Cell[BoxData[ TemplateBox[{ "SetPrecision", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 49, 7, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679875164347`*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"85ec905e-78e3-4075-a3b1-ee14adc32bd9"], Cell[BoxData[ TemplateBox[{ "SetPrecision", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 49, 8, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679875474367`*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"cd1901c9-3230-4e40-b616-bf61854fba6d"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"SetPrecision\\\", \ \\\"::\\\", \\\"precsm\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 49, 9, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.967867987556278*^9}, CellLabel-> "During evaluation of \ In[49]:=",ExpressionUUID->"e4a057aa-6a17-41cc-ac1b-de170771527b"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"plotmutual", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Rho]s_", ",", "\[Zeta]s_"}], "]"}], ":=", RowBox[{"(", "\[IndentingNewLine]", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"solnumericalMutualplus", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s"}], "]"}], "[", RowBox[{"[", "0", "]"}], "]"}], "=!=", " ", "List"}], ",", RowBox[{ RowBox[{"Print", "[", "\"\\"", "]"}], ";", RowBox[{"Return", "[", "]"}], ";"}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{ RowBox[{"plotSol", "[", RowBox[{"solnumericalMutualplus", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s"}], "]"}], "]"}], ",", RowBox[{"plotSol", "[", RowBox[{"solnumericalMutualminus", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]s", ",", "\[Zeta]s"}], "]"}], "]"}]}], "]"}]}], "\[IndentingNewLine]", ")"}]}]], "Input", CellChangeTimes->{{3.921947269012299*^9, 3.921947311422203*^9}, { 3.922007494162857*^9, 3.922007607899979*^9}}, CellLabel->"In[50]:=",ExpressionUUID->"5c82fa6d-e7d9-473d-b620-d5b7c6980f7b"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"computeSolMutual", "[", RowBox[{"5", ",", "0", ",", RowBox[{"2", "/", "10"}], ",", RowBox[{"3", "/", "4"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"plotmutual", "[", RowBox[{"5", ",", "0", ",", RowBox[{"2", "/", "10"}], ",", RowBox[{"3", "/", "4"}]}], "]"}]}], "Input", CellChangeTimes->{ 3.921947298093451*^9, {3.9219473444546957`*^9, 3.921947354398634*^9}, { 3.922007408773584*^9, 3.9220074672393*^9}}, CellLabel->"In[51]:=",ExpressionUUID->"d6ac76e2-3dea-4965-8161-a8a6fd9d146d"], Cell[BoxData[ TemplateBox[{ "N", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 51, 10, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.967867987619975*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"607fdbd9-7ae7-47bf-b8e0-c78b6d37ecec"], Cell[BoxData[ TemplateBox[{ "SetPrecision", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 51, 11, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679876234083`*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"e9da6ae3-9fd1-4f94-bf1b-f431639f49a4"], Cell[BoxData[ TemplateBox[{ "N", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 51, 12, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679876260395`*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"dcb4c295-70c8-425a-a0b2-b61e41137c47"], Cell[BoxData[ TemplateBox[{ "N", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 51, 13, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679876260395`*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"a214d21c-9ab3-439f-89e0-466636b64a76"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \ \\\"precsm\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ calculation.\"", 2, 51, 14, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.96786798763568*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"263727dc-af4d-4df6-a63e-277e26b10cae"], Cell[BoxData[ TemplateBox[{ "SetPrecision", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 51, 15, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.96786798763568*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"0fc63dab-4f2f-43cc-bd93-e58fbf61d831"], Cell[BoxData[ TemplateBox[{ "SetPrecision", "precsm", "\"Requested precision \\!\\(\\*RowBox[{\\\"30.`\\\"}]\\) is smaller than \ $MinPrecision. Using $MinPrecision instead.\"", 2, 51, 16, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679876833935`*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"cbc40e18-f44a-473f-9b23-ce764ab84a98"], Cell[BoxData[ TemplateBox[{ "General", "stop", "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"SetPrecision\\\", \ \\\"::\\\", \\\"precsm\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ during this calculation.\"", 2, 51, 17, 25974447559933630916, "Local"}, "MessageTemplate"]], "Message", "MSG", CellChangeTimes->{3.9678679876833935`*^9}, CellLabel-> "During evaluation of \ In[51]:=",ExpressionUUID->"9542e5c8-690e-4249-b402-1b2989aae8f0"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nk01fn/B3BMIUpFKFKJr4wl2lQULchSQvYRjeWWZBnZEmVJ1siWSBrK WLNEouSZsYfutV0KWa57P4pGWdv8/N798T6v8/jrtZzXeZ23tIOHqTMPFxdX PXm/os21q4f+tWXjywVW5NOv47UtCZOqv8xTHGSe7aMCIWvRdb/8PFEtf7BD Ex2Mr2/riNV39Il4f9ZF7WxK3C+LrRTp/nbFCF3Pp5R/OeCvHa3gPoNjUkvP XhFfONeYF9pkgcx1zUq/bHHaMVInxgb9kQaxINbW5L7Ab2yH0/4RzFritDv0 h84Cf4JJDxL85XVxmSLNUw54eU1Z8SVxRLhbmDzdCUyvO/tqiP8v8NBsVBkN gXerFF4Q+3gLOk4mXUD6uySB58RTru+6TvpeRJ2VT/Qz4gEb/ydrNdyR7HhV oZL493yZhCohT/jKqz+tIGbLCup/WPbEvPtodBmx7eZ3VQZjXgiqaO0tId54 t87zavdlzGpcFCwm7hbJly9q8AZ/dLdaAbGBoP/dNbm+2CKQoZRHzBthb6x5 1w/iWpvX/ENcx3OC3yPKH0+UjsdlER/4LurPcA3AxyS5hFTiHR/KLZNUr8H+ aN5gMvGY0721DdLXkX9qRDiR+LRnnWPAqmA8f+WlFUssOJUnWfg9GNeCJdOu E4ey/GJWD4WiIcNAPZD4XJYr9cg8DFY+O5v8iTXt7Y8ffhMGbW+RzL+Iv73T /eGGG2gRP2nkQOzZJepKz7oJpVsSOnbERrdXNZ+XiMDZ7ntyNsRKRkvbuZIi YNX8NN+EmGodf6d6IxIajVqlWsR2deUGibRocJtcqhUnPlVqomCuGIeAoGeT 64kjh6UthYvjwOCZWxYkbhCaCaOrxkPBTWto+Q827qu1/icreRsrG0VcOcQi KS56D7YlIHCtUXcx8bJJwY8kxSTMDF7xyCXOcBFOnLmUhBuV8TMPiNVDAuRN ipNgEOP3+DaxT6mBudCuZOja/b7gSTwpNFkcqZaCBrfMLiXivjZFh6CjqWj6 rDgkQ+zNSvo6EJqK+MH0NxLEwj9+xKk3pELtrgSNn/iUQvuLRd27GPh5+/yY DRv1kZdEvU6mgU+LUZ5AXKLzuIVmeQ9F99e4DVmTfcVOFWO3B4BL4bYuYr2Y +HbrggfgtzaubSLmt/zs4kg9gIHG42clxDqLVqYvVP/G8vrs7GDi5jiJW28K /sbu7Z+sthC/fnmfZz4zC3wLYcf0rdhgSD76dDTiIVIX2/ZpEJeGmNU05TxE pSaviDJxArUixrDhIcJbjGLWEZuWO8ubcz9CTLPkZaYl2V+DHY4Xrj7C7gye rXbEzCsF/XEeOWAcqRuztWBjsK+0fsAyF5UaN8+fJFYPazJu9slF2Q3uPg3i tJ2DQ0+SciE3I+4rQWwRzvc1ip4LmYLiCqY5qW+3ndKBE3mITu3ZbUjceEsw JVktH7GrnZRlzdgoPk6jnRIthF2pC9964tXTV2cP7CkEX6Ng+9IZNlzTE4Jl TQqR3iMt2kcs/6Um/UdsIbrcg/6JJM7OFKHnryiCo6FKI2XKRuq3V/t554rQ Fqk5lWLCRnCJ5Cp0FcO1IPDwNWI1vwuv98wWY1Onmw+NeErzaUyeSAnO2jql qRFbvTESSjQrwXxgcFmvMRsqn0JEnJklsHZ0kF5L7CE6F7fSrRSGIryL7kZs bDljk1boWYal6gjVMQM2At/IFS/6lWNsXYpcE/E5+xjG5ohyqOSc5i0g1v48 PXP0TjlcB5pD/yIWFK7eH1tRDvbjhx7L+mykmxvWbftSjrnfuTaKE1cNevTo X6zA2Yax9H0n2Jj7WPX9nu1T1Cu3yqgcZ+MSn+GJI0ef4f10D7fmQTZ020zP l/zxArRk21imMhsczd/MFhyAEWb9iwppNs4GbO33TaxD+W9yXixhNmokSlpX ZtTjvXaIu+9vbOyzXTE7FdoI51XbIxgz40iYf8xz5FwzvA8f6eUaHoeDWau5 HK0V0hf/1Wa+Hscps4IRJ/02GPHN124sH8fjTUvFauYdOCSV97g3bRyf1R45 elvS8R9lHBYQPI7cAH758HsMtPjPHpl3GMftmkWkPejERJy+4mWdcfDSWy/b JHaB7ZGkoSszjv0NZq1Oad1w4zrgc3GZBWv2KuGcez2wQtWungEW+PuyfBNi e7Hr4aZVPU9Y8CqcCWxOYILn5NBG1WgWXIzlHuSH92GgvfupwDkWTKRvVNR5 90N3eeL+3yoszPWku8r4v4W+6IPSjuUxyFona+66+A7OtZsivrSMQeiVbnmk 5wC+j6lpD8SP4aOpjKSY1yAqRg0/xFuO4UzlWOZphyHMmD6V/yk2Bt+fNg1d tPdo5ZpWU+4bhZxI5Uoem2EUNx92EU8ZBatA6v4e2REMbe3YIa0/ioSXh/hj ckYwVb3B6svSCMIPnAo5sGUUiuYKnka5I2DKqrcJZI1iM7dqzxaTEbhf2Siz R3IMP3M+der+N4xlVoz3QuIYQgztr1hIDeMTBu6838ACZbDy6CvD95BeIdW8 OY6FBvvQslMWQyivVm+5vn4cztXS+bGnB3E4/NO/QYnj0PIKOid8fABC1Qlt nQJsCF06aG3P9Q6H7IRzDG6xYWi+uWi2qB9lrjdiN/FxIFjnV3w+tx+akfx7 F/k5kMgVqejP6kf7o9iBHgEO3k1LV5fd6cfEULLCbSEO/FskDmoF92OLcU4L rxgHTqG2Tg2m/Yjd27RiTpYD54EVQ5bzfbiwxBf05hgHduPj/wSp9GFLfIxb 2DUOdk3zxl+X78NfUmfyooI5+BkjcSZQug8NhRKs+FAOylhZJ2gifXBtybfK uMmBjV9Z0/cFJqq4W44/jePgES+NvvklEybeKySoTA7EDlafn9Fm4oZ1UJMB OPgorjZx8DATfZQ2t0kdB8cr7tQE7GNCwXf1Ict6DnRYnO0T/2OCkXivzLGZ g8qNJ/7nycuEVHt1RiCdA6vNa7bJNfWSu7vgVTzMwbrO+OvZWr34IOOxVZiL QpSsH//N/b147+f+ZJ6bQnbFjrg/VXrR1eam8/Y3Crf3Lu7n2tqL55cvuf7N RyE9/NzNt0s9iK13ebZzLYVZv+FkTnUPdjo6nTbcQqEm9YVwtkIPvLKtr984 ROHY9nYBE+ke0BashC9oUuBuZuyeE++BjYFVjuERCnr0PTSxlT04PmPRJqxN YYLjQmt8340Nx8zEswwp8F9TUs6O70blqFHJSxsKAu28bbnsLnzfpj284E9B M7N9bsvbLpiqj5cIX6VQFmpGD2zvQuGZG8E7gyhsmKtR/fikC7Y3G6RpISSf Up/7lWtdqJ3UduqNohAduHr55douhFXqfChPp1AUv/VPPe4uDNLZ1fQMCsy3 07xFM53Y+yE8ejKTQuLBh1LfezrBkWxSlHlIIU8tXD86tRN6IbruiYUUhtVv 2k8Ld2L1yROznjUU9qz2jdbl7oSTM1UfW0shReeP6xbTDPJvjEjOe0X6k9no kviaAfey5n0jDWTeZnk0niAGGGJ6/qc7KDCkBmj5FxiQV53Qc6VTOMQjTI2e YSBEP3JTRCeFL2vF4ybkGdgd2PK8tpfCwC7jXZ536Uge1VtSfk9hjejRpSc0 Oqa+T3Toj1BwTsuZN99Dh86GqEznMQr3s455cDW/wYJuq9Z9DoXpCukrCbfe wOicy7rqCQo7NXZ6xJu8Qe6VVaM9Hyns21taJcPogFWRfujqaQoHj4tpxkV1 oLTxg6n8FwrbFPp9Jg93YNVwlIz2LAXpkiq7ycl2OHz9fc5+noLF0X94YhPa 8Xz964arixQ81NVsPBXbIaJ4MSX1GwVJ/28ZYuVtuKQtQCv/Qeapx6X+VbwN DWcL1OhLFF4qhFVxs1oh5WfAN7lM4f8BewTJ7A== "]]}, Annotation[#, "Charting`Private`Tag$8839#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV0nk41PsXB3BUiFIRiqiJK9cSbSrKp7JkKSH7FV3LRLJc2RKyZo1siaRL udYskSicXGPLMmOMoRBmzHwVXWVt8/P79Md5zvP665zzfg7JydvclY+Hh6cV 169uF3bzxL/2HPTFjR33/OtUc2fqjPov81WEWhb4q4GIrfjWX36ZplEy2qsN vbSvb1uwNfcNifl91ofmhczkX5bYIDbw7YYJ0F/Oqv5y8F/7uoD3IpyRWX3x GtvtcltxZLsV5G3tUPllqwvOcXqJdjAcZ5QE2LravG6Cpg5wISiW2YydfY/6 2FXoT2BSQ4V/eWtynljHrBM0hakqN2HHxnhGKVJdgOl770gj9v9CTizEV5Mh 5H690itsfz9h55l0N8h5ly70EnvW4x39XMBVaLHxT3iBPWIX9GyLlhdkON9U qsP+vUQutV7EBwIUNZ/XYnPkhQ0/rPnAktdkQjW2/a539UYsXwit7RqsxN5x v8Xn5sB1WNC6KlyBPSBWolhO8QPBhAGNUmwj4aD7m4sCQFYoV6UYmz/W0VT7 fiBIol2b/8Fu4Tsr6B0fBM9UdJLzsY99Fw+ieQTDx3SF1CzsfR9qrNPVw8Dx dPFoBjbL5cEWCukWlJyfEE3DvuDT4hy8MRxevvZFSdjCs8XSZd/DISxcOvsW diQ7MHHTWCRQco00Q7Av53sQTyyjwMZ/f3sQtrajo87JvijQ9RPL+wv72zv9 H54QDZ2S50ycsH3o4h7U/NugckdKzwHb5O7GjitSsXBp4IGCHbaKyepenvRY sOl4XmKGTXRNvVOPjgOtNlSFsB1aaozSyAnAa3atWRL7fJWZkqVyMgSHvpjZ hh03TrIWrUgGGt/imjA2RWQ+iqqeAkqeaGztDw56qNH1n7z0XdjQJubBxRbL dDd4tCcVQraYDFRgr5mV/khXTof50RveRdi57qJp89fSIbouZf4RtmZEsKJZ RToYJQY+vYvtX2VkKXIgA/Qdfl/2wZ4RmamI08gEimceXQV7qFvZKfR0FrR/ Vh6Tw/Zjp38dicyClNGcPils0R8/kjUpWaBxX4osiH1eqefViv59GPl59wrL joNa466J+57LBgFEq0nFrtR72km2fgDlDzd7jtnif4X9aqaejwDcy/bQsQ0S U3psSx+BoK1pczu2oPVnd2fiERhpPX1Ria23YmP+Sv1vWNtWUBCO3ZEsdaev 9G84uPeTjSz2m6aHfEt5+SCwHHXG0IaDaNJPPp2OfQxZK91HtLCrIiwa2wsf Q502v5gqdiqxPtGY8hhiOk0St2Kb17gqWvI+gcQO6etMa/y/Rvuc3W4+gYO5 fLsdsJk3SoeTvQuBdqqFZW/FQaNDVa0j1kVQp3X7yjlszah20w7/IqiO5h3S ws7ePzr2LL0IFOYlA6SwrWIEvsZTi0CutKKWaYn3O+igcuxsMSRkMQ4aY7fd Ec7M0CiBpE0uqvIWHFShQyafFy8Dhyp3gW3Ym+ZuLhw7VAYCbcI9qxc5yCMn NVzerAxyGCTxIWzFL405P5LKgO4V+k8cdkGeGLVkfTk4G6u1EeYclPXt9VH+ xXLojtOezTTjoPBK6Y1ArwCP0pCTYdgagW5vDi1UwM5+T38y9qz288RisUq4 ZO+SrYFt02cikmZRCUsh4dWDphyk9ilCzJVZCbbOTqQt2N7ii8kbPKvAWIx/ xcuEg2Qv2mWX+VTDakOsOsuIg0L6FCpWAmuAtTVToR37smMibVdsDagVXuAv xdb9PDd/+l4NeIx0RP6FLSzacDSptgY4Tx97rxlyUI6lccueLzWw+DvPDkns +lFvhuHVWrhEYeUcOctBix/rvz+wfw6tql1yajocdE3A+Oyp0y/g/RyDV/s4 B+l3m1+p/OMVkDPsk5iqHMTVXmex7AQwwWx9VUvioEvBu4cD0lqgZp2CL1uU gxqlKrs25LbCe90Ir4B1HHTEfv3CbGQbuG7cG0ubn0KpS0/5Tl3uAL+TpwZ5 xqeQk0WXpQK5C0hX/9VlvplC5y1KJ1wMu8FEYKl5R80UerpztULDshdOyBQ/ HcyeQp81njj7WVPhP8I0Kjh8ChUFCyrGPKBBZ9DCqSWnKXS3cQWyH/XDdLKh 8nW9KcRP7bpul0YHjne6lr7cFDpKsehyyR4AT55j/lfX2MiWs1G08AEDbKD+ AGOEjQSH8gNSkwbhwOOdGxnP2Mi3bD6kI5UJfOfGdqgnsJG7qcKjkpghGOkZ eC50mY3MSNG1LX7DoL82/fBvNTZaZOR4yAW9BUPxR1W9aywkb5uhfeDqO3Bt 3hn7pZOFRF7r18T5jMB3lobuSAoLfTSXk5bwHYXaSeMPKdYsdLGOlXfBaQzm zZ8r/pRgoYCfdhQ6+T108cxpqA5NIgWxug18duNQ0XHSXTJzErFLZR4ekp+A sd29+0iGkyi16YRgYuEEzDZst/myOoFijp2POCY7CcqWSj4mRROIKa/ZLZQ/ Cbt41RmyZhPI68YOuUPSLPhZ+Klf/79xtMZO9FtOY0GEseMNK5lx9AlG7r3f zgbCaMPp18bvEWm9TMeuZDZQHCOrz1uNoZoGzc5b26bAtYFUknRhFJ2M+fRv aNoUIN/Qy6I6I0ikIbW7X4gDIteO2zryvEMnHEQLje5wwNhyV/lC+TCq9ohO 2inABeGWwIorRcNIO07w8IogF6SKxGqH84dRz5OkEYYQF97NkRqq7w2j6bEM pbsiXAjqlDqOwoeRrGlhJ78EF1wi7V0o5sMo6XD7+kV5LriOrB+zXhpCbqsC oX1nuOAwNfVPqNoQkk1J9IwK48KBOf6UW4pD6C+Zi8Xx4Vz4mSh1MYQ0hChl UuyUSC5Us/PPksWGkEdniU3ubS7YBVa3f19monreTp3nyVx4wk+m7mpiIjO/ 9VJEHhckjjdcmddlomjb0HYj4MJHSY3p4yeZaIjQ5TVr4YJO7b3G4CNMpBSw 6YR1Kxf02Ny9078xES3tQbVzBxfqdpz9zYefiWR6GnJDqFyw2bV5j0L7IKrT XvatGOfC1v6UWwVoEH2Q894tykNAvHyg4O2jg+h9oNezJV4CCmr3Jf+pNojo 3Z56b9cRcPfwylGe3YPo5fVrHn8LEJATc/n221UGSmp1f7F/CwELgeMZ3AYG 2u/scsFYloDGrFeiBUoM5Ftgeyv6BAFn9vYImZEYiLxsI+qmTQBvB+3goiQD 2RnZFBqfIsCAeogssYGBdOatukV1CZjmupPb3g+g7WcsJPONCRAMU1EtSBlA dZMmlU12BAj18HcXcejo+x7d8eUgArTzehZl39KRueZUpehNAqojLaghPXRU djE6fH8oAdsXG9U/PqMj+9sUEjkCz1MZ8roRRkfNM7oug/EEJIRsWmvaQkdR dXofanIIKE/Z/acBLx2NUjkN1FwCmG/n+Mvn+9HhDzEJM3kEpB1/LPOd0Y+4 0u3Kco8JKNaIMUzI6kcGEfpeaWUEjGvedpwT7Uebzp1d8Gkk4NCmgAR93n7k 4kq0JjUTkKn3xy2rORpqCovNKH6N75Pb4Z72hoa8qjuOTFBw3hbFZL5QGqJJ GARd6CWAJjNCLnGjIUX1aQMPKgEn+ESJyYs0FGEYtzO2n4AvWySTpxVp6GBI 58vmQQJGDpge8LlPRRmTBquq7wnYLH569RmZima/T/caThDgml24ZHmIivS2 x+e5sgh4mH/Gm6ejDy3rd6GHXALmakk3Uu/0IZPL7lsbpgnYr7XfO8WsDxXd 2DjJ+EjAkcNV9XK0XmRTbhi5aY6A4zoS2snxvaiq7YO54hcC9igN+8+c7EUb x+PldBcIIFXWO8zM9CCnr78vOi4RYHX6H76k1B70ctsbys0VArw1Nex8lHuQ mPLVzKxvBEgHfcuVqOlG13SFyDU/cJ4GPJpfJbsR5VKpBnWVgCalqHpedheS CTQSmFkj4P/Sp2hs "]]}, Annotation[#, "Charting`Private`Tag$8839#2"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV13k8VN8bB/BooU0isqQIUdpJ0kapkGSNRAmJVOSrqJQshYgskSXaZCvL DLJ/yCCyhdAQZebORSpLkhb9zu+veb1f977Oec55nvPcM3J2rian+GfMmHGW b8aM//8mcVjXnR6wMerECcr/yS1PfJNy9P/mz7pm/vjiBnT3aoycJi6OVE/v adwF39nX9/zfmkqdoh4j+5EmddHIkVh8tmjb1GVD6HyRkTpFfOWCUh34TFGk 5ZVsT+xkW53mV3MERo3+H08SHzlsH7QvxArxWlofThDr7OJzEjQ6DtbOF/ds iONimp+cmncS723q5x4jFg5LEq0dtsOvDbHbLIkDb57zV252QOI2UUVz4mnv HePBuY4o+bGzwZj4osd8+89RThBgi28wJB52YbcaXDqDMzktSvuJu628GIu2 n0fbsZwybeLV6fIRhUJuMEzavmgnMaUwX2/wnxseThlTm4mtl7EL9fvd8fdm t/M6Yon7lW5X2/5D3t2FGUrEbaLpys9ZHuh4cdpGmlh/vtf9hamXEDR2p2UJ 8ZzAE0a77ntCT+rov4XElfwHBF2DvSAtxw7/l8iGxi8xrxaXKyh75ezdR6w0 yLSI2ngdLxfGN3QQ9zskLGLJ+cAuyrGrkfiwW6X9lbk3cOJ888oS4vnDadKZ v27ALqvUL5LYj+MZsuCDH/wMM7MDiW0fudBPzf1RkqNy35t414kTe3c2+eP6 n+6EU8RT7P2/zyEAU3xvz6kRu7WKuTQ/uoVVqgqeSsSGd+fWnpYKRNHvP9ul iNca/l05IyoQ5ys1fk4nsEHXcdkbA4Kwujxds5r4eCVTP9LxNhYOf6J0iA/l GK8xVwkDFm/fuJk4qE/OQiQrDFd3/1i9gpglNObfvDEcZdZBKj/j2XigXvdV Qfoudvm/dXxGLHrPWTdZNgLyV0NLxuPY+Gec8TtKJQrbI/CrmzjRWSRy7GwU wlhKg1XEmr5XlI2zosDcGdIWSXwxR99caFM0HH7u711L/Fnoc1aQ+j2oxZS9 Nr7PRucbFbtr2rF4rFU1pUbswYn62e0Xi+zUuvdLiUV+/w7TZMViOq7+WU8s Wc+ahpLJ/ffBFtrmYUdcFXRWzN0gDuvyI94fj2Eje9+L144WCXiXvpwpFU3q Fes3GJ1LhsW0s9mPKDZ0Q8IbjmYkQ2NdRtZbYkGLEWd7Ohn+07/uBBLvm7Q0 Kdn4ENaZVya/RbJRGyZ1pynjIe6EsNyZEWzUlz3gn0h6hAOeCiOzwtlokX76 RTvwCer/603rDGMjx9estCblCZj5olIZxBH0rJCDrCewyO5TNCQ2YZ5SNud7 igbh2/2Rd0j96ivZO119itkHfIaFQtnouJzRFeaagnpLlsLbIDZ6OnOqui1S 8cC3fiKBWNO/xqj2YipWNN/xdSSOW9/zgRGVileXNet+BZLzfVPgZ3BzKj6l 5UrIErdsPr5W40AaolU18mxuslF9Z/69aPV0SJl9KXvqy0bWXkfHQ2KZ0Nw5 +MGReMG3q+MaqpmQdhYuVCZ2iY+4oWCcCfbxxvjMG2woj5bG/w7NRGfXFcks HzYeJ4k2p896jpVeJydTrrERO1Wxdc7353i1Ilbk5GU2bmRLz0VrFu5aXDi/ hFjd06ledTwLly7ae9Z6kf6wKz8kTTQbhys97q4ltmwyFIo0I1a52zt2iY0N X3xFT3VkY4S/guvqwYar2Pew2edyIPqu2knFlY3lplZxmW65WC7+vfyZPRve TauyJj2Z0PIyzj5IbHsipGVZIBNeMgPmI3ak3418G9OOYaLzT2q1BvF8kaKt oXlMqHytWF9jy0a8+cFK2VEmxlaw5Nps2CjscW3XO5OHkrFGm3wLNr4PFf5K sM7H5hPxRXH6bJwVOHhAS/sl2GJf364k9l71ZmaG8UtcX5wSkanHRsi+gxWi di/x8Y2EQKkuGxn+B7fRfsTCUnVd+8n5/XdQJYz1EseNQx/x7WXD7qfBop4D hbD5e99eeDsbRwcNOz0Ni6DLmJaUXcPG/jcmp7OPlSD8xh6zglls8HbNNPth ByQi/GZpz3vYXFnRdSmyEpx/VGJ25nuUSmXXzU6sgsuSDgVbr/fYYj1rfNiv GnWxisqlWu8RMfGCX8u2FgX+Z1ZsmO6CnVmd+SrHOjjnTS8QK+7CIbOMjw56 b2CbNmeJl3MXXkj+zVI3b0SZMH/tBtEujKg/tfewaMareeAtKe1E6hVB5ZsJ LRhetmPXoiOduFs6ibjktxBM32p14VsH5jTX/WcV2Qo2L0ap1bMDW1lmdQ5x bTjVrmLqNvUOR6m5IikJ7fizk+IqXX0Hwc5HlyJC32HsfVLyo4F2uGeOeddG dGDaLCfqyJF2OButSk6/2Yni7utGYWVtMJYLyKv06ELKqkuPWAva8L093kWe rLvgyYKaj9atUDgavWvTGTaMbu1MLop4C6GK/cwgt278+6yoPKOsBUMm8tLi 7j3gcWQcrrY3w7SgP+mw3QfMOL7+a8a3Rlz6Y8VqdewFXSM/MXNxA1aJFszm t+rDHe8l9zcq1IOTIfNAVeEjRkp2RadN1CKibIdgSMpHxNhmDWh3V+OmxiFf jeWfsOwC533Q7Sp0KGi+mffoE6wEem+7Olbi/GUJeVXpfmhcHjWOqS3HP06I x4/IfjR6hHFnNRTjC7pjepdwoLon3F+hvBjTrMTwKnEOrhs/PmqQUwyhepug NAkONub6tORFF2Nje99l92Uc+H2J+TJoUwyPAY71HAUO/M1eDQ2PFuGX8PDK 9aocfI2q2xAtWwQBuz9Z14w5uCLStqZBtAgSp8tS7Uw5ONwq6LlQoAjKZ68/ PGDOgYtRofzzL4XQvzQjcvFR8n7ftlyrkkKE3Z51McWWg0v1jdH+loVYwlyw vdGVA33e1HrN+JeQmyVTuyyMA8X9O47l3XmJn1fkTNfc5eDLsEmMpu9LNI0q 9m2N5ODMLRVrF6eXZNz1kyYx5DmeSJ7Y+hLtxVpKwUkcsv+PWTGdBbh1wSFw IouDi7d6pXzkCjDUm3mgqZmDsYB68RDxAlSY57R1v+XA42vX8qfzCxDTkHdi sI0D7oSo69+JfOwtLvOc1cVB0YrHTYfe5CPxXnOq5kcOLjBEDVy88mFoMC6Q OkLmv9IkxurJA7NI87XPYi5EbNbzpbfloT9AscJflItib5ZGQn0ehI2ECwPF uKSvGSSnFubhLI9KDZfkQi3Hpcn2Xh4URCMCk+W4kM6d02ZpnIeYs/R+bOLC YNa+vCV6eWBtbd1VpcrFmeAolV6tPIzxl6nXbuFiTWvJl7iNeTCMi1zVvI0L b1Xe1nzhPAjU7JzTp82F/bGUwOttpM+tiK6eNuZi9hrtV2INTDwbul7Gb8aF 0dtP7cUsJtrznfPnHOGiaFtlxPoCJjYa7E4RsiLj/0l5VxrHxKDXUMByOy7S Ppxu9bRnwqpVS2eXOxfxdLOiLx8TO29+eXUtkguV9Ejd7X8YWCAuLHoimot7 GpY9fJMM9DzbbK8VwyVVutEub5iBK689Z86M58IntmdLdhcDhfP5dYIekfin Oe7TDAY2R4pXR+aQeG66Td7IYoBPfpuYB4MLr8/zpYQzGGhhHjtlnseFvHy1 jtkjBlzfPZwtUUji+9nv43GXgecSKvsfgIs/6YaLll5gYFXy7trUJi6k9kk3 OJxjYGKD3dLgFi62Ci81hzMDrIqA02daubAcv9gZb8eAfX+dwLoOLq5luo9+ NmPgoaKZLuMDF03rDtg/NCbzFVy6H9XHxaihSdFJQwZ2HYgb8PjEhfZ20+Xz dRn44NQbtJUi8Ws3r5zazoDUc6e60mEuMr8LLxTbxsDgjhDJpK9c7Da7/X2n Oll/4wtnnxGSD8GFrws2MmDxbWzunu9cHHnM6tFZxUD05mv6tb+5CCoVX1An T+KrSo5P+8sFj/fDxEqO7Bc5t8H/uJiaP6H2dBkDby8KhBjMpJBjoZvxTpQB oaKIN2/nUZAdutEWs5iBJyWTWd0LKOzYscXv9CIGNMptIikhCimnXP22zmfg ZNXqo1MiFN6f3vlBfS4DP6rDd8wUo3BndGnLPgEGbr+eWLFwKXneP3E3ciYD eY2VPFlpCuMbYpxa+BjQa1GqXyNDIVT72meZGQz0tt55obaCQqZmx5yBP7kQ 6DrqoStPQalfK93hdy7IFdbCRJGCiBZ33uhULjZ+UNxurUThhPIh2W2TubDq H+VzU6Gw+Nz53u8TufjGtaAur6PQaHjDreJ7LgLostf+Gyh8s33bnTCeC4kh +ed3NlGkz5QpBo7l4sVwcHisKgWFedmmfqO52PPtm/ujLRQOSMq43BnJRceo +ZHMrRTyVt872/Y1FzMm5WSwnULCto6TQsTRU4Ez6nZSqLvLb3H0Sy5W//nC ad1N1vORbZw3nIvyadPaHm0Kn5dvsFxBbMJXnMHbS8GtvNc1/nMu6JmyYSP7 KNgMdCUpEnvPuXXh1wEKC/OXfa4YyoXw3GGzWfoUJE8VWZ0lTplvoiFkQMEo vmlciVhTqFBawpDCy7uhpeODuWgSXv5PzohCmIVaSTOxvWhAv4oJWc88iR8l xD/Fhqq3mFEInpvwXyFxqIRR+u4jFDapbdasJpaTLgjVs6RgIOtg1E9cILPM zdSKzG9WV7qIzKcv62dqY01B0GfBrUPEfSsH1E8fp1DIGGIkEHsoGkpdsKXw M0FV/xexoHLe3yt2FKpK6kycyfoerJH6FOBAQfvh47YB4s3rbrDCHCmwZGrb vMj+1Gzgpd53otAQaGolSfbz2GaDkMdnKEwPep6vJx5RY5x/fpbCWm2vpaFk /29ulTApOE/hYN5z6+PfciGleX1LhRuFy42++7RJ/rJ2cCXq3SlMMbzeq5H8 7t2t/6fNg4KqrZLsNpL/Lu2cvg+XKOT2asgZkvo4qyNeRXtRMBRJuJBB6ilG rz/4tzcFlZUvWkZ/5ELFQPfcbB+ynjUpc/V/5qLCMMtokS/JZ1HH6nWkXgdN ryyVv0nh2c5suUJSz9ePfPy1NpBCkX7cErPpXIgc3d+rHkz2h+pYCHIedhwX SdG/Q+HvossfzpPz4r4q5+OmcHJ+3jFi181mIO3roWWSERSSvT8OdAoyIOoT HEVHU9h1vaHhozADQ8kz/AISKRj3WEGQnGdZp6QylyQKehWHunaLMXBk444p k4ckn4Glid2SDLyq8HSTe0pBxvb94XrSL+I+fT1enknh4Vxp87OknzSlh8an vCDxfkmplFnNwCz3NR2h2RTuTzLGstYz4MbveOgYk8KQzcO0EE0GdOU/bP9Z TPJ5XN1c3Zz0A4c3EpvrKbCnDfjaLBlYu87ZTLKB1Of9a2k+1gzYTcy5O6OJ wu7wFuG5DmS+m3sEmt9ScGTInf3wHwMpz4omXN6TeM4efX0vhgGzgdTWlAEK I92ZSlsTSH/J2Sd0Z4jC14VBmweTGajw4uh5DFOobnG+6pPOgMrcFZV7Rigk FehsuVTGAP+amOy+SQqdSsXxsQMM5LoEhEoK8BCsVdS59ivpz0GCapOCPCwJ UeO2jjPQ8DS0u30eD09eiz82/sfAwIfoNXeFeCjU/aYuvZSJ5UYpr+eI87DR aabbZz0mQtVqZn1X4GHhj8sW0UZMSBnrP3+7igftw6m/DC2YSDvXZJqtzIPo V838KQcmqp51PD6zlod191oaVvky8UuC1vqkysPL3S9yv5Yy4fRX4FrTHh46 dDZZlpDv7w/JUIXnOjzEeQu9iyff5wB14Ybg/Tx0+g0mR/YwkewqIb1Pn4cC +X/pp/8y0fFJuajEmAcHM3Zf0Z487K3Rm0iz5UEwVCUxmdxHloeHnPO/Tt6/ n6rdRufhgoxpWvANHjIZPhGy4+Q+kSnFCffjgd4xhyU4Lx8ur9MtE2/xIPku Ill0Wz4K+V7vzQ/joTyNba2emA9jj1lSdBIP7SJ9SkvT8/GUv8Hsy0MeVlhe 3rCkIB8/70aFjz/mQaZAPNu+JR9JL1bOnpHKw3ShFdNmDrl/8bRGJLJ5eP3O yXPIswABR6/V6IMHsahPN57dKkAnrcNnXMmDVFvuAr97BVhzacEOiyoSf6RQ wn1mAVoiE3Lta3m4/CTFUn+0ADINRYnezTycMKAlf7m/RMGuH+5ZfTwcVfW2 jo8oxKC86wqRGTQuBvq23XpSiF7P84wJPhoF3uMmsfmFaH1zbt/7mTR8b+lU K7ILUfzfWZeHAjSaxk7o8ysWIbTK+eX6RTQm02uchF4VYb29w+GDy2nUSWx7 drqjCCtf2vevl6UhqB+09vNQEcTn218UWUmjvKn3m/uSYvxjnEx4r0hj4Fcs L9K5GC38J+jT62jE/fTIub2sBO6Pj/oE7KBhqhEnXqNaAscfliJOu2g8uWof onawBFb6likHtWjQgsGHXlwpwd6xI29EdGgM7j3eL9dTgiV7zJY+OkhjbWIY WOmlKPhkmF1mRUNUTHd9CKsUGVsM9zyypjHfY8eziL5SJAUfehdwnMaDTede 24mXIXCTwe+DdjSu7uGqqwWWwdJX7wDbmcYz2x2VTy+V45esTt8PLxph9paS T+LKYaLJzRa5SuNOTfL2+WXlyDQNuLH+Go1k53C3lbMB61ssOUdfGvKJ1Ub5 8UD5Zx2Hd8E01sy5IKlfCYjPptRGQ2jInsxMOz4AuC6/OXthGI0zW8/tn7es ArLG1c90Imm4eEdfX+haAf+CfYPMePJcP9bgdkAFepqpouZEGm9tY5qOxFdA bfDm7c9JNG47fRgaqKkAT7pGRf4JDV7COtZuhUro+u4/H5lJI83BhNs4VokF BgfG3UpJftqbvdqFXsHhFF0VWk7DGYlpLiqvUHY9MDqtgsYWGb1IJ8dXOJ9b u+Uji4bJKHNDKPcVWsR1vQ43kvhafXxnzamC8sYBXZdmGgJf+KaPKVfBVy9I MvAtjWrBAUWeaxU2e78uLn9H9nuxZ1f4AhaiP+n+XddLI0j3bJLCVhaGfw00 6n2kEetQa33MnoV9S4KTTvXTOJTBLT1TycKP/XW7H/BobHq9p71onAVDW2fh ogEan9f3rkxSrkbq5bmf2odIPlTda9oTqmH5XM9vwTca1yz4B03I/8mc6kET 5VEaat7jXh9X1GBuX7C8zjiNdCEdz8YzNbD7ufr7iQkyvtPx99LlNSheXM+6 OkljPapSlGVqIapy5l7sFI1ZJ8ufXgyrJd/LeY7M36T+jhx2DF75GiybDPXm vzR8KurtPI3qIOOpL/D5H43/AXKz788= "]]}, Annotation[#, "Charting`Private`Tag$8871#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV13k4VO8XAPBooU0isqQIUUqbVCqHUiHJGokSEqnIV1EpWQoRWSJLtMlW lhlkP2Ss2UJoiDJz5yItSKLS7/39Nc/nufe573nPOe+5d+TsXE1O88+aNesc 36xZ//9N4rBuOD1kw6gTJyj/F7c88U3Ksf+bP+u6+ZNLG7Gnb8f3M8TFkerp vU2a6Dv3xt7/W0OpS9Tj+wFMk7pk5EgsPle0feqKIep8kZE6TXz1olI98pli kZZXsj2xk211ml/NUTRq8v94ivjoEfug/SFWGK+l9eEksY4mn5Og0Qlk7Xl5 34Y4Lqbl6ekFp/C9TcP848TCYUmitSN2OL0xdqclceCt8/7KLQ6YuFNU0Zx4 xnv3eHCuI5b83NNoTHzJY6H95ygnFGCLbzQkHnFhtxlcPotnc1qVDhD3WHkx luy6gO3Hc8q0idemy0cUCrmhYdKuJXuIKYWFekP/3PDRlDG1hdh6BbtQf8Ad /97qcd5ALPGg0u1a+3+Yd29xhhJxu2i68guWB3a+PGMjTay/0OvB4tTLGDR2 t3UZ8bzAk0aaDzxRT+rYv8XElfwHBV2DvVBajh3+L5ENO6bFvFpdrmLZa2fv fmKlIaZF1KYb+GpxfGMn8YBDwhKWnA/aRTl2NxEfcau0vzr/Jp680LK6hHjh SJp05vRNtMsq9Ysk9uN4hiz64Id+hpnZgcS2j13oZ+b+WJKj8sCbWPPkyX17 mv3xxp+ehNPEU+wDv89jAE7xvT2vRuzWJubS8vg2rtmq4KlEbHhvfu0ZqUAs +v1nlxTxesO/q2dFBeKFyh2/ZhLYQNdz2ZsCgnBtebpGNfGJSqZ+pOMdXDzy idIhPpxjvM5cJQxx6a5NW4iD+uUsRLLC8Br8XLuKmCU05t+yKRzLrINUfsWz 4aF6/VcF6Xuo6f/W8Tmx6H1n3WTZCJS/FloyHseGf8YZv6NUonBXBE73ECc6 i0SOnYvCMJbSUBWxhu9VZeOsKGTuCWmPJL6Uo28utDkaHX4d6FtP/Fnoc1aQ +n1UiymrM37Ahq43KnbXtWPxiVbVlBqxByfqV49fLGan1r9fTizy+3eYBisW Z+IanvfGkv2sayyZPPAA2UI7PeyIq4LOibkbxOGG/Ij3J2LYkL3/ZZ2jRQK+ S1/JlIom/YqqG43OJ6PFjLPZzyg26IaENx7LSMYdGzKy3hILWnx3tqeT0X9m +m4g8f5JS5OSTY/QOvPq5LdINtSGSd1tzniEd0NY7swINjSUPeSfSHqMBz0V vs8JZ0Or9LMv2oFPseG/vrSuMDbk+JqV1qQ8RWa+qFQGcQQ9J+QQ6ylaZPcr GhKbME8rm/M9w0bhOwORd0n/6ivZO117hnMP+owIhbKh80pGd5hrCjZYshTe BrGhtyunqsciFR/6NkwkEGv41xjVXkrFVS13fR2J41R7PzCiUvH1FY366UBy vm8J/ApuScVPabkSssStW06s33EwDaO37sizucWG6rsL70erp6OU2ZeyZ75s yNrn6HhYLBM19gx9cCRe9O3a+I6tmSjtLFyoTOwSH3FTwTgT2Sea4jNvskF5 tDT+d2gmdnVflczyYcOTJNGW9DkvcLXXqcmU62yInarYPu/HC3y9Klbk1BU2 3MyWno9tWXjP4uKFZcTqnk4NW8ez8PIle89aLzIfNPND0kSz8Uilx731xJbN hkKRZsQq9/rGLrNh4xdf0dOd2fidv4Lr6sEGV7EfYXPP56Dou2onFVc2rDS1 ist0y8WV4j/Kn9uzwbt5TdakJxO1vIyzDxHbngxpXRHIRC+ZQfPvdmTeff82 ph3DxK4/qdU7iBeKFG0PzWOiytcK1RpbNsSbH6qUHWXi2CqWXLsNGwp7XTv0 zuZhyViTTb4FG34MF04nWOfjlpPxRXH6bDgncOiglvYrZIt9fbua2HvNm9kZ xq/wxtKUiEw9NoTsP1QhavcKP76RECjVZUOG/6GdtB+xsFR99wFyfv8dUglj vcITxqGP+faxwe6XwZLeg4Vo8/eBvfAuNhwbMuzyNCxCXcaMpOw6Nhx4Y3Im +3gJht/ca1Ywhw08zdlmP+0QEzH8Vmnve7C5uqr7cmQlcv5RidmZ76FUKrt+ bmIVuizrVLD1eg/brOeMj/hVY32sonKp1nuImHjJr2VbiwX+Z1dtnOkGO7N6 8zWO9eicN7NIrLgbDptlfHTQe4O2afOWeTl3w0vJv1nq5k1YJsxfu1G0G76r P7P3sGjB1wuQt6y0C1KvCirfSmjFkRW7NZcc7YJ7pZMYl/wWBdO3W1381gnz Wur/s4psQzYvRqnNsxO2s8zqHeLa8XSHiqnb1Ds4Rs0XSUnowD97KK7StXcg 2PX4ckToOxx7n5T8eLAD3DPHvGsjOnHGLCfq6NEOcDZak5x+qwuLe24YhZW1 g7FcQF6lRzemrLn8mLWoHX50xLvIe73HgqeLaj5at4HCsWjNzWfZaHR7T3JR xFsQqjjADHLrwX+fFZVnlbXCsIm8tLh7L/I4Mg7XOlrAtGAg6YjdB5x1QvVr xrcmuPzHitXm2Id0jfzE7KWNsEa0YC6/VT/e9V72YJNCA3AyZB5uVfiI30s0 o9MmaiGibLdgSMpHjLHNGtTuqYZbOw777lj5CVdc5LwPulMFnQoabxY8/oRW An13XB0r4cIVCfmt0gO448qocUxtOfzjhHj8jBzAJo8w7pzGYviCPTF9yzi4 dW+4v0J5McywEsOrxDl4w/jJMYOcYhBqsAlKk+Dgplyf1rzoYtjU0X/FfQUH /b7EfBmyKQaPQY71PAUO+pu9Hh4ZLYJp4ZHVqls5+DWqfmO0bBEI2P3Jum7M wasi7esaRYtA4kxZqp0pB4+0CXouFigC5XM3Hh0056CLUaH8iy+FoH95VuTS Y+T+/p25ViWFEHZnzqUUWw5ebmiK9rcshGXMRbuaXDmoz5tS1Yh/BXJzZGpX hHFQ8cDu43l3X8Gvq3Km6+5x8MuISYyG7ytoHlXs3x7JwbO3VaxdnF7B1X7V SZMYch2fSp7c/go6irWUgpM4JP9PWDFdBXD7okPgRBYHL93uk/KRK4DhvsyD zS0cHAtoEA8RL4AK85z2nrcc9PjavfLZwgKIacw7OdTOQe6EqOvfiXzYV1zm Oaebg0WrnjQffpMPifdbUjU+cvAiQ9TAxSsfDA3GBVK/k/WvNouxevOAWaRR 57OUiyI2qnzp7XkwEKBY4S/KxWJv1o6EhjwQNhIuDBTj4oimQXJqYR6c41Gp 4ZJcVMtxaba9nwcKohGByXJclM6d125pnAcx5+gDuJmLBnP25y3TywPW9jbN qq1cPBscpdKnlQdj/GXqtdu4uK6t5EvcpjwwjItc07KTi95bedvzhfNAoGbP vH5tLtofTwm80c4Er1XR1TPGXJy7Tvu1WCMTng/fKOM346LR208dxSwmdOQ7 5887ysWinZURqgVM2GQAKUJW5Pl/Ut6VxjFhyGs4YKUdF9M+nGnztGeCVZuW jqY7F+PpFkVfPibsufXl9fVILqqkR+ru+sOAReLCoiejuXh/h2Uv3yQDep9v sdeK4ZIu3WSXN8KAq3Wes2fHc9EntndbdjcDChfy6wQ9JvHPcNxnGAzYEile HZlD4rnlNnkziwF88jvFPBhc9Pq8UEo4gwGtzOOnzfO4KC9frWP2mAGu7x7N lSgk8f0a8PG4x4AXEioHHiIX/6QbLll+kQFrkqE2tZmLUvulGx3OM2Bio93y 4FYubhdebo7ODGBVBJw528ZFy/FLXfF2DLAfqBfY0MnF65nuo5/NGPBI0UyX 8YGLzRsO2j8yJusVXH4Q1c/FUUOTolOGDNA8GDfo8YmL2rtMVy7UZcAHp76g 7RSJX7tl9dQuBki9cKovHeFi5g/hxWI7GTC0O0Qy6SsXwezOjz3qZP9NL519 vpN6CC6uK9jEAItvY/P3/uDi0SesXp01DIjecl2/9jcXg0rFF9XLk/iqkuPT /nKRx/tpYiVH8kXObfA/Lk4tnFB7toIBby8JhBjMpjDHQjfjnSgDhIoi3rxd QKHs8M32mKUMeFoymdWziMLdu7f5nVnCgB3lNpGUEIUpp139ti9kwKmqtcem RCh8f2bPB/X5DPhZHb57thiFd0eXt+4XYMCduolVi5eT6wMT9yJnMyCvqZIn K03h+MYYp1Y+Bui1KjWsk6EwVPv6Z5lZDOhru/tSbRWFmRqd8wb/5IJA9zEP XXkKlQa00h1+50IiGy1MFCkU0eIuGJ3KhU0fFHdZK1F4Uvmw7M7JXLAaGOVz U6Fw6fkLfT8mcuEb14K6soHCJsObbhU/ciGALqvz30jhN9u3PQnjuSAxLP/i 7mYKlzHLFAPHcuHlSHB47FYKFRZkm/qN5sLeb9/cH2+j8KCkjMvd77nQOWp+ NHM7hXlr759r/5oLsyblZHAXhQk7O08JEUdPBc6q30Nh/T1+i2NfcmHtny+c NiD7+cg2zhvJhfIZ09pebQo/r9xouYrYhK84g7ePQrfyPtf4z7lAz5YN+76f QpvB7iRFYu95ty9OH6Rwcf6KzxXDuSA8f8Rsjj6FkqeLrM4Rpyw02SFkQKFR fPO4ErGGUKG0hCGFr+6Flo4P5UKz8Mp/ckYUhlmolbQQ24sGDKiYkP0skPhZ QvxLbLh6mxmFwfMT/iskDpUwSoejFG5W26JRTSwnXRCqZ0mhgayD0QBxgcwK N1Mrsr5ZfekSsp6+rJ+pjTWFgj6Lbh8m7l89qH7mBIWFjGFGArGHoqHURVsK fyVs1Z8mFlTO+3vVjsKqknoTZ7K/h+ukPgU4UKj96En7IPGWDTdZYY4UsmRq 271Ifmo28lIfOFHYGGhqJUnyeXyLQciTsxTODHleaCD+rsa48OIcheu1vZaH kvzf2i5hUnCBwkN5L6xPfMsFKY0b2yrcKLzS5Ltfm9QvazdXosGdwimG13s1 Ut99oP+n3YPCrbZKsjtJ/bu1c/o/XKYwt2+HnCHpj3M64lW0F4WGIgkXM0g/ xegNBP/2plBl9cvW0Z+5oGKge36uD9nPupT5+r9yocIwy2iJL6lnUefaDaRf h0yvLpe/ReHzPdlyhaSfbxz9OL0+kMIi/bhlZjO5IHLsQJ96MMkP1bkYyXnY fUIkRf8uhX+XXPlwgZwX9zU5HzeHk/PzjhG7YS4D0r4eXiEZQWGy98fBLkEG iPoER9HRFGreaGz8KMyA4eRZfgGJFBr3WqEgOc+yTkllLkkU6lUc7gYxBhzd tHvK5BGpZ2BpYo8kA15XeLrJPaNQxvb9kQYyL+I+fT1Rnknho/nS5ufIPGlO D41PeUni/ZJSKbOWAXPc13WGZlP4YJIxlqXKADd+x8PHmRQO2zxKC9FggK78 h12/ikk9T6ibq5uTeeDwRmJLA4XsGQO+dksGrN/gbCbZSPrzwfU0H2sG2E3M uzermUIIbxWe70DWu7VXoOUthY4MuXMf/mNAyvOiCZf3JJ5zx+ruxzDAbDC1 LWWQwu89mUrbE8h8ydkvdHeYwq+Lg7YMJTOgwouj5zFCYXWr8zWfdAaozF9V ufc7hUkFOtsulzGAf11Mdv8khV1KxfGxgwzIdQkIlRTgYbBWUdf6r2Q+Bwmq TQrycFmIGrdtnAGNz0J7Ohbw8Gmd+BPjfwwY/BC97p4QDwt1v6lLL2fCSqOU unniPNzkNNvtsx4TQtVq5vxQ4OHin1csoo2YIGWs/+LtGh5qH0mdNrRgQtr5 ZtNsZR6KftXIn3JgQtXzzidn1/Nww/3WxjW+TJiWoLU+beXhK3iZ+7WUCU5/ Ba437+Vhp85myxLy/v0pGarwQoeHcd5C7+LJ+zlAXbgx+AAPu/yGkiN7mZDs KiG9X5+HBfL/0s/8ZULnJ+WiEmMeOpix+4v25sG+Gr2JNFseCoaqJCaT75GV 4SHn/W+Q+x+karfTeXBRxjQt+CYPMxk+EbLj5HsiU4oT7sdDevc8luCCfHCp S7dMvM1DyXcRyaI786GQr25ffhgPy9PY1uqJ+WDsMUeKTuJhh0i/0vL0fHjG 32j25REPV1le2bisIB9+3YsKH3/CQ5kC8Wz71nxIerl67qxUHs4UWjFt5pHv L57Wd4lsHta9c/Ic9iyAgGPXa/SRh2JRn24+v10AXbQOn3ElD6Xacxf53S+A dZcX7baoIvFHCiU8YBZAa2RCrn0tD688TbHUHy0AmcaiRO8WHp40oCWn3V9B geZP96x+Hh7b6m0dH1EIQ/Kuq0Rm0Xgp0Lf99tNC6PO8wJjgo7HAe9wkNr8Q 2t6c3/9+No2+t3WqFdmFUPzfOZdHAjQ2j53U51csgtAq51eqS2icTK9xEnpd BKr2DkcOraSxXmLn8zOdRbD6lf2AqiyNgvpB6z8PF4H4QvtLIqtpLG/u++a+ rBj+MU4lvFekcXA6lhfpXAyt/CfpMxtojPvlkXNnRQm4PznmE7CbRtMdceI1 W0vA8aeliJMmjU+v2YeoHSoBK33LlENaNNKCwYdfXi2BfWNH34jo0Di078SA XG8JLNtrtvzxIRrXJ4YhK70UCj4ZZpdZ0SgqpqsawiqFjG2Gex9b07jQY/fz iP5SSAo+/C7gBI0PN5+vsxMvg8DNBr8P2dF4bS9XXS2wDCx99Q6ynWl8bru7 8tnlcpiW1en/6UVjmL2l5NO4cjDR4GaLXKPxbk3yroVl5ZBpGnBT9TqNyc7h bqvnIljfZsk5+tIon1htlB+PUP5Zx+FdMI3r5l2U1K9EEJ9LqY2G0Ch7KjPt xCCC68pbcxeH0Xh2+/kDC1ZUgKxx9XOdSBpdvKNvLHatAP+C/UPMeHJdP9bg TkAF9LZQRS2JNL61jWk+Gl8BakO37nxOovGO04fhwZoK4EnXqMg/pZGXsIEF CpWg63vgQmQmjWkOJtymsUpYZHBw3K2U1KejxatD6DU4nKarQstpdMbENBeV 11B2IzA6rYLGbTJ6kU6Or+FCbu22jywaTUaZG0O5r6FVXNfrSBOJr83Hd868 KlDeNKjr0kKjwBe+mePKVeCrFyQZ+JbGasFBRZ5rFWzxrisuf0fyvdSzO3wR C6I/6f7d0EdjkO65JIXtLBiZHmzS+0hjrEOt9XF7FuxfFpx0eoDGwxnc0rOV LPh5oB4e8mjcXLe3o2icBYa2zsJFgzR+Vu1bnaRcDalX5n/qGCb12Ope05FQ DZYv9PwWfaPxugX/kAn5P5lTPWSiPEqjmve418dVNTC/P1heZ5zGdCEdz6az NWD3a+2PkxPk+U4n3kuX10Dx0gbWtUkaVbEqRVmmFkRVzt6PnaJxzqnyZ5fC asn7coEj8zfpv6NHHINX1wHLJkO95S+NPhUNdp5G9SDjqS/w+R+N/wMDWjnP "]]}, Annotation[#, "Charting`Private`Tag$8871#2"]& ]}, {}}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->300, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0, -1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{{-1, FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, {1, FormBox["1", TraditionalForm]}}, {{0, FormBox["0", TraditionalForm]}, {-1, FormBox["1", TraditionalForm]}}}]], "Output", CellChangeTimes->{ 3.921947354769134*^9, {3.9219484286211576`*^9, 3.921948441042123*^9}, 3.9219487323495398`*^9, {3.922007405341352*^9, 3.922007467689835*^9}, { 3.922007537755126*^9, 3.9220075537200603`*^9}, 3.9220076098815613`*^9, 3.922007677090062*^9, 3.922094865579103*^9, 3.9221062704303293`*^9, 3.92219790595057*^9, 3.9678627261420174`*^9, 3.9678679877666235`*^9}, CellLabel->"Out[52]=",ExpressionUUID->"50c77277-7d97-4f59-a671-af33e73daa2c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Boundary conditions:", FontWeight->"Bold"], " Embedding for large spheres" }], "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106203289302*^9, 3.922106204256793*^9}, {3.92210629949958*^9, 3.9221063032217197`*^9}, 3.922106481617406*^9, {3.9678637032549314`*^9, 3.9678637037396393`*^9}},ExpressionUUID->"28be6269-fbe8-40cf-b77f-\ dbdd8e6fa146"], Cell["\<\ In this case, the functions for the coefficients can be solved even in a more \ straight forward way, in one step (meaning, we can solve several orders \ simultaneously).\ \>", "Text", CellChangeTimes->{{3.922106305780469*^9, 3.922106343587943*^9}, { 3.9678624164076004`*^9, 3.967862457835221*^9}},ExpressionUUID->"78e654bf-1bdd-4c81-9ded-\ 86cfbf7e81da"], Cell[BoxData[{ RowBox[{ RowBox[{"orIR", "=", "5"}], ";"}], "\n", RowBox[{ RowBox[{"equationdimless", "/.", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"k", "=", "0"}], "orIR"], RowBox[{ RowBox[{"cR", "[", "k", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "\[Zeta]"}], ")"}], "k"]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", ",", "1"}], "]"}], RowBox[{"orIR", "+", "1"}]]}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"solDiskIR", "=", RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"%", "[", RowBox[{"[", "3", "]"}], "]"}], "==", "0"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"cR", "[", "iter", "]"}], ",", RowBox[{"{", RowBox[{"iter", ",", "1", ",", "orIR"}], "}"}]}], "]"}]}], "]"}], "//", "Simplify"}], "//", "Flatten"}]}], ";"}], "\[IndentingNewLine]", "\n"}], "\[IndentingNewLine]", RowBox[{"Clear", "[", RowBox[{"\[Rho]tIR", ",", "d\[Rho]tIR"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Rho]tIR", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Rho]IR_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "/.", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"k", "=", "0"}], "orIR"], RowBox[{ RowBox[{"cR", "[", "k", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "\[Zeta]"}], ")"}], "k"]}]}]}], "]"}]}]}], "/.", "solDiskIR"}], "/.", RowBox[{ RowBox[{"cR", "[", "0", "]"}], "->", "\[Rho]IR"}]}], "//", "Simplify"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"d\[Rho]tIR", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Rho]IR_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Zeta]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.9219474210567617`*^9, 3.921947444119494*^9}, { 3.921948455203677*^9, 3.921948551426013*^9}, {3.921948601770335*^9, 3.921948607040799*^9}, {3.921948758348275*^9, 3.921948760881988*^9}, { 3.922106334623661*^9, 3.9221063350723257`*^9}}, CellLabel->"In[53]:=",ExpressionUUID->"24145378-5d07-4c36-b8c4-6de3e7e1f3df"], Cell[BoxData[{ RowBox[{"Clear", "[", "computeSolIR", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"computeSolIR", "[", RowBox[{"Q_", ",", "\[Mu]t_", ",", "\[Rho]IR_"}], "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{"solnumericalIR", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]IR"}], "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"eqNum", "[", RowBox[{"Q", ",", "\[Mu]t"}], "]"}], "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "[", RowBox[{"1", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"\[Rho]tIR", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]IR", ",", RowBox[{"1", "-", "\[Epsilon]IRnow"}]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", RowBox[{"1", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"d\[Rho]tIR", "[", RowBox[{"Q", ",", "\[Mu]t", ",", "\[Rho]IR", ",", RowBox[{"1", "-", "\[Epsilon]IRnow"}]}], "]"}]}]}], "}"}], ",", "\[Rho]t", ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"1", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "wpc"}]}], "]"}], "//", "Flatten"}]}], ")"}]}]}], "Input", CellChangeTimes->{{3.921948559896215*^9, 3.921948596506275*^9}, { 3.921948630383856*^9, 3.9219486503723927`*^9}, {3.9219486807538137`*^9, 3.92194868441236*^9}, {3.9219487375598593`*^9, 3.921948744373769*^9}, { 3.921948788767519*^9, 3.921948794684325*^9}, {3.967862475996629*^9, 3.967862476914159*^9}}, CellLabel->"In[59]:=",ExpressionUUID->"a5bf0967-12b6-4d30-98ce-b175f2b87029"], Cell[BoxData[ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]t", "=", "0"}], "}"}], ",", RowBox[{ RowBox[{"computeSolIR", "[", RowBox[{"5", ",", "0", ",", RowBox[{"2", "/", "10"}]}], "]"}], ";"}]}], "]"}]], "Input", CellChangeTimes->{{3.921760292927637*^9, 3.921760303606119*^9}, { 3.9219006560183663`*^9, 3.921900687942244*^9}, {3.921948810280343*^9, 3.921948814251367*^9}, {3.9221063586195803`*^9, 3.922106365987144*^9}}, CellLabel->"In[61]:=",ExpressionUUID->"06fbe5e9-ecc0-4a90-9f88-54110e2ad1ab"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"plotSol", "[", RowBox[{"solnumericalIR", "[", RowBox[{"5", ",", "0", ",", RowBox[{"2", "/", "10"}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.921648402876833*^9, 3.921648403360054*^9}, { 3.92164915893307*^9, 3.921649212976378*^9}, {3.9217603453439293`*^9, 3.921760350224251*^9}, {3.921760387883698*^9, 3.921760433710788*^9}, { 3.921900681405545*^9, 3.9219006818699555`*^9}, {3.921948817750062*^9, 3.921948820608904*^9}, {3.922106373531066*^9, 3.9221063856974173`*^9}}, CellLabel->"In[62]:=",ExpressionUUID->"85384d65-0c30-44f2-8049-c4c67b0d621a"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV03k41WkbB3BrhcjkFYVRspQklSyTVDpIloomkm1syZY92yRpk1IhU9Kg woksc5ASfYdSOaeIsstyzs8afpEog96nP57ruT7/3Nf9PPf3XuN6wtpDgI+P 7w45P2/tTr4y1ygKE168i2XfqGeZpgsZP91xQ0hha7U2klfEu/20zpI+kwN+ DDQYZv34gzimduePRZFWkGeZhPy0++6GTqc9h1DgGFHtQrwkc0G3wuwIjqjr DzoTFyxsTJE+4ITWuXP9TsQPCjXD9fL/wHCZc6Uj8X+OJqqemu4I2fLSx4HY StzpQ/I/nnho/uSLPXFmZeiZau3jUGnVO3SEeNLnihZd7oOJHMYVW2KGXHa3 /HZ/lMR3/f07sbmHk4mKcwBY+/jibYinDLwVKjMDoX52ZMCK2HQ0ljO8NgRi ccX2FsSfn1+5e9ojFNJ+/LlmxGm3b0XI5IYhccyobg/x6L5/1IzVIyA0uSVj F/ENpaqFTp9IvKh6aLmD2HD2dXNQQRSCjxlo6xBfe9Abl6l1ChfSD/puIdaP HbXXDYqBsSkdrUkcqDEnO3jkNMQTa9RUiVcJLfn85+1YMHY+uydF7Fei+Hf+ r2exJ3lppgSxUUa2yEmcxbh+b4gI8YqEDaFGLucwXCXNXIik8K+rrkV71nko v3uoPUi8fPn+2UUq8Uiclf3aSzww/8GjqTYeUuWLEjuInw7bN97xvIQNHe5m b4ndqz2Z2swEbJyWHygmfhRw6rDrhkQI0ue9HxBfchCq2fgmEVrr/F9lETvv vbTxu+9VNIqwRJOIhSTNBfbaXsNI+8KjAOLCwcPt3TevY1P86hxVYr6//C8s lU/Bao0v7XLEew0lwrYFp4C/06xHkvhaf4G7EzsFGi9jnGYjKChqj+0uDr8B ptqUJofYsNFnzqY5FbG562XciaPEjgfeTrwFWcYb18PENawlLi/6b+FmKC9m L7GoPdNqzCANJZ4+mhrEaczBDTs/pSG78LnDRDiFx8aeA1zTdAzwZc4HEU/H uB1V589AVaaIiyuxoZrgPhu7DNRJtSQfJD5Xf1cvuigDjx4nndhEfEliQnRQ MxM7AiJmhk6S+TlqDel9zITgnWFTG2K92cK7Xfp3SR07rlAYhTDthzLKX+7D 67rAGB1KYS5SZEezXDaYPVR9B/GZak/X84xslF+2kC0mTrRaUzB0IxvSGReq 7YhzvVKNCvRykKRx3/duCIW29NN+OqdyoXZvUl4mmORL+Pfne0XykJNisnQ+ iOTBnDX0fXMeWrfmN3GJTZKWSeTb52GrSRZVQGytyLYTf5gHWxF5BSNib/2d 441W+dgxptTjGkj+y2/9yqMpD6FDfb1z7gTpt3ne30+xCAsi9SLHiBc6LxpY mxahnV/Zai8xH1dKVPdEEY4JMlxEiQXH12fzoQj8Tpp5l/0pCAvmj5ltKobK ysj38X4Ulsq1rv1YXwxugmaQpw8FOfNN1wQlWHBW/98nI2L5+qnpr2tYWN65 z0Dxpw9WOA5tY2H+fvaxVm8Kv9oab3jryIK8+FCfMbGS29GXqQUsTDFs3eSO U1CPujC33rIEF+0CrzI9yTzye7wOXC7FyzrhjGjia/Zdd75klaL0ZVHMAeIh kfam1PJSBJ41KJ3xoHDLq8ngI7cUKtX8I3uIZ1VqJb31y/B3/Z/n37tRqMzM exw3UAZReaXQBhcKu1JDl5TvKse/DfFl+vYUzGLFmApfn8BnQbxUmHj5iIT2 fpEKcMd2xzceodBlvfzf0woVOM7PKvci9lde2cYzrsBEdKzyDTsKKa9Ul+Sl VmBG+YDBwGEKPeJGXjp6T3HmnbLdcRsKoWnh6/ZHVWLsfW/HpDmFrJJ+5ml+ IG7SZd8FffKeP2tvi+2owcVtLxp8lcm+r5zyuD76AivYSBaQoMDifZfk+r1C WEF9ePEkDyl6/WcsVNj4UOEccbCFh7Snuc2xhW+wPUPLp66cBwcdk/wJ9QaI Nfv+kZLMg/Cv/feqxt9hf1ftYLc/D2PlSdxBrSY42LaXdOzhwVymREgx8T0e fV+0zWYFD+eDdnt9oT7AOiBtC2+Iiw/u2w0KlFvwuCUiyaaUi5vyzC/BMa04 9C11w/rTXPj7nJZb/bwN61yTzukxuHgSw1FtX9OBeO19zTxhLvqung3eFNmJ tp6r/bdf90FO94GWz9Mu1Dz2nas40wfOvV2NJTLdoGUoSUPDPlzJ3cPtc+iB eIySo9i3XqTa2Ke1WPbCSWlCLZTZizU6FmU1s71o6IvT+Grfi21U8MU16X14 wKlPOCHYC6Gvh94uMuci5En0fq5ND2oEx1gV01zwV/z26HpON0S6Kw70pfJQ 233xVBHvI8TkjFwSGRTidLdyTNU+InXtD7XCAZJj9xT6klcXJNWDr6Wf68dO 3XU7OpM6wUjO9P5lywAaxlUVDWs7wP9acP5b0wA0/+pwyuppR4Tzav5jsYNw O8JIEBZsR2RNUJWp8hBGq7h8Yipt8F4bvWrm+RBGcmdbxTVbIT1oOKwROIyQ 126F/btbYBamG9C8fASbJ1dZyhg0Q89r2EuoZgTHZbczvbZ9gLSdtYCA/yfc tfn+nrn9PaKkJmyCJEbxY3dco+q6JqRvNpM5XjmKCG+RlnmlRpjItSY1OY3h mO7m8FeK79AjIF8kujCGlW/+u2W2uB5bLVftqMsbR47Uyd/nP3Mg6WYVN2tO Y85+Xjp7kAMXGydjthUNapk506Kbg+I9/ovTDtJwdo1m3OZwcFA5MUHflkbb L4I+OjkcJPW/TQ53pZE+S9HuRzmQ8rK8Px1OY3ilcl9OLRsr/CxqJ7Np3N9/ ctqskg1PR4cLNUwa38x++TzKYuORpa9ZUj6pZxCVtCWTDVvNy283/0Mj4X7f /cpINm7SnOaAShqLa5jn32xiY1WQ+cB4E41dzR7r/FXZ8HY9ynzWTOMCW+Lx MgU2Kqx9vBPbaHg/S71nLcrG0a0J4xu7SX8zBZWtVB3Sp9jTvsM0esNmusM7 6zBKdTw2GKXBsZadWtlUB4PmkcilNI1q2H8/ijp0lYn+yJ+iIc2oGJkrq4NG zqrqqBkaAWJ+jXce1iE6VT3OfJYGWMsLDe/V4c3534zl5mlIyJrH9tyqg8LJ fYs//aDxfxaKfpg= "]]}, Annotation[#, "Charting`Private`Tag$8951#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV03k41ekXAHBrhcjwE8IoWUqSSpYJb3GRtaKJ7GPLnj3bhBRJqZApaVCW m30uohudoVTuLaKuPcu9X2v4RqIM+r398T7n+fxznnPec84O93M2XjxcXFz3 8fsZNQe46txjCTTvw7lS9414lm+6nvfT/bf55A42a0Lm1lSPn9baNGpyIpAC HQYFP/7Ajm9FPzbEWIMszST8pz2Pdgy4GJ2CCufoZjfsTfnr2nSzM3BGVXfC FbtifW+WxAkX6Fm9POaC/ahSPUqn7A+YqnNtdMb+z9lE2VvdE8IPvPR3wrYW dvmQ+Y83lFs8+eKAnd8YcbFZ0xeUenROncFe8L+uQdb7w3wx5bodNkWmaEj2 cBDUpA7+/Tu2hZeLiZJrMNDMuVJtsRf1/OQa80NA9dL0uDW26Uwic2pnOAgl VTtYYn9+fv1BglcESARyl5hh59y7Gy1ZEgnps4ZtRtgz5v+oGKtGA9/Cgbwj 2LcVmtYH/GPgRVO5lT62wcprVmhFLISd1dPUwr75aCQpX+MCpOSeDDiArZs4 46AdGg/GpmScOnaI2qrUxJkEEE5vUVHG3sa36fOf9xKBgp49FMcOrJH/u+zX S2CUuTlfBNswr0jgPFyCOd2RcAHsrWl7IgzdLsNUkwR1PYZA/7prW/YVJIPi u3LNCWwxseMrG5RSIX1F6usI9vjaB6+u1lQQr9+Q3o/9dMqh8773VdjT72n2 Ftuz2ZuqSU2DvUuy49XYj4MvnHbfkw68ZLLfI+yrTnwte9+kg8auoFcF2K7H ru79HnADOgVoghnYfKIWPMfsbsJ03/rjYOzKidN9Q3duwb7U7cXK2Fx/BaVs ls2C7Wpf+mSwjxmIRB4KywLuAbNhUeybYxWeLowsUHsZ77ISTSB5zdmj1VG3 gaqyqM7ENuj0X7VlZUNiyW5JT+xYId+Qe+l3QYryxv00dgttk9uLsbtwJ4IT fwxb0IFqPauXAzXe/upq2DnUiT3oUw4UVT53mo8iUIOx9zjbNBfGufLXQrGX 4j0cVbnzoClfwM0d20CF19zWPg/axLszT2Jfbn+gE1eVB48bMs7tw74qMi84 oZ4P+sHRy5Pn8fycNSZ1PuYD7/0pU1tsnZXKB4O6D8BAxZ7NF0mgSM1yScUv heBzi2eWjCDQaoyAPkumCKjDRHs/9sVmb/dkShHUX7OUqsZOt95RMXm7CCTy UprtsUt8sg0rdIohQ60w4EE4gXpzEwK1LpSAysMFWckwvF/8vz8/JlAKxVkm m9dC8T5Y0Ca/7y+FnoNlXWxsk4wtImUOpXDQpICowLaRZ9gLl5eCnYCsnCG2 ny6a67QuA/1ZhWH3EPxfgbulHbPKQYv4ev/yOVwvay0oUL4K1gXaBc5irw9c 0bMxrYI+bkXrY9hcbHFB7XNVcJaX4iaIzTu3u4gLqoDbRb30WhCB+HnLZs32 VYOSdMz71EACbZbp2fmxvRrYaeqh3v4EkrHYd5NXhAauqv/7ZIgt27649HUH DcQGzPXkf/ok3XnyEA3WCovO9vgR6Fc74z1vnWkgKzw5aoyt4OH4MruCBosU Ow8ZXwKpxqas7raqgSv2ITeo3ngeZcM+J67Vwss2/rw47JsOg/e/FNRC7cuq +BPYkwJ9Xdn1tRBySa922YtAd3269D6ya0GpmXvaCHtFqVXUT7cO/m7/M/m9 B4Ea80sbksbrQFBWIaLDjUBHsiM21R+ph387Uut0HQhklihElfv6BPzXhWv5 scWmRTSPC9CBPXs0tfMMgQZtxP5NkKODLzet3gc7SFG6l2NMh/m4RMXb9gTK eqW8qTSbDsuKJ/TGTxNoWNjQR0vnKVx8p2jva0ugiJyoXcdjG2H2/Uj/ggWB CmrGqAncAEkLbuYpurifP1vvCem3wJVDLzoCFPG9Sy963Zp5AVsZkMkjQiAa 57soO/AVRFa0R1UvcFCWzthFSyUGfKC7Rp/s5qCcpyWsxMo3cDhPw7+tnoOc tEzK5lU7QIgV8EdWJgfx/zr2sGnuHRwfbJ0YCuKg2foM9oRGFzjZ9dX0G3GQ hWQNn3z6e3j8fcMh260clBx61OcL8QFsgnMOcCbZ6IPnYb0KxW5o6I7OsK1l ozuy1C9h8T1w6lv2nt0JbBTknyCz/Xkv7HLPuKxDYaMn8Uzlvh39kKppzuLw s9HojUth+2IGoHf4xti916NIRvuRhv/TQWhpCFilXxxFzIdHOmskh4CUJEQN DEbR9RIj9qjTMAjHKzgLfRtB2bYOOd1WI+CiMK8SQR1BO7Qs61pWRqBjNEnt q8MIOkSEXdmROwqPmO1p53hHEN/XU283WLAh/EnccbbtMGrhnaXRl9jATf/t 8a3iISQwRD8xms2B1qErF6o4H5GQjKFbOoWAJO2DTFOVjyh75w+VynECZD2z yKs+g0hUNexm7uUxQNq79AcyBhAlM9/vlwPj0DGnLG/Q2o+4X/OufesaB/W/ +l0KhvtQtOt27rOJE+BxhpLGz9uHYlpCm0wVJ2Gmic0lpNSL/HbGbVt+PgnT JSs9wuo9SGLCYEotZArCX3tUjh3tRmaR2sEssWnYv7DNSlKPhXR8pnz4WqbB V+ow1efQByRhb8PDE/QJHth+f089/B7Fis/bhorMwI+jSZ3Ku7pQ7n4zSd/G GYj2E+heU+hEJjI9GV0us3BWe3/UK/l3aJhHtkpwfRak3/x312xjOzpotU2/ rXQOisXP/772mYlEPayTVixIWHVYkyiaYCI3WxdjhjUJxBYLquUQE1UbBW3M OUmCq3sc5R6TiU4qpqfp2pHQ+wuvv1YxE2WMvc2Mcichd4UgPR2ZSNzHqnAp ioQpacXR4lYG2hpo2bpQRELh8fNLZo0M5O3slNJCJeGb2S+fZ2gM9NgqwCyj DOfTi804kM9AdurX3u7/h4S0wtHCxhgGukMyWcGNJGxsoSa/2cdA20Itxue6 SDjC8toVpMxAfu6O1GcsElIYIg1b5BiIbuPvl95Lgt+z7Ic2ggzkeDBtbu8Q rm+5orGHaEO5i4ylgCkSRiKXh6IG2tAM0d+gN0MC00ZqUbqrDemxpmM2kyQ0 g8N3R2hDg3WCP8oWSZCg0KdX69qQWvG25thlEoKFAjvvl7ehuGzVJIsVEoAm VmnwsA29Sf7NWGaNBBEpi8Thu21I7rz5xk8/SPg/jWwwGA== "]]}, Annotation[#, "Charting`Private`Tag$8951#2"]& ]}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->300, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0, -1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{{-1, FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, {1, FormBox["1", TraditionalForm]}}, {{0, FormBox["0", TraditionalForm]}, {-1, FormBox["1", TraditionalForm]}}}]], "Output", CellChangeTimes->{ 3.921948821073501*^9, 3.922007475936252*^9, 3.922094867219612*^9, { 3.922106367185151*^9, 3.9221063861515303`*^9}, 3.9221979076054564`*^9, 3.967862634932276*^9, 3.9678679891260643`*^9}, CellLabel->"Out[62]=",ExpressionUUID->"e71a1600-ea0f-4d52-9ea2-92183c5da6b9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"SetDirectory", "[", RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", RowBox[{"plotSol", "[", RowBox[{"solnumerical", "[", RowBox[{"5", ",", "0", ",", RowBox[{"1", "/", "2"}]}], "]"}], "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", RowBox[{"plotmutual", "[", RowBox[{"5", ",", "0", ",", RowBox[{"2", "/", "10"}], ",", RowBox[{"3", "/", "4"}]}], "]"}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", RowBox[{"plotSol", "[", RowBox[{"solnumericalIR", "[", RowBox[{"5", ",", "0", ",", RowBox[{"2", "/", "10"}]}], "]"}], "]"}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.9220077399968023`*^9, 3.9220077668335238`*^9}, { 3.9221063986148863`*^9, 3.922106398692675*^9}, {3.9678626533947296`*^9, 3.9678626538622026`*^9}}, CellLabel->"In[63]:=",ExpressionUUID->"a84e7619-7c60-46e9-ad54-60201f13e8ed"], Cell[BoxData["\<\"connected.pdf\"\>"], "Output", CellChangeTimes->{{3.922007758958305*^9, 3.922007767374404*^9}, 3.9220948674791203`*^9, 3.922106399054764*^9, 3.922197907832513*^9, 3.967862670203188*^9, 3.9678679897351866`*^9}, CellLabel->"Out[64]=",ExpressionUUID->"b6abf475-6c55-470f-aca6-e8714509f9a0"], Cell[BoxData["\<\"mutual.pdf\"\>"], "Output", CellChangeTimes->{{3.922007758958305*^9, 3.922007767374404*^9}, 3.9220948674791203`*^9, 3.922106399054764*^9, 3.922197907832513*^9, 3.967862670203188*^9, 3.967867990249419*^9}, CellLabel->"Out[65]=",ExpressionUUID->"fe0168e0-d848-4bce-ac8e-7ecbd2662d07"], Cell[BoxData["\<\"disconnected.pdf\"\>"], "Output", CellChangeTimes->{{3.922007758958305*^9, 3.922007767374404*^9}, 3.9220948674791203`*^9, 3.922106399054764*^9, 3.922197907832513*^9, 3.967862670203188*^9, 3.9678679909308214`*^9}, CellLabel->"Out[66]=",ExpressionUUID->"f9da6156-d26e-4cbe-ab61-e89f9e91135f"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Computation of entanglement entropies in the particular case ", Cell[BoxData[ FormBox[ RowBox[{"Q", "=", "5"}], TraditionalForm]], "Section",ExpressionUUID-> "a6ea67d1-04e8-40ef-b2d8-1bf5e7aa00e7"], "." }], "Subsection", CellChangeTimes->{{3.921757068875296*^9, 3.92175707586945*^9}, { 3.9221064187619257`*^9, 3.922106430764336*^9}, {3.9678627851781225`*^9, 3.9678628119305415`*^9}},ExpressionUUID->"bd594ae4-8a47-4f64-bffe-\ 45a8d1988ae8"], Cell["\<\ To get concrete results it is convenient to fix the parameters. In \ particular, the independent modes close to the boundary depend on the choice \ of parameters.\ \>", "Text", CellChangeTimes->{{3.9678628169005766`*^9, 3.9678628584771023`*^9}, { 3.9678629855763874`*^9, 3.9678630136774178`*^9}},ExpressionUUID->"1f975ebf-a45d-4c6b-b278-\ e3e10f1ad1a0"], Cell[BoxData[ RowBox[{ RowBox[{"equationdimlessFIX", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"equationdimless", "/.", RowBox[{"Q", "\[Rule]", "5"}]}], "/.", RowBox[{"\[Sigma]t", "\[Rule]", " ", "1"}]}], "/.", RowBox[{"\[Mu]t", "\[Rule]", "0"}]}], "//", "Simplify"}]}], ";"}]], "Input", CellChangeTimes->{{3.967863057656497*^9, 3.967863087009777*^9}, { 3.967863378830475*^9, 3.96786338815267*^9}}, CellLabel->"In[67]:=",ExpressionUUID->"61334f8e-f1c3-4d1d-a28c-d8f1acc662ab"], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Boundary conditions:", FontWeight->"Bold"], " Embedding for small spheres" }], "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.9221064689024563`*^9, 3.922106478443304*^9}},ExpressionUUID->"c9ebfb66-937b-4e41-a699-\ 73f2445bfc51"], Cell[BoxData[{ RowBox[{ RowBox[{"orcusp1", "=", "5"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"solcusp1", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"cR", "[", "0", "]"}], "\[Rule]", FractionBox[ RowBox[{"2", " ", SqrtBox["\[Zeta]s"]}], SqrtBox["3"]]}], ",", RowBox[{ RowBox[{"cR", "[", "1", "]"}], "\[Rule]", FractionBox[ RowBox[{"5", "+", RowBox[{"4", " ", SuperscriptBox["\[Zeta]s", "6"]}]}], RowBox[{"8", " ", SqrtBox["3"], " ", SqrtBox["\[Zeta]s"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[Zeta]s", "6"]}], ")"}]}]]}], ",", RowBox[{ RowBox[{"cR", "[", "2", "]"}], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"-", "89"}], "+", RowBox[{"7672", " ", SuperscriptBox["\[Zeta]s", "6"]}], "+", RowBox[{"112", " ", SuperscriptBox["\[Zeta]s", "12"]}]}], RowBox[{"2304", " ", SqrtBox["3"], " ", SuperscriptBox["\[Zeta]s", RowBox[{"3", "/", "2"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[Zeta]s", "6"]}], ")"}], "2"]}]]}], ",", RowBox[{ RowBox[{"cR", "[", "3", "]"}], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"-", "307"}], "+", RowBox[{"167244", " ", SuperscriptBox["\[Zeta]s", "6"]}], "+", RowBox[{"290160", " ", SuperscriptBox["\[Zeta]s", "12"]}], "-", RowBox[{"1472", " ", SuperscriptBox["\[Zeta]s", "18"]}]}], RowBox[{"36864", " ", SqrtBox["3"], " ", SuperscriptBox["\[Zeta]s", RowBox[{"5", "/", "2"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[Zeta]s", "6"]}], ")"}], "3"]}]]}], ",", RowBox[{ RowBox[{"cR", "[", "4", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{"3124211", "+", RowBox[{"1884920368", " ", SuperscriptBox["\[Zeta]s", "6"]}], "+", RowBox[{"17413851936", " ", SuperscriptBox["\[Zeta]s", "12"]}], "+", RowBox[{"8019872512", " ", SuperscriptBox["\[Zeta]s", "18"]}], "-", RowBox[{"7204096", " ", SuperscriptBox["\[Zeta]s", "24"]}]}], ")"}], "/", RowBox[{"(", RowBox[{"530841600", " ", SqrtBox["3"], " ", SuperscriptBox["\[Zeta]s", RowBox[{"7", "/", "2"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[Zeta]s", "6"]}], ")"}], "4"]}], ")"}]}]}], ",", RowBox[{ RowBox[{"cR", "[", "5", "]"}], "\[Rule]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"-", "2211607"}], "+", RowBox[{"4647266020", " ", SuperscriptBox["\[Zeta]s", "6"]}], "+", RowBox[{"187777554336", " ", SuperscriptBox["\[Zeta]s", "12"]}], "+", RowBox[{"384507582592", " ", SuperscriptBox["\[Zeta]s", "18"]}], "+", RowBox[{"74771934464", " ", SuperscriptBox["\[Zeta]s", "24"]}], "+", RowBox[{"22139904", " ", SuperscriptBox["\[Zeta]s", "30"]}]}], ")"}], "/", RowBox[{"(", RowBox[{"2831155200", " ", SqrtBox["3"], " ", SuperscriptBox["\[Zeta]s", RowBox[{"9", "/", "2"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["\[Zeta]s", "6"]}], ")"}], "5"]}], ")"}]}]}]}], "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.921944986140375*^9, 3.92194501690136*^9}, 3.921948012195068*^9, {3.921948072419404*^9, 3.921948125397109*^9}, { 3.922105403618349*^9, 3.9221054039064503`*^9}, 3.9678630921440268`*^9, { 3.967863209487484*^9, 3.967863274712734*^9}, {3.967863311069485*^9, 3.967863313938328*^9}, {3.9678633931386127`*^9, 3.9678635317292867`*^9}}, CellLabel->"In[68]:=",ExpressionUUID->"3e4c556f-a7aa-46ac-b980-d0c37df10c87"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Assuming", "[", RowBox[{ RowBox[{ RowBox[{"0", "<", "\[Zeta]", "<", "\[Zeta]s", "<", "1"}], "&&", RowBox[{"Q", ">", "2"}], "&&", RowBox[{"\[Mu]t", ">", "0"}]}], ",", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"equationdimlessFIX", "/.", RowBox[{"{", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "0"}], "orcusp1"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Zeta]s", "-", "\[Zeta]"}], ")"}], RowBox[{"kk", "+", FractionBox["1", "2"]}]]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", ",", "\[Zeta]s"}], "]"}], RowBox[{"orcusp1", "+", FractionBox["3", "2"]}]]}]}], "]"}]}], "}"}]}], "/.", "solcusp1"}], "//", "Simplify"}], ")"}], "/.", RowBox[{ SuperscriptBox["\[Sigma]1", "n_"], ":>", RowBox[{"If", "[", RowBox[{ RowBox[{"EvenQ", "[", "n", "]"}], ",", "1", ",", "\[Sigma]1"}], "]"}]}]}], "//", "Simplify"}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"%", "==", "0"}], ",", RowBox[{"cR", "[", "orcusp1", "]"}]}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{"Assuming", "[", RowBox[{ RowBox[{"0", "<", "\[Zeta]", "<", "\[Zeta]s", "<", "1"}], ",", RowBox[{"%", "//", "Simplify"}]}], "]"}]}], "Input", CellChangeTimes->{{3.921944613477893*^9, 3.92194474272048*^9}, { 3.921944857270976*^9, 3.921945003466131*^9}, {3.921945042883078*^9, 3.921945072854514*^9}, {3.9219451162836227`*^9, 3.921945118758246*^9}, { 3.921945152394061*^9, 3.921945173298196*^9}, 3.9219452050584583`*^9, { 3.9219480178652153`*^9, 3.921948057925906*^9}, {3.9678618138011427`*^9, 3.967861814268445*^9}, {3.967863048516819*^9, 3.9678630525524893`*^9}, { 3.9678631023184958`*^9, 3.967863129869974*^9}, 3.967863257684492*^9, { 3.9678634203734746`*^9, 3.9678634210254793`*^9}, {3.9678634949054203`*^9, 3.967863515117651*^9}}, CellLabel->"In[70]:=",ExpressionUUID->"5ca12427-7b75-466f-be4c-1d868e0236de"], Cell[BoxData[ InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", "-", "\[Zeta]s"}], "]"}], RowBox[{"9", "/", "2"}]], SeriesData[$CellContext`\[Zeta], $CellContext`\[Zeta]s, {}, 9, 9, 2], Editable->False]], "Output", CellChangeTimes->{{3.9678631050683203`*^9, 3.967863130253003*^9}, { 3.967863212155493*^9, 3.9678632581359434`*^9}, 3.9678633405718284`*^9, { 3.9678634022605677`*^9, 3.96786348184507*^9}, {3.9678635235897503`*^9, 3.9678635435848775`*^9}, 3.9678680009538574`*^9}, CellLabel->"Out[70]=",ExpressionUUID->"cd22a9d7-e0f7-4f05-ab40-61c43e4cffc3"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", "}"}], "}"}]], "Output", CellChangeTimes->{{3.9678631050683203`*^9, 3.967863130253003*^9}, { 3.967863212155493*^9, 3.9678632581359434`*^9}, 3.9678633405718284`*^9, { 3.9678634022605677`*^9, 3.96786348184507*^9}, {3.9678635235897503`*^9, 3.9678635435848775`*^9}, 3.9678680009538574`*^9}, CellLabel->"Out[72]=",ExpressionUUID->"01dfbd03-e31a-4a4e-b91d-984dd5c1f81c"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", RowBox[{"\[Rho]tcust1FIX", ",", "d\[Rho]tcust1FIX"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Rho]tcust1FIX", "[", RowBox[{"\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"kk", "=", "0"}], "orcusp1"], RowBox[{ RowBox[{"cR", "[", "kk", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"\[Zeta]s", "-", "\[Zeta]"}], ")"}], RowBox[{"kk", "+", FractionBox["1", "2"]}]]}]}], "/.", "solcusp1"}], "/.", RowBox[{"\[Sigma]1", "->", "1"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"d\[Rho]tcust1FIX", "[", RowBox[{"\[Zeta]s_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Zeta]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.921945244249751*^9, 3.921945262297624*^9}, { 3.921945375569442*^9, 3.921945441569409*^9}, 3.922105479776905*^9, 3.922105870539217*^9, {3.967863590200045*^9, 3.9678636113474226`*^9}}, CellLabel->"In[73]:=",ExpressionUUID->"16e6ad5f-14bd-42f9-ae0d-7719d9d163d1"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"computeSolFIX", "[", "\[Zeta]s_", "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{"solnumerical", "[", "\[Zeta]s", "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"equationdimlessFIX", "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"\[Rho]tcust1FIX", "[", RowBox[{"\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], "]"}], "\[Equal]", RowBox[{"d\[Rho]tcust1FIX", "[", RowBox[{"\[Zeta]s", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}]}], "]"}]}]}], "}"}], ",", "\[Rho]t", ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"\[Zeta]s", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "wpc"}], ",", RowBox[{"Method", "\[Rule]", "\"\\""}]}], "]"}], "//", "Flatten"}]}], ")"}]}], ";"}]], "Input", CellChangeTimes->{{3.921945468659129*^9, 3.9219455691595917`*^9}, { 3.921945616748568*^9, 3.921945621759766*^9}, {3.921948715474118*^9, 3.921948715552459*^9}, 3.922105603619556*^9, {3.9678625213926077`*^9, 3.9678625216770535`*^9}, {3.967863563917369*^9, 3.967863585430702*^9}, { 3.96786361705083*^9, 3.9678636527407055`*^9}}, CellLabel->"In[76]:=",ExpressionUUID->"22e64d24-c630-4722-92f0-e3bb600fb664"], Cell[BoxData[ RowBox[{ RowBox[{"computeSolFIX", "[", RowBox[{"1", "/", "2"}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.922105740372168*^9, 3.922105745368483*^9}, { 3.9678636396150093`*^9, 3.9678636449852448`*^9}}, CellLabel->"In[77]:=",ExpressionUUID->"2a1b7eea-d5f8-4b35-aa73-8ceebc2973e6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"plotSol", "[", RowBox[{"solnumerical", "[", RowBox[{"1", "/", "2"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.9219456592534323`*^9, 3.921945701035653*^9}, { 3.92194768502328*^9, 3.921947686371949*^9}, {3.922007384521222*^9, 3.922007384799097*^9}, {3.9678636756555433`*^9, 3.967863677372838*^9}}, CellLabel->"In[78]:=",ExpressionUUID->"4809c5ca-03bd-462b-8a07-f5e46f57d40d"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nk018sbB/BChURKsu9Rt0JdJZVCUciaKEsIhRTZUpK4SCVb1i/hypJ9 ufbobYtosSQ+xPcjSiX5WYok9Zv+mDPndZ6ZM+eZM/PMSJ5xNXZgWbZsWRtp f3qjG0IGBcMUph1HQ8u/v3vMYYH9f2yoOOPGdNyE0cPjHH/MviGvWaBBCQbK SRX5xB95hwwbXxyA3OZujT+2v3lzcteFw2ByRBTmEfcEp5Xd9tDGw2ddC7nE h4Oqr9JX9BF3iiHzx+bqThJC9UbIT/4on0McXe/1z+FDJvh+tVbgIXH7wcCx iy2mSO3bMJJFzIJw7UTtU/gS/fV2JvHeA0n5Tc8tYH/75PoMYve6bJ5Jg9No SVD3TSc+IWauEuZkA8m4osa0P/lZDTtL5tmivFhwKpl4y9DEC115ewy6behl ELeIePwednXApENsUgLxGcsFRe+Ss0gWkHxyj5jxZkVMmpITxuy3bYki3i0c 9mSXtzMCWR+5hBN3m6+bb688D7m9ttGhxJwDYubf9l6Em56PZzBxlmDmndvX XJGYw7s7kPjf/Fgmj7UbxATbzXyJVSeE12amXYKVpfYGF2Kv85s9OqQ94abv PHvuz/7d+bya0eyJQ6tWl9gRr8srzLB38EKkbXu7OXHhuFLvQpY3GvV2+xwh HnNSV5H56wrMhHSNNYjLbrF1T7ZfgWHK4GpV4sCcVufq81dxXsRTdCex2Ce9 ZP0CX0gWONYIEZs6mv/2UbwOt9+mkXzEMqGiCYe6riPM47EmN/FM9rAit7s/ 0DGnv5y41ePvkq5TN+Cl/3vgPU3B7r/qkbNJARB8+J16SJy0s0UzSiwIMw27 vqYSB2rINVZ7BcGWTf5THLGjceiBkedBMBw/ZhNEvNtdR/lv32D8WNr+jxVx Z8nLza/7QsC6vonBTsy2o2+1YNQt5EQYGi0xKYyr7QlV/3gLWwvuvJ0m7jJM ZHM+eBva61ZFDBCnuFks1Xy5DbeZedFcYpVietJSJwya6e85NYgvKnzsSmON wAUGZaFEbHJQW7/NPAIOqk4hssT7DHLbp0si4Khk7chJHKRcYSupGInhvf7W nUMUjM18zN2ZkVhBRQueIJ6I+6nLty8a5o/zy9QHKUjyr1A4+TUG/PrfLikS x0lwiXOIxsKbI3ONODHX1vU8NZqxyEveNbz4hsLcQcn/CcfHwoD75/R/xM+d VItolTgsKxNvFSX2rvNSOOcfDxWLawpUP4nbjyl4czKQNe1c2Uis4fpFXO5v BtQCGaIFxJVXvvJQFgx02FcGBRCnh7NMqRQwcCy1qW4z8eUqseIlgyR4Bv/s d6MoSHGZKQbHJsPzllnJh14KPv+1KsZIpEIrQfbGS+JJE/Z2n6OpyK+3kC8n dpg7amfllgqnFzObA4mNVdpjZetJPD4/Tog4zvqs36BCGqqL1x7XfE3h0nvH kYsdaXjB5aAZ+IqC7PSF/Hvc6fiVtu2XPfGIOvdCsFQ6Agy3xh0hvh9dqOmz Ox08z1vtuIj5lP7HtDydjiwfI6+YbgrLL7vxyham43CGpltKF4XBn+7eVXoP wNJoXZPYQSGK3UdtKCwDIcXzN7yIj6kInLqRnoEAvccSRsTszlWXpKsy8Gng 5edVxNeffU93Gs3A7BCKPF5ScA6/smJOJRMfh6YmDr0g95HPt537Qybq/y3d 1tpO4bv4dRM19WzoBl1WPfmEgrVykOODbzkQSk0z3E5smcMz0MORC79FL3UW 4pPCSborxXKRzStam9dM6u3vEnknrVwcuC+5YamJgnor/VU+Phc2MXImiY0U pM32BdTsyQN7Met8JSh88J5J7PLNx18erMfvVlNwrbB59nt5EZSNfricIHZh n2Af2ViEqbPzVqLEjuaXtZq3F8GK/XtzfhUFm193G0JPFUHHoy6rrZKsr/Wo krekCGtVsyoWyykIfubs5lUsxtWmlTNqpRR+XHV4LE0XI9gmTsogl0ItQyj+ iGoppnpCR14kkHqrIzbYNlEGkzSZmc0hFNZK3T6w8WIleEVshS1dSX1YmJa4 vqkGH8VFrsabUUhdaJAoLqwF78/ZkQ+qFMKctpaJbAXeGipe1RWnUOPy1K5r sh6svu/8+ZdRwB6FnwuKjejmiE3SedOHRrYYE4XwJrBV8/TwlvWhM/TJ3PL3 zciQ2RKTHtaHSYk8uRqZFqi89w/LON0HzupwAX//VqzK8hyLVeyDsoNswpam pwj44KYps9iLM7y1fcOS7fDWzWPONvYiwUvMdtfVZ9AO0/28/k4vmF+Urrg+ eo6UOL7hKJ1eSJ3VNqrY+BKBgtw//Th7cXmGt2rEsgN+8Wvbxlpf43zScaVe vU68Tcx7t9/3NRiq910afnTialyJjanCa3R9UnMRT+4Cs0pQgJfqAXvc6DNW 3W5ELK/mYvfrweEUl86KuW4cnMvn4pLuQWixQfJg3CuIvqiqjX70Cs8adzwN PdyDo1n/+fGdeAV++sKj7LEevBH7UlMw3o1zZpHHY4Nfw9I0w2i9WzcqO0p0 OXb2Ymv96WqXuS7wGG9fPdXdCy0T3oYxpy6c7cn+yyqgDx0aXKJNQ514YnON V1WGwuzI3U4h3U78pa18/zM5l/JudwL71DoQvmM6VOJSPxytbAvvfXqBH9Ir 9j9dN4Cxe6fno02fw4FfwGCuYQByd2OPsWS147U976rZC2/AmCqP7x5/Cv06 +5Az3IP4Faa0z7+nBS0bKh1O1g4icrDtnFNaM7R87LgaTg+hW+fV/W3xzVBr ivqkajuEUM+covG7zdjLXd9SYzcEzrFcHTPfZshniASUOZLxnW9ip080g7/z 9bds9yFQNkErZTib8UHuKB0eMgSBJ88Tj15sQmjftlLLwiF0WFbM3pRuxLPd c2bfl4awqMDW372xES1+Gfp5y5jIL+Dp4ONqRH2zseZpViZusazM9vvagDLj op3N7EzoCKRzvW1uQPJFxzWR65noPV/JybRrgEvWQKPcFiZcneoqRBj1WMOP 7WYmTISz2QdI3a0Hu9UFGU4zJjKXNqaI3KgHS4awcN0pJjT0V5z+4lCPuR0+ 7NLWTITNN3QuKdaDqbdjdNKJiZUhhSb+t4DC4AcJIf5MJOcsqGQ21cHg203W ilwmzqbIDu5/WAf3jONP9hYwAabkjqqwOsQcF7+JIiYe6K4oO3miDlRJBWdb GRNWq6S59ryvhc3F97yDj5koFIhelPz9CO4fNCRYXjHxQeuaVptADeL6l/br LzLxj5C5s+BCNapC2351LzGxyKp57mB/NQaUY+vNltE4Y+jvxZlYDfG4bYdt V9D4Uetdf5u/Gg+NLXQ9eWis40kQj2GvQvWzqlMMaRoh/gHPGY3lGKzz8B7T JfOHL7FGxZcjRaNHqUKfRlNtWdNWl3JYtyrNBhvReNe3c6UWXzlGOr+5bjKj obHqgX67dRk+jl52sj9DY6HngkXc21LMclyzHPGhobVayjOyqBRl4YNCpb40 sjeJn1u6Vgrv9ar9AddpJO/6pSvKX4rvIr9OSAbROGtXVDCqVoJfCjcMbCJo jKotqia/LwSnaZAGM5PGlTvbcyWdC/F84N2ywoc0yhL4VJImCnDXWhN+eTRy WbNrf4/nY63Tyv2iJTTU5niC1rbngv9a6C7LWpr8L7TvNe3NBbXs0+xW0GiN v/9A82EOEoO1SxcbaDxINdDr9HkIkQhOhaRWGhMt1Y8nyTsjlR62eaCbxqVJ iT2iypl4J/tlLOc1DV31LB+NGxnIzNPLvELRmPuWpla6lI7N5dxSgkwa/0Yt PVBXTMe4iuvwx2Eabq/Up1VO/Yu8xx0pVaM0vK67T+1emwr5p5HCJz/ROMJ2 1PzI+vuYOjbdLzdBI92gX+/BFAMlXUYJ85M09mVs3OSXkgB301LT1mka8cJr 1AbWxEHpzboN8V9pKOeLbS/cdA/frD1enZ2ncczgXKLp+QhUvHsVtfsHjbQU LmP+0BD4OCkZrlyiMWic290m6wCVyRju3t80/g+zYyBR "]]}, Annotation[#, "Charting`Private`Tag$9864#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nk01c8bB3ChQiIl2fdoRX2VVBoUhayJsoQsuVJkSyTxRSrZ4uISsu/b 1x49togUru1D3I8oSvKzFEnym/6YM+d1npkz55lz5n1G4qqLkT0zExNTOx5/ Z8P7gvqFYwSad5wIrfj58SW7OZz8awOFBVeG426YODPN/tdsO/Nb+BsVQV8p sbIA+zPPqEHT21Mgu4eu/td2Dx7MHrlxBhjsEUX52H3BqeWP3LUg503PSh72 maAaH/KOHlAv06T/2kyNIi7YYAgFSZ/lcrGjGzz/PXPaGH761PHnYHegwMmb rSaQMrhzPAubGcK1ErQuw7fo748ysY+fSixo7jQHu0eXdmRgu9Vnc8/qX4HW eDXfNOyLombKYRRrkKAWN6X+7c9yzEki3wYqSgTmkrD3js681ZGzgxHXnQM0 7FZh9/UxF3uYtY9NjMe+arGi4FXqAEn8Eq+eYtPeb4xJVaTApN2BvVHYR4XC Xh3xcoJAlhfO4dh0s+3LHVXXQfa4TXQoNsewqNmP4zfBVdfbIxg7SyDz8aO7 LpCQy3M0EPt5QSyD28oVRAU6TH2xVWaEtmWm3gJLC62dztie1/e4d0l5gKue 0+K1v/f3+OsWWosHnN68pdQWe3t+UYadvSdE2nR0mGEXTSsOrGR5QZPuUe+z 2JMUNWXpfXfAVFDHSB27/CErfbbjDhgkj2xRwQ7MbXOque4D14U9RA5ji37R TdIr9AWJQsdaQWwTR7N1b4V74LpuEsmLLR0qEn+65x6Eub/U4MJeyB5T4HLz B+ha0tuA3eb+T2nP5fvgqbc+/IkkkO1/NeMOiQEgkPOTyMFOPNyqESUaBAuN R76nYAeqyzbVeAaBDavcFyq2o1HoqfHOIDCYPm8dhH3UTVvpH99g+LV28F9L 7O7Sd3v6B0OAZUczjQ2b9dDgFoGoh5AbYWC4xiDQtOqxULXPD2F/4eMP89g9 BgmsTugRaG3fHDGMnexqvlb77RG4LiyL5GErl5CzFtphoJH2iUMd+6b8555U lgi4QSPMFbGNkZZeu1kE2KtQQmSwT+jndcyXRoCjopUjB3aQUqWNhEIkjB33 t+oeJZCRqbeZGyMSNhLRAhexZ6i/dXhPRIPZy4JytRECSfBtlL/0PQb49H7c UsCminOKsYvEghd75lYxbM79O7hrNWIhP+nI2Op7Ai0hif8JxcWCPtfv+f+w OykqxaQyFZjKxdpEsL3qPeWv+ceBsvldeWII1+0m5b04aJA171TVhK3u8k1M 9h8aqAbSRAqxq+585ybMadBlVxUUgJ0WzjynXEiD8ynN9Xuwb1eLlqzpJ4JH 8O8hV4JAkpymCsGxSeDx0LR0aoBA3v+1KcSIp4BmvMz9d9izxmwd3udSoKDB XK4C237pnK2lawpQ3i7sCcQ2Uu6IlWnA9bgCqiA21crBb0Q+FWpKtl3Q6CfQ rU+O4ze7UuEtp71GYC+BZOZvFDzlSoM/qQf+2GGPq3GtBEumQYDBfupZ7GfR RRreR9OAu7PNlhObV/F/DIsraZDlbegZQyfQhtuuPDJFaXAmQ8M1uYdAI7/d vKp104G5yao2oYtAUWzeqqNhGRBSsnzfE/u8Mv/l+2kZEKD7UtwQm82p+pZU dQZ8GX73dTP2vTc/0ygTGbA4CsXu7wjkFH5n45JyJnwenZs5/Ra/R17fDq6p TGh4XnagrYNAP8XuGauqZYNO0G2VS68IZKUU5Jj+IxcEU1INDmJb5HIP97Hn gd+qpxoz9iWhRJ1NonmQzSNSl9+C83a9VI6imQennknsXGsmkFob+V0uLg+s Y2SNE5oIJGV6IqD2WD6wlbAsVwGBprwWEnp8C2CfO8uFJzUEcqm0frO+oRiU DH85X8R2ZpthG99VDHMOy5Yi2I5mtzVbDhaDJdvPloJqAln/edIYerkYtN3r s9qr8PmaL6p4Sothm0pW5WoFgQS+ctB5FErAp3nTgmoZgX752L+UIksg2Joq qZ9HoDqaYNxZlTKY6wsdfxuP81ZbdKR9phyMU6UX9oQQaJvko1O7blYBj7CN kIULzoeVefF7u2vhs5iwT5wpgVJWGsVLiuqA5/fi+JQKgcIo+8uF9wN8MFDw 0REjUK3za9ue2QZg8f3oz8dEIDgm/3tFoQno7LGJ2u8HURNrjLF8eDOw1nD3 8ZQPou7QV0sbPrVAhvTemLSwQTQrni9bK90Kyp/8wzKuDCKOmnB+f/822Jzl MRmrMIiU7GXi9za/hoApVw3p1QF0laducEyiA7x08hmLTQMo3lPU5ojPG9AK 0/m64/EAYnxTvOPyohOSqbxjUdoDSNJBy7By1zsIFOD67ccxgG4v8FSPW3SB X9y29sm2fnQ98YLigG43fEjI/3jStx/RVJ45N/7qBh9qqbWJfD/q+aLqLJbU A4xqAX4eog+xUSfesOjQIWJDDSebXx86k+zcXblEB7RUwMkp1YdCS/STRqi9 IPK2ui76RS9603TodeiZPjiX9Z8f78VexEfeeJE92QfvRb/VFk7T0TXTyAux wf1gYZJhuMOVjqq6SnXYDw/A/oYrNc5LPYjb6OCWOfoAaBrzNE5SepBDX/Y+ y4BB6FLnFGke7UavrO/yqEgTsDj+pFtQpxvt01J69rWZADnXx4GDql0o/NB8 qPitIXC0tCl6+uUt+iW18eTr7cMw+fTKcrRJJ7Ln49dfahwG2Sex55mzOlC/ Hc/mxRvvgTZXEUeffo306u1CrnKNwJ8wxRP+fa2odWeV/aW6EYgcab9GSW1B mt62nI1XRoGu3fvsQFwLUm2O+qJiMwqhHrnF009a0HGuhtZa21HgmMzTNvVt QXIZwgHljnh99/vY+YstiK+7/0e22ygQ1kGbpDla0JTsOTI8ZBT4X3UmnLvZ jEIHD5RZFI1Cl0Xl4gOpJvTm6JLpz7VRWJVnHaLvakKtfhl6+UwMKCjk7uLl bEINLUYaV1gY8JB5U7bf90ZUblR8uIWNAdr8aZwfWhpR0k3HrZE7GDBwvYqD YduInLOGm2T3MsCFUl8pTGtAW/ngoKkxA8JZ7QIknzQgNssb0hymDMhc25Us fL8BMWcICdVfZoC63sYr3+wb0NIhbzYpKwaELTd2ryk0IIbuoYlZCgM2hRQZ +z8EVBScHh/iz4Ck3BXlzOZ6pP/jAUtlHgMckmVGTubUI7eMC6+OFzIAGBKH qsPqUcwFsQdQzIB0nY3lly7WI6K0kqO9nAGWm6U4j32qQ9Y3P/GMvGRAEX/0 qsT6C+Q2pS7O3MuAKc27mu38tYg6tHZSb5UB/wqaOQms1KDq0PY/9DUGrLJo XENDNWhYKbbBlImEqwb+nhwJNUiMeuCMzUYSftV5NTziq0E5RuY6HtwkbOeO F4thq0Y1b6ov06RICPEP6KQ1VaCRenevSR28f+wWS1RcBUpW71Os1COhua68 eb9zBbJqU1wMNiTh4+DhTZq8FWi8+4fLblMS1Den63VYlaPPE7cpdldJWOm7 YU79UIYW2e9ajHuToLlF0iOyuAyVh48IlvmSkL1b7Nra3TLktUNlKOAeCUlH /uiI8JWhn8J/LkoEkeBgW1w4oVqK/sjf17eOIGFCdVUl6VMR4jAJUmdkknDn 8cE8Caci1Dn8kakoh4TyeF7lxJlC9MRKA/zySchjya5bny5A2yibToqUkqC6 xB20rSMP8d0NPWJRR+L/hdbT5uN5iGD6srgfSGiLe5aukZOLEoK1ylYbSUhP 0dft9s5BwhEc8oltJMy01rycncpEkmlhe4bpJNyaFT8mopSJPsp8m8ztJ0FH Lctb/X4GyszXzbxDkLD0I1W1bC0N7angkhRgkPA8ai1dTSENTSu7jH0eI8G1 V21e+fJzlP+yK7l6ggTPe25zR7elILnXkUKXvpBwlvWc2dkdz9Dc+fkh2RkS 0vSHdNPnaKi0xzB+eZaEExm7dvslxyM3kzKTtnkS4oS2qg5vpSLF99t3xn0n QalA9GDR7qfoh5V7r8MyCef1ryWYXI9AlR97o47+IiE1mdOILzQEeVMUDTat kTBilEdvl7FHyrMxXAPrJPwf5du7wg== "]]}, Annotation[#, "Charting`Private`Tag$9864#2"]& ]}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->300, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0, -1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{{-1, FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, {1, FormBox["1", TraditionalForm]}}, {{0, FormBox["0", TraditionalForm]}, {-1, FormBox["1", TraditionalForm]}}}]], "Output", CellChangeTimes->{{3.9219456660047197`*^9, 3.921945708019665*^9}, { 3.921947681886627*^9, 3.921947687136796*^9}, 3.92194813589503*^9, 3.921948720945242*^9, {3.9220073775284843`*^9, 3.922007385034046*^9}, { 3.922007623740291*^9, 3.92200766578257*^9}, 3.922094862285378*^9, 3.9221061931909323`*^9, 3.9221979026357594`*^9, 3.967862392159815*^9, 3.9678626281463485`*^9, 3.967863677857585*^9, 3.9678680012672925`*^9}, CellLabel->"Out[78]=",ExpressionUUID->"cfca2d95-a75c-465d-8fdd-2dc5105ad307"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Boundary conditions:", FontWeight->"Bold"], " Embedding for large spheres" }], "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106203289302*^9, 3.922106204256793*^9}, {3.92210629949958*^9, 3.9221063032217197`*^9}, 3.922106481617406*^9, {3.967863711094748*^9, 3.967863711628392*^9}, {3.9678638881422567`*^9, 3.967863897898328*^9}},ExpressionUUID->"57461d65-9581-479a-b750-\ 8ffd4924b7cb"], Cell[BoxData[{ RowBox[{ RowBox[{"orIR", "=", "10"}], ";"}], "\n", RowBox[{ RowBox[{"equationdimlessFIX", "/.", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"k", "=", "0"}], "orIR"], RowBox[{ RowBox[{"cR", "[", "k", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "\[Zeta]"}], ")"}], "k"]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", ",", "1"}], "]"}], RowBox[{"orIR", "+", "1"}]]}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"solDiskIR", "=", RowBox[{ RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"%", "[", RowBox[{"[", "3", "]"}], "]"}], "==", "0"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{"cR", "[", "iter", "]"}], ",", RowBox[{"{", RowBox[{"iter", ",", "1", ",", "orIR"}], "}"}]}], "]"}]}], "]"}], "//", "Simplify"}], "//", "Flatten"}]}], ";"}], "\n", "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Clear", "[", RowBox[{"\[Rho]tIRFIX", ",", "d\[Rho]tIRFIX"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Rho]tIRFIX", "[", RowBox[{"\[Rho]IR_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "/.", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"k", "=", "0"}], "orIR"], RowBox[{ RowBox[{"cR", "[", "k", "]"}], SuperscriptBox[ RowBox[{"(", RowBox[{"1", "-", "\[Zeta]"}], ")"}], "k"]}]}]}], "]"}]}]}], "/.", "solDiskIR"}], "/.", RowBox[{ RowBox[{"cR", "[", "0", "]"}], "->", "\[Rho]IR"}]}], "//", "Simplify"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"d\[Rho]tIRFIX", "[", RowBox[{"\[Rho]IR_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{"D", "[", RowBox[{"%", ",", "\[Zeta]"}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.9219474210567617`*^9, 3.921947444119494*^9}, { 3.921948455203677*^9, 3.921948551426013*^9}, {3.921948601770335*^9, 3.921948607040799*^9}, {3.921948758348275*^9, 3.921948760881988*^9}, { 3.922106334623661*^9, 3.9221063350723257`*^9}, {3.9678637244367447`*^9, 3.967863760844005*^9}, {3.9678638249684887`*^9, 3.9678638320397964`*^9}}, CellLabel->"In[79]:=",ExpressionUUID->"62674a61-3c5f-4a26-aa8b-5614c81514c0"], Cell[BoxData[{ RowBox[{"Clear", "[", "computeSolIRFIX", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"computeSolIRFIX", "[", "\[Rho]IR_", "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{"solnumericalIR", "[", "\[Rho]IR", "]"}], "=", RowBox[{ RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"equationdimlessFIX", "==", "0"}], ",", RowBox[{ RowBox[{"\[Rho]t", "[", RowBox[{"1", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"\[Rho]tIRFIX", "[", RowBox[{"\[Rho]IR", ",", RowBox[{"1", "-", "\[Epsilon]IRnow"}]}], "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"\[Rho]t", "'"}], "[", RowBox[{"1", "-", "\[Epsilon]IRnow"}], "]"}], "==", RowBox[{"d\[Rho]tIRFIX", "[", RowBox[{"\[Rho]IR", ",", RowBox[{"1", "-", "\[Epsilon]IRnow"}]}], "]"}]}]}], "}"}], ",", "\[Rho]t", ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{"1", "-", "\[Epsilon]IRnow"}], ",", "\[Epsilon]UVnow"}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "wpc"}]}], "]"}], "//", "Flatten"}]}], ")"}]}]}], "Input", CellChangeTimes->{{3.921948559896215*^9, 3.921948596506275*^9}, { 3.921948630383856*^9, 3.9219486503723927`*^9}, {3.9219486807538137`*^9, 3.92194868441236*^9}, {3.9219487375598593`*^9, 3.921948744373769*^9}, { 3.921948788767519*^9, 3.921948794684325*^9}, {3.967862475996629*^9, 3.967862476914159*^9}, {3.96786378008762*^9, 3.9678638191977897`*^9}}, CellLabel->"In[85]:=",ExpressionUUID->"cfefce30-7d31-4dd8-856f-0b00a6b578ae"], Cell[BoxData[ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Mu]t", "=", "0"}], "}"}], ",", RowBox[{ RowBox[{"computeSolIRFIX", "[", RowBox[{"2", "/", "10"}], "]"}], ";"}]}], "]"}]], "Input", CellChangeTimes->{{3.921760292927637*^9, 3.921760303606119*^9}, { 3.9219006560183663`*^9, 3.921900687942244*^9}, {3.921948810280343*^9, 3.921948814251367*^9}, {3.9221063586195803`*^9, 3.922106365987144*^9}, { 3.967863839077401*^9, 3.967863842377909*^9}, 3.96786554809862*^9}, CellLabel->"In[87]:=",ExpressionUUID->"f1337ee7-9f03-4945-9d14-beec8a90cb32"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"plotSol", "[", RowBox[{"solnumericalIR", "[", RowBox[{"2", "/", "10"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.921648402876833*^9, 3.921648403360054*^9}, { 3.92164915893307*^9, 3.921649212976378*^9}, {3.9217603453439293`*^9, 3.921760350224251*^9}, {3.921760387883698*^9, 3.921760433710788*^9}, { 3.921900681405545*^9, 3.9219006818699555`*^9}, {3.921948817750062*^9, 3.921948820608904*^9}, {3.922106373531066*^9, 3.9221063856974173`*^9}, { 3.967863847382*^9, 3.9678638495836515`*^9}}, CellLabel->"In[88]:=",ExpressionUUID->"9de2fb28-46a0-4118-b74c-a5fe6cde4193"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV03k41WkbB3BrY4kMb0kYQ5ZCKskySWVNpKKJiIytky0R2SaklJRKMkUG ZTnZO0hJfYdG5Zwiyi7LOT9r+JWkMuh9+uO57uvzz33dz3N/H2WPY/beAnx8 fJnk/Kh6PXxVHlEUPjJ456u+Uk+yrRazfrj7upDipjo9pKxI9PxhfZFBy70B 5mg2yfn+B3FMw7bvSyLtoMiyPPHDXjuae9zM9qPYNaLOnVgke9GgxvognDSN Rg4TlyyuS12+1w2d82eH3IjvluqEGxb9gbGqw7WuxP+5Wqr76HjhhO4zv0PE dhJub6/d80GxzcNPzsTZtaGn6/SOQr3DcP9B4mm/Sxvoaj98zDe/5EhsLp/X p7AlEBWJvX//Tmzj7WapdjgI93bxJToQzxj7KtZmH4fmmfFhO2KriTjO2OoT EI8vd7Yl/vD00u1Y71AsD+AvsCZOz7gZIVsQhsuTpo1mxBO77mlYaEZAaFo3 azvxdZXHiz1+kWh4XLx7K7HJ3Iu24JIohBwx1tMnvnJ3ID57wymcv7XPX5fY KG7C2SA4BpZWdLQO8XHt+ZUjB2MhkVyvoU68Skjkw58ZcTDb9uSODHFAhdLf Rb+cgdm1pdmSxKZZeaIncQZTRgMnRIlXJGmFmrqfxfjj5czFSAr/eBjYduUk QPV1sd4IsbT0nrklaom4NLfy8wDx8MJb79aGRMhUL0nuJn405tyS6XMBWt1e 1q+Ivep8mHrMJGjPKgyXE98POnXAQysZgnSC713iC4eE6te9TMaGNYHPc4gP 77yw7pv/ZbSIssRSiIWkbAR2Ol7BeNfi/SDi0pEDXX03rmJ94q/56sR8fwWe W6qQCmXtT13yxDtNJMM2h6RCoMe6X4r4ylCJlxs7FVrPYtzmIigo6U3uKA+/ DqbGjA6H2KTFb96hLQ1xBWtlvYijxI8ez0i+CTnzlx4HiOtZIu7/Dt3EjVBe zE5iMWem3aRxOip8/HS0idOZI1rb3qcjr/TpoY/hFB5Y+AxzrW5hiC97IZh4 NsbTRZM/C4+zRd09iE00BHc5OGWhUab92j7is023DaPLslD1IOXYeuILkh/F RnSyYRIU8WX0JNmf64ZRw3fZEMgcs3IgNpwrvd1rdBvbNJy4QmEUwvSKZVU/ 5YJxVWCSDqUwHym6tU0+D3f7qaZu4tN1Ph4J5nmovmi7spw42U65ZPR6HpZn natzIi5gpJmWGOYjRTvX//YJCp23YgP0TxVA/c60gmwIyZfw7093ihYiL9Vy 6UIwyYMNa/TbxkK0bypq5RJbpiyTLHIuxCbLHKqE2F6J7SRRXAhHUQVFU2Jf o21TLXZF2Dqp0u9xnLxXwFo5l9RiGFCfM88eI/O2LQQGKJXhu2iT6BHixZ7z xvZWZejiV7XbSczHlREzOFaGI4Lm7mLEglNr8/hQBn43ncKLgRSEBYsmrdeX Q00u8k1iAIWl8h2r3zWVg5ukE+zjR0HeZv0VQUkW3DT/996UWKFpZvazMgvS PbuMlX54X43r6GYW5nPzjnT4UvjF0ULrlSsLChKjgxbEKp4uz9JKWJgxd/SU P0pBM+rc/NrdFUh0On6Z6UP2UdTP2HuxEs8ahbOiia8492Z+yqlE1bOymL3E o6JdrWnVlQg+Y1z5xZvCTUar8TtuJdTq+MfNiOfUGqR8jarwd9OfCW88KdRm Fz6IH66CmIJKaLM7he1poSLV26tR15xYZeRMwTpOnKn4+SH8FyUqhYmlxyX1 9ojWgDe5I7HlIIVee+l/YhVrcJSfVc0gDlSV6+RZ1OBDdJzqdScKqc/VRQrT ajCrutd4+ACFfglThr7hI5x+rep01IFCaHr4mj1RtZh8M9A9bUMhp2KIGcsP xE+77zpnRO7zZ0OG+NZ6nN/8b7O/KvnvcjPeVyf+xQo2rglIUmDxvklxA54j rKQpvHyah1TDodO2amy01RyO2NfOQ/qjgra40pfYkrXBr7Gah0P6lkUfNZsh 1ub/R+o1HoR/GbrzeOo19vQ2jPQF8jBZncId2dAKF8euim4zHmxkK4SUkt+g 6tuSzQ4reEgI3sH4RL2FfVC6Lm+Ui7deW4xLVNvxoD0ixaGSixsKzE8hMR3Y /zVNa20sF4F+sfK/Pu2EhkfKWUNzLh7GcNS7lLuRqLerjSfMxeDlMyHrI3vQ 2X95KOPFIOQN7m7we9SLugf+8zWnB8G5s72lQrYPtCwlZWIyiEsFZtzBQ/2Q iFFxFf86gDQH5/T23QNwU/moEcocgLK+bVX93ACaB+O1PzsPYDMVcl751iAK OU1JxwQHIPR5/6slNlyceBi9h+vQj3rBSVbNLBd8Nb/dv5rfB9G+mr2DaTw0 9J0/VcZ7B3F5U/dkcwpnDDZxrDTeIW31d43SYZJjr1T6AqMXUpohV26dHcI2 gzVbe1J6YH4t2/dn3WE0TakrmTR0g/+F4MLX1mGs+6vbLae/CxGHf+U/EjcC r4PmScKCXYisD35spTqK94+5fOJqnfBdHb3qy1PigrkOCZ0OLB8xGdM+PobQ F56lQzvaYR1mENQmPQ7d6VW7ZY3bYMgYYwjVj4OxcguTsfktljvZCwgEvkeO w7c3zC1vECXz0SFYcgJ8pvEt6mtacWujtezR2glE+oq2L6i0wFK+I6XVbRIM g43hz5Veo19AoUxscRJyL/+7af1TEzbtXrW1sXAK+TInf1/4wIGUp138nA2N BeeF5XkjHLg7uFmw7WgMLbNh2vZxUG4W+FP6PhpuHtHmGRwO9qkmJxk50uj4 WdBPP5+DlKFX18I9aGTOUbSXCwcyjN25s+E0xuRUB/Mb2FgRYNswnUcjd8/J WetaNnxcD52rZ9L4z/rnDxMsNu7v9rdOKSL9jKNSdLPZcNS5+GrjPRpJuYO5 tZFs3KA5bUG1NETqmQkv17OxKthmeKqVhkmb95pAdTZ8PVyYT9ponGNLPlim yEaNvZ9vcicNvydpd+zF2HDZlDS1ro9GxpeS2g6qEbdm2LP+YzQGw770hfc0 YoLqfmA8QYNjv3JGrrURxm3jkUtpGvVw/uaCRvRWiX0vmqEha14zPl/VCO38 VXVRX2gcEw9oySxuRHSaZrzNHA2wpEtN7jTiZcJvFvILNCRX2sT132yE4sld P73/TuP/fRt9oQ== "]]}, Annotation[#, "Charting`Private`Tag$9957#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV03k81OkfAHBna4gsP0lYS45CkuTY5Clnzoo2IpN1NbkSkWtDSkmpkC3H ohyTu0E00WdpVWaKqHHnmPk6wzeSyqLf0x/P6/N6//N5fa5H2eu0k68AHx9f Ln4/ov4AX51XDIHmabwrdV+Jp/nWa3k/3H9bSHFXsz6kbUz2/mEDkVGrQ0EW 0GFa8P0P7LhW9H1dtCMoMqzO/rDP/o4BqvkRKPeIavbEFslfM2TaHANXTeOJ E9gVa9szZA5RoXfl0hgV+0GlTqRR2R8wVXei0QP7Pw8rdT8dHzir9zzgOLaj OPVd+kM/KLd7/MkNO78x/EKz/ilQ7zE6cgx7IeC6LlkfAPPFFtddsC3ki4YU 9gRDTfLg379j2/lSrdROhMBDW75kZ+xFE3/FxvwzoHlxetwR23omgT215SyI JVa72WN/fHb9XrxvOMgE8ZfYYGdl342SLYmAG7NmbebYM7YPNSw1o0BoQS9v H/Ztlaa1gYBoaG0qd9iLbbr8khNaEQNhJ030DbBvPhhJzNc9D1dyDgfqYRsn zLgZhsaBlTUZq4N9Rntl08SxeBBPbdFQx94sJPLxz+wEMEdP70tjB9Uo/V32 y0UwT1+fL4FtlldEOQcXYc545CwFe2OKVriZ5yWYbpKhr0UT6B8vQ/u+giRQ fVOuP4EtJXVweZ1aMlxf3vR5BHt89Z1vV2sySNevS+3HfjLl1pnrdxW0+n1s XmP7NPvR9ekpoL2kMF6N/Sjk/FEvrVQQJJP8H2BfPS7Usv1VKuhuDX5RgH3i wNXt3wJvQCeFIZqGLSRpJ3DA5SZM9609CsGunDjaN3TnFuxI/rVYHZvvr+DL 6xUyQFn7U5889gFTiYjdYRkgMGAzLIl9c6zCh8rKAK3ncdTlKAIp6c/ur468 DXSNRR02tmlnwIozJxMSSrbJ+mDHiJ06k516F+QsXnkdxW5hiHj+O3YX7oTz 4g5gi7rRHWdNsqDGL0BHGzuLPqGFPmRBUeWz4/ORBGqw9BvnWufAGF/+aij2 Upy3uyZ/HjTlUzy9sE01BG2dXfOgTbo7/TD2pfZ7RrFVeVDXkHZ6B/ZViXnR CZ18MA2J+jJ5Du/PQ3fS6H0+COROWTtjGy1X3hs0vgdIw5UrFEGgCP1yWdVP hUC7JTBLhhNoJZqylyNfBA+GifZ+7AvNfl5JFkVQf81+UzV2qqNyxeTtIpDJ u9zsil1CyzSrMCqGNO3CwHtnCdSbEx9kcL4E1O8vKMiG4fsS/v3ZAUopFGVY rV8Nxfdgx5j8trMUuneVdXGxrdI2SJS5lcIuqwKiAttJieUqXl4KLhQFRTNs f2M01+lYBntnVYa9zuB5BW2Tc88oB0Pic+6l07hezmpwkFIVfKe0U05irw1c MXGyroI+flXHA9h8XGlRw9NVcFLQwlMUW3BuWxEfVAE/Vaf0WjCBhAXLZm12 VIOaXPTb5CACrZfv2fK+vRq4KTqhfgEEkrfbcVNQggFUzf99MMNWaF9c+qzM AKkBWxOlHz7M9JjczYCVwqKTPf4E+sXFUuu1BwMUxCdHLbFVvN2fZ1YwYNHC xVv+FIE0Yy6vbHOogWTXMzfofngfZcO0Q9dq4XmbcF4s9k23wdxPBbVQ97wq 7hD2JKWvK7O+FkIvmtR+8SXQXVqXyXtuLag180+bYy+rtUr6G9fB3+1/Jr31 JlBjfmlD4ngdiCqohHd4EmhfZrhI/b56aO5IrjN2I5BNghhd8fNjCFwTrxXG lpqW0D9IYQJvdn9y5zECDTpJ/ROvyIRT/Ix6Gnawqlwvz5IJH2MTVG+7Eijj hbpIaSYTllQPmYwfJdCwuBnNwOgJXHij6nrKmUDhWZFbD8Y0wuzbkf4FOwIV 1IzR4/kBEhc8bS8b437+bM0W29sCV3b/2xGoiv+73KLvrZl/YSML0gUkCMTg fZPkBr2AiIr2yOoFHsowGrtgr8YCDvNE1OFuHsp6UsJJqHwFe/J0A9rqeei4 gVXZvGYHiHIC/8hI5yHhX8buN829gYODrRNDwTw0W5/GndDtAneXvpp+cx6y k60RUkp9C3Xf1u123shDSaH7aZ+Id+AUkqXHm+Sidz57TCpUu6GhOyrNuZaL 7ijQP4XF9cCRr5la2+K5KDggXv7XZ72g4ZV2yciCix7HsdX7lPshWd+WwxPm otEbF8N2RA9A7/CNseyXo0je8IFuwJNBaG4IXGFeGEXs+/s6a2SHgJQlJE1N R9H1EnPu6PFhEI9T8RD7OoIynd2yuh1GgKoyrxFOH0HKBvZ1Lcsj0DGaqP3Z bQTtJsKuKOeMQim7PeW04AgS+nzk9To7Lpx9HHuQ6zyMWgRnGcwlLvAxf3t0 q3gIUYaYh0YzedA6dOV8Fe89EpM380y1IOCi4S62tcZ7lLnlu0blOAEKPhnk VdogktQMu5lzaQyQ4da9A2kDyCI93/9nvXFon1NXMm3tR/wvBVe/do3D9r/6 qQXDfSjqxK/8JxMmwOeYRYqwYB+KbgltsladhA9NXD4xtV7kvyV285dn2CXL PeI6PUhmwnRK+8wUhL/0rhzb341sIgxDOFLToLew2UHWhIOMaFM0oZZpoG3a Q6ftfodkXJ0EBII/QIHzt7f0PW9RjPS8c6jEDPCZJXaqb+1COTttZE81zkC0 P6V7VaUTWcn3pHVRZ4FmuDPyhdIbNCygUCW6Ngtyr/67a/NTO9rlsHlvW+kc FEuf+331IxtJejsmLtuRsOq2KlM0wUaezlRLliMJYxvs6PZDbFRtHvxT1mES qF6xFtlsNjqsmppi7EJCz8+CAQbFbJQ29jo90ouE3GWC9HFnI2maQ+FSJAlT cqqjxa0stDHIvnWhiITCg+eWbBpZyM/j+OUWOgn/2fz8cYbBQo8cAm3SynA+ k5g0vXwWctG59nrnQxJSCkcLG6NZ6A7J5oQ0kiDSQk96tYOFNofajc91kWDK 8d0arM5C/l7u9KccEi6zJBo2KLIQ0ynAP7WXhICnmfedRFnIfVfK3PYhErK/ VDT2EG0oZ5G1FDhFwmjEl6HIgTY0Q/Q3mMyQwHbatCjX1YZMONPR60kSWsDt mzu0ocE60e9liyTIWjCnV+rakHbx5uaYLyScFgvqzC1vQ7GZmol2yyQAQ6rS 9H4bepX0m6X8KgkSm+wShu+2IcVztj99+E7C/wHz/S8h "]]}, Annotation[#, "Charting`Private`Tag$9957#2"]& ]}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->300, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0, -1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{{-1, FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, {1, FormBox["1", TraditionalForm]}}, {{0, FormBox["0", TraditionalForm]}, {-1, FormBox["1", TraditionalForm]}}}]], "Output", CellChangeTimes->{ 3.921948821073501*^9, 3.922007475936252*^9, 3.922094867219612*^9, { 3.922106367185151*^9, 3.9221063861515303`*^9}, 3.9221979076054564`*^9, 3.967862634932276*^9, 3.9678638499847946`*^9, 3.96786800177623*^9}, CellLabel->"Out[88]=",ExpressionUUID->"a65dfa52-c18d-48b7-9b96-467dce02240e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Boundary conditions:", FontWeight->"Bold"], " Near the boundary expansion" }], "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106203289302*^9, 3.922106204256793*^9}, {3.92210629949958*^9, 3.9221063032217197`*^9}, 3.922106481617406*^9, {3.967863711094748*^9, 3.967863711628392*^9}, {3.9678638881422567`*^9, 3.967863897898328*^9}, { 3.9678639310208483`*^9, 3.9678639343895664`*^9}},ExpressionUUID->"fc766302-1b71-4768-888a-\ 89b225a1c45a"], Cell["\<\ Near the boundary, the kind of series expansions that we have to consider for \ the embedding is\ \>", "Text", CellChangeTimes->{{3.922106550783222*^9, 3.9221065796141777`*^9}},ExpressionUUID->"a462ee05-1e95-4f78-9dc8-\ d4855d70d36c"], Cell[BoxData[ RowBox[{ RowBox[{"ansatzUV", "[", "orUV_", "]"}], ":=", RowBox[{"{", RowBox[{"\[Rho]t", "->", RowBox[{"Function", "[", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"k", "=", "0"}], "orUV"], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"cR", "[", RowBox[{"k", ",", "0"}], "]"}], "+", RowBox[{ RowBox[{"cR", "[", RowBox[{"k", ",", "1"}], "]"}], RowBox[{"Log", "[", "\[Zeta]", "]"}]}], "+", RowBox[{ RowBox[{"cR", "[", RowBox[{"k", ",", "2"}], "]"}], SuperscriptBox[ RowBox[{"Log", "[", "\[Zeta]", "]"}], "2"]}], "+", RowBox[{ RowBox[{"cR", "[", RowBox[{"k", ",", "3"}], "]"}], SuperscriptBox[ RowBox[{"Log", "[", "\[Zeta]", "]"}], "3"]}]}], ")"}], SuperscriptBox["\[Zeta]", "k"]}]}], "+", SuperscriptBox[ RowBox[{"O", "[", RowBox[{"\[Zeta]", ",", "0"}], "]"}], RowBox[{"orUV", "+", "1"}]]}], "/.", "soldiskUV"}], "/.", RowBox[{ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "->", " ", "a00"}]}], "/.", RowBox[{ RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}], "->", "a40"}]}]}], "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.922106641774411*^9, 3.92210665976105*^9}, 3.967864429325288*^9}, CellLabel->"In[89]:=",ExpressionUUID->"9d25e70c-15f7-4c61-9979-f48b08d4a0d4"], Cell[BoxData[ RowBox[{ RowBox[{"orUV", "=", "1"}], ";", RowBox[{"soldiskUV", "=", RowBox[{"{", "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.922095028285269*^9, 3.922095061271275*^9}, 3.9220951678887377`*^9}, CellLabel->"In[90]:=",ExpressionUUID->"5a3784c6-90bd-44ef-9111-bbe23482b1dc"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"soldiskUV", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"cR", "[", RowBox[{"0", ",", "1"}], "]"}], "->", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"1", ",", "0"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"1", ",", "1"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"2", ",", "0"}], "]"}], "\[Rule]", RowBox[{"-", FractionBox["1", RowBox[{"4", " ", RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}]}]]}]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"2", ",", "1"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"3", ",", "0"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"3", ",", "1"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"4", ",", "1"}], "]"}], "\[Rule]", FractionBox["1", RowBox[{"32", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"]}]]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"5", ",", "0"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"5", ",", "1"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"6", ",", "0"}], "]"}], "\[Rule]", FractionBox[ RowBox[{"31", "-", RowBox[{"384", " ", "\[Mu]t", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "4"]}], "+", RowBox[{"1536", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"], " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}]}], RowBox[{"4608", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "5"]}]]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"6", ",", "1"}], "]"}], "\[Rule]", FractionBox["1", RowBox[{"96", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "5"]}]]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"cR", "[", RowBox[{"7", ",", "0"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"7", ",", "1"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"7", ",", "2"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"8", ",", "0"}], "]"}], "\[Rule]", RowBox[{ FractionBox["1", RowBox[{"1179648", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "7"]}]], RowBox[{"(", RowBox[{"2587", "+", RowBox[{"31488", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"], " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}], "+", RowBox[{"768", " ", "\[Mu]t", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "11"}], "+", RowBox[{"96", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "2"]}], "+", RowBox[{"768", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"], " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}]}], ")"}]}], "-", RowBox[{"73728", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "6"], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"28", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}], "2"]}]}], ")"}]}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"8", ",", "1"}], "]"}], "\[Rule]", FractionBox[ RowBox[{"41", "+", RowBox[{"768", " ", "\[Mu]t", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "4"]}], "-", RowBox[{"5376", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"], " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}]}], RowBox[{"49152", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "7"]}]]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"8", ",", "2"}], "]"}], "\[Rule]", RowBox[{"-", FractionBox["7", RowBox[{"4096", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "7"]}]]}]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"9", ",", "0"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"9", ",", "1"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"9", ",", "2"}], "]"}], "\[Rule]", "0"}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"10", ",", "0"}], "]"}], "\[Rule]", RowBox[{ FractionBox["2370041", RowBox[{"8847360000", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "9"]}]], "+", FractionBox[ RowBox[{"157", " ", "\[Mu]t"}], RowBox[{"30720", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "5"]}]], "-", FractionBox[ SuperscriptBox["\[Mu]t", "2"], RowBox[{"20", " ", RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}]}]], "-", FractionBox[ RowBox[{"73243", " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}], RowBox[{"2304000", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "6"]}]], "+", FractionBox[ RowBox[{"3", " ", "\[Mu]t", " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}], RowBox[{"8", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "2"]}]], "+", FractionBox[ RowBox[{"13", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t", "-", RowBox[{"194", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}], "2"]}]}], ")"}]}], RowBox[{"2400", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"]}]], "+", RowBox[{ FractionBox["2", "5"], " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}], " ", RowBox[{"(", RowBox[{"1", "-", "\[Mu]t", "+", RowBox[{"8", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}], "2"]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"10", ",", "1"}], "]"}], "\[Rule]", RowBox[{"-", RowBox[{ FractionBox["1", RowBox[{"73728000", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "9"]}]], RowBox[{"(", RowBox[{"73243", "+", RowBox[{"57600", " ", "\[Mu]t", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "4"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "15"}], "+", RowBox[{"16", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "2"]}]}], ")"}]}], "+", RowBox[{"4842240", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"], " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}], "-", RowBox[{"921600", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "6"], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"24", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}], "2"]}]}], ")"}]}]}], ")"}]}]}]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"10", ",", "2"}], "]"}], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"-", "1261"}], "+", RowBox[{"11520", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "3"], " ", RowBox[{"cR", "[", RowBox[{"4", ",", "0"}], "]"}]}]}], RowBox[{"1228800", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "9"]}]]}], ",", RowBox[{ RowBox[{"cR", "[", RowBox[{"10", ",", "3"}], "]"}], "\[Rule]", FractionBox["1", RowBox[{"10240", " ", SuperscriptBox[ RowBox[{"cR", "[", RowBox[{"0", ",", "0"}], "]"}], "9"]}]]}]}], "}"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"soldiskUV", "=", RowBox[{"Join", "[", RowBox[{"soldiskUV", ",", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"cR", "[", RowBox[{"k", ",", "2"}], "]"}], "->", "0"}], ",", RowBox[{"{", RowBox[{"k", ",", "0", ",", "6"}], "}"}]}], "]"}], ",", RowBox[{"Table", "[", RowBox[{ RowBox[{ RowBox[{"cR", "[", RowBox[{"k", ",", "3"}], "]"}], "->", "0"}], ",", RowBox[{"{", RowBox[{"k", ",", "0", ",", "9"}], "}"}]}], "]"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.922095444205742*^9, 3.92209545448634*^9}}, CellLabel->"In[91]:=",ExpressionUUID->"c328bf96-2ae2-4ad1-939a-70eea291c84a"], Cell["\<\ The previous solve the equation up to a sufficiently high order already.\ \>", "Text", CellChangeTimes->{{3.922106592181163*^9, 3.9221066153667583`*^9}},ExpressionUUID->"a81e45eb-d3bb-4e5d-b0ae-\ a9e62240f42a"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"orUV", "=", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"Q", "=", "5"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"equationdimless", "/.", RowBox[{"ansatzUV", "[", "orUV", "]"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.922094861669585*^9, 3.922094959196148*^9}, { 3.922094998316407*^9, 3.922095263393074*^9}, {3.922095315142783*^9, 3.922095318538571*^9}, {3.9220954141694517`*^9, 3.922095470153356*^9}, { 3.922106519874996*^9, 3.9221065314781427`*^9}, {3.9221065900476007`*^9, 3.922106591326948*^9}}, CellLabel->"In[93]:=",ExpressionUUID->"9d4578d9-672c-415b-b8ac-076b7aa4bf99"], Cell[BoxData[ InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", "\[Zeta]", "]"}], "9"], SeriesData[$CellContext`\[Zeta], 0, {}, 9, 9, 1], Editable->False]], "Output", CellChangeTimes->{{3.9220951325894823`*^9, 3.922095264128089*^9}, { 3.922095308524477*^9, 3.9220953189299*^9}, {3.922095435615601*^9, 3.922095470549321*^9}, 3.922106510124365*^9, {3.922106586989265*^9, 3.9221066164452143`*^9}, 3.9221066714272127`*^9, 3.922197908540617*^9, 3.967863945695608*^9, 3.9678680022039175`*^9}, CellLabel->"Out[94]=",ExpressionUUID->"acf52ddb-e302-4350-b512-bbd0e06afdbe"] }, Open ]], Cell["It is interesting to see what the solution looks like", "Text", CellChangeTimes->{{3.922106626943922*^9, 3.9221066364611998`*^9}},ExpressionUUID->"d125cf0b-0fd9-4635-a6dc-\ f5233ca7a9f5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "/.", RowBox[{"ansatzUV", "[", "5", "]"}]}]], "Input", CellChangeTimes->{{3.922095497796768*^9, 3.922095516066737*^9}, { 3.922106621231772*^9, 3.922106623006667*^9}}, CellLabel->"In[95]:=",ExpressionUUID->"1243b66d-bde6-4261-af8c-fdb31498f8b7"], Cell[BoxData[ InterpretationBox[ RowBox[{"a00", "-", FractionBox[ SuperscriptBox["\[Zeta]", "2"], RowBox[{"4", " ", "a00"}]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"32", " ", SuperscriptBox["a00", "3"], " ", "a40"}], "+", RowBox[{"Log", "[", "\[Zeta]", "]"}]}], ")"}], " ", SuperscriptBox["\[Zeta]", "4"]}], RowBox[{"32", " ", SuperscriptBox["a00", "3"]}]], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", "\[Zeta]", "]"}], "6"], SeriesData[$CellContext`\[Zeta], 0, {}, 0, 6, 1], Editable->False]}], SeriesData[$CellContext`\[Zeta], 0, {$CellContext`a00, 0, Rational[-1, 4]/$CellContext`a00, 0, Rational[1, 32] $CellContext`a00^(-3) ( 32 $CellContext`a00^3 $CellContext`a40 + Log[$CellContext`\[Zeta]])}, 0, 6, 1], Editable->False]], "Output", CellChangeTimes->{{3.922095498035754*^9, 3.922095516256713*^9}, 3.92210662360787*^9, 3.922106672469596*^9, 3.9221979085706882`*^9, 3.9678639478644204`*^9, 3.9678680022823715`*^9}, CellLabel->"Out[95]=",ExpressionUUID->"a698b199-735c-424a-abb7-e0d0896b6ae8"] }, Open ]], Cell["Now the integral that we have to perform is", "Text", CellChangeTimes->{{3.922106686321533*^9, 3.922106695199668*^9}},ExpressionUUID->"e479f3fd-1442-4fc7-abfe-\ 8b5e83b3bbc6"], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnV3MXVWZx8nMXMwNyVx5YXozXnDhBRcmJCQNiWM0hBBjaoMhpKSKU1SC HaVTCkQEpEirYBu/LVICGNpYRIQGJWgpggEKNG0VaCotpSpQsApYPxDtGX5n sk6e87zrnL323uuctc/7/n/Jgr7ve/Y+a++99lrPej7/84L/+fCF/3LSSSet +ve3//Phj635r0su+djlS//j7R/OWbnqU59YueK/z1r5vys+seKS0y/417d/ ecXbbfvbn/+3t//fE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEKLj vPXWW73t27f31q9f39u0aVPv0Ucf7Z04caJ0t4QQQgghhKjk8OHDvVNPPbV3 0kknDbXTTjutt3fv3tLdE0IIIYQQYiSvvvpqb9GiRQMZ9oEHHujt3r27t3jx 4v7P73jHO3pHjhwp3U0hhBBCCCGinHfeeQNZ9uqrr+7/bu3atUN62jVr1hTu pRBCCCGEEHN58MEHh+TWY8eO9X+PTtb7HQghhBBCCNE1zjjjjIHMevHFFw9+ 7+VZfA+EEEIIIYToEo899tiQzLpz587B39atWzf0t9tuu61gT4UQQgghhJjL ihUrBvLqySef3M/XZXnqqad627Zt6x09erRQD4UQQgghhIjz+uuvD+lfly9f XrpLQgghhBBCJLN169Yhefb2228v3SUhhBBCCCGSWbp06ZA8e+jQodJdEkII IYQQIonjx48PybLkMhBCCCGEEGJWuO+++4bk2fPPP790l4QQQgghhEhm5cqV Q/Lspk2bSndJCCGEEEKIZBYtWjQkz+7bt690l4QQQgghhEjiueeeG5JlaT7v rBBCCCGEEF1l8+bNQ7Lse9/73tJdEkIIIYQQIplly5YNybOXXXZZ6S4JIYQQ QogJsH///t69995buhtZOXHiRL+urZVnqWcrhBC5wH/pJz/5Se/w4cO9P/3p T2pqamrZmqgHsiw5WZH3brvtttLdycYzzzwzx3cWf1ohhMjF5z//+TnzjJqa mlrbhn1ZpPPrX/96IMuGtmXLltLdygJ5uex1oatFZyuEEDn4wx/+MJhf3vnO d/be//73q6mpqWVpkmfTOXjw4JAsa/NazQe7/HnnnTckz37gAx8o3SUhxDxi 7dq1g/nll7/8ZenuCCHEguP5558fyK/ItORkxVfj7LPPHszPd999d+luNgY9 rNc7r1mzpnS3hBDzhDfeeGPgn79kyZLS3RFCiAXHCy+8MJBlTz311N5vf/vb wd+Ibfj4xz8+kAG3b99esKfNOXDgwBxflDvuuKN0t4QQ84SvfOUrg7nl8ccf L90dIYRYUPz1r3/tvetd7xrY31977bU5n0G3ec011wzm6t27dxfoaTtuvfXW OfKs6oIJIXLwl7/8ZWD/OfPMM0t3RwghFhz//Oc/e5/85Cf7Otg333xz7Gdv vvnm3uLFi3uvvPJK0rnR7R49erR3/PjxHF1thdUxh1Z1vUIIkcJ3vvOdwbyy c+fO0t0RU+T++++fSR2P6AZ//vOfS3dBREDOZV5Hz2t9VU855ZTSXRvooEN7 z3veU7pLQoh5wN///veBvxb7fbFwuOeee/rPXXUmRSro+b75zW/2PvjBDw7J Sfh6XnHFFf1YJlEO/BE2btw4MmdaaXn2d7/73Zw+XXjhhUX7JERONmzY0B/X e/bsKd2VkTAPnHPOOb0//vGPpbuSldtvv30wr9x3332luyOmBLbHEP83q/sY 8q/T96VLl5buykiQ77jP+DxiT55lyO1/2mmn9cfM+973vt6XvvSl3he+8IXe WWedNSSfIO+KMpAnYFwO4Isuuqho/+666645ffr6179etE9C5OAf//hH79Of /nR/TL/73e/utKy4evXqgR7ixRdfLN2dLHD/kdPDdSmf9cKBHBZhPZlFeXbv 3r0D/eDmzZtLd2ck+KZzf+nn+eef37eHzCLki8JOjGz+0EMPzfk7sfZWRvn2 t79doJezAfPsLbfcMph7bQ6DNhBTVVXTonQexksuuWROn3bs2FG0T+Ng3LNv fvTRR3s/+tGP+n7LN954Y+/HP/5x8jl43nVb15gP1zBp2CuGMU0tlCZM6z6j W/nQhz40sNlQe2DW+cEPfjCvcnTPCqXnBupm2vVk0vIs+ybG2hlnnNGXh5BD iXuhJn2Ta3v22WcHuuWm+qYmz6Dpczh27NjAp4c88l2e63//+9/3rr322t71 11/fO3LkyOD3Qe8wLveJH1fyxY+DPGTv0ze+8Y0s52W/5GtukbOWZ3fllVf2 feVLE/T7tr388suluxVlnN8G9okqHnvsscr9xbiGX/FHPvKR3mWXXdb74Q9/ 2Pf1mTb4x/tcwXUashK+SZ/97Gd7N910Uz8v6HyE/Xu45u9///u1jx831qoa 7zlr+PLly/t2QPZeKSDDBl928gCUGF+5YE3lfQljrs21YFPFFinGU2LMeg4f Ptw/V9ibTVqeRZb96Ec/OvguZFob38w6WwdsOEGvxfhF/1kX/BOaPgfkUmJs kMe//OUv9/OFpvDEE08MznHdddfV7vO0sHp7rpXnB3b/MMqOxhxiY31Yi8Vc eAfsmMpRG4t9SDgf8sPDDz/cufWJ3Aqxea2r4IvHOxDGvm3Uha+COZr3oUoe DHt8Wuy7QuNc6PWnmQuCd515ts41jLsOfo+PEuN1vvDzn/98cH0XX3xxo3Pg czNqrNnGveVzVWOF/dbPfvazyu8lFjwcs2rVqkZ97wL4yobrIB9gE5CJv/Wt bw3OMx901pOk1JgNYGPgGM5r4zImKc/yjtj3hT7wztvr+Nvf/pZ0LmQrWyOp qU0HHWnO54B8nrKfs3t4bJddg5h4f22vvvpqf79qf0eu6lHYvQv3TswlNpba zp34LHMe3o+ugoztr3tW8kMyd9t+P/DAA7WOZ+7C39xf/y9+8Yvo55H38OvB VuKPQcddSs9Jf31/uK6YzQnd7pNPPtnXy9p6zUGuffrppwtcQV7Qp4RrQ+4n h3RbOIfVN4W5lDXbw31Hp4I8F8uD96lPfary+3g+4fNN9WSlCT593Ke6+z3e TeQo9AD23qXqqsT0xyx89atf7X8euyPfP2l5lj7bfqKfeeSRR+b0P3Xc2Lxy d955Z5Y+Ikd4+QL9bUzvi77rmWee6duTwvtj25YtWyq/L9St5zu7Fi9AjSZ7 PfjUg49JHyfPXn755UOfFcMQhxnbEzWxUVrYp3Ie7NJd5YYbbphz3bNS5xY7 ku13E3nSnyN13j148OAcnT77gBI5e5Hj/TNMuRd8xvqXBn1BLt/xUnzxi18c XM+vfvWrbOc9/fTTh+7V1VdfnXTcgw8+OEeXjj58HOiYrM0z2ORmBfZ94VpT YpHRSX/3u9/trV27tu+jNcr2IHm2HtMcs8hhfC74m05Dng0xlLTgb+b1HMh1 Ke+PlTvPPffcbH1knvXj+Kc//WnlccwBVr5OPdbK+MTGdIkga4dm4+yC/yxj BX/gUeBjYNcrMUxsP0dr45uBDt3uGbuK9WUJDZv+LGDnav7d9hw0dK+pxPKc bdq0qVE/2uBl8jq5Hpkz2SPb45lzZhX7TMjxkovYmhSLwR3F3XffPed41v9x MNeXHFdtYG8X1puUfOjIWf7+IM97vVaX5Fnsv9hBYjUju8A0xywx9ey78L8K 692k5Vl8CGKyuvXXYfwRJ5aC9VvIaROJ6Rvq1AggzsHL51V5uWzcTul48wBj xL7P/Nvfh5Q4Nus/y3WKYYiPj8mzdcedJcThIS92FcZOzM+CPCVdhzXE9rmu zz/E5vu68ZLeJlTCP933oUqP4sHvuO582VUuuOCCwXXkzHXadk3is/54/ELH gT0yvJ/8v8v7YsuuXbsG10g8Swq8d+vWrevfE2LSg9xqdTFdk2eDnyU29i4y zTEb9iNWDpy0PMt32b4xbgLsa/GlS7WXHThwYHCe3LWE/Pxat7ZE7DlWyahW ps+5r2+DjWmgpcS7eHzOrhQ990Ij2Cxish33rwnkRed4ZOWugq97TIZP9Z0v Cbm5bJ/r+s5C2/kegh7KyoLTJIdMvn79+jnnyGmnnxY21oA9fE4bfds1if2B v8cpex9y2oTPz4rdJNh8eBdef/31Vufqsjwb9pH4SHSRaY1Z8ivxt8997nND v5+0PPu1r31tqG8291NdrN9C7vesrb7By+20lNyrxLSHz+MfVxpyAtlrqOvX hm8xOcTD8Tl9QuYTofYE85KPkSF3SV3Qq4fjf/Ob3+TvcCbwLffvSfDP7jre J7yJ72zb+R5iMVXTJIdMHov/mAUdvceub/w7J23XJB+/S2PPWwV+ZJOUCXKD 3ij0l5xPbZE825xpjFnmGvxCWDe8HmTS8qy1qbeZd9HhWjtIjvjRALnS2+ob bH290FLyidr8IldddVXDK8hHiAegLVu2rPbxXEM4Hl/pprbz+U7we0cXG6vl VTf/XMgZwF6iy3i/HBqyzSxgc+Y29Z1tO9+z5/X3j35Nk0nI5E33B6Wxe/ec eZ1yrEk+DziNWuQp2HFa5XNbGitj5Mj/Jnm2GdMasytXruz/nrpBnknLs1Y+ apNf0/oJ546FzqFvsD5UoaXkrbdjABmnZK5Qv1aSB74O1GKxY4lrE3Ox9lp8 bmL59uvmcQvxOegQu4yPhaLNQp1bZBXbZ2/nSiE23xPTWwfWMX+O3HrBKrxM Xlcn5n2aaF32+R6FrcOX28aQY00KuU5sw8ctBWuLqLvnmibWf+nSSy/Nck7J s82YxpgN3zHKR3qS8ix+LLZfbcZb8A2kWR/cHHh9Azlx6uCvk1ZHh2z1PiVr aYXcpbS6+ifrj8++pavxl10g+KaEvLz4DPk8JXXjvUO8eJ081NPGx4Z2Ycx7 kDmxezOHWn2h9wlvUmOt7XxP3/w4QT84Tb1mDpnc5/ccpWuZFszf2KypdVNH v2fny6b1KUfRdk0i36+/x+QET8WO9yb692lBPSOrG8iB5NlmTHrMolNg/uO8 o/zUJynP+pzbTX1eWe9t3EyucRtoq2/YsGHDnOdQpzaJtTfXyd2TAnlOn3rq qf4aXbV2Bp9OWp08qJw7PB9qZHStHlXXIG8v98rmfYj5HKTuCWyeriZ18qYF 4zAmz5auEYXvMX69sRq85NJj7vTPp0nMSdv53tYoCfuh3HNhFW1lcuqatZWH c4Gvl41fsHsE8jdX5XGxcg/XlZM2axI5CaxdlEZcPOM8FVtnkJbTvy8XxAmE /jWtxxZD8mwzJj1mw/4RWQN9W6z5Odz+jXwCdeCdRiZijqBZ36IwT4S/0VjP U2Qf4l7DOXLnMm2rb7B9C43c2nW45557BsfmqHnKPcWG6+9/GCMxm5P3e0id +8iHF2RZ5HoP82KqjWuhEGJxbbyg1W+Hhi9RCsEXpys5MkZBPkt/jaVzE2Ov tHMgem7yw9x4442DOvDIoeHftKb+qk3n+5g8zX1rWhexDW1kcuuPFFqJuh/M dRdeeOHQmsfaxftmnzOxsaPweedy6pfbrEnosHz+C55RkzgGu36Mql9XEvaa oX85Y6klz9ZnGmMWmxh+neOa1cnRwu+J0agbJx2zI41rzAcpcpOtw5cSn1mH NvoG5jAf19DEp8LXl21T74f32q6b2K3RPSHf2vnX54TChyP8jVw6qd8V7J+j aqLhezXt+OsuY9dBK+fze5uzt87eJsRYxfYTXSIW005txFJ4P058kO3+Gp1U rP5fakyNJTbf79ixY+wxyLHkCLMyFo11vFRNwSYyOfOk9RcL++q6+pIc7Nmz Z+g9Y22xhNjp8HdbS8by0ksvDV1PTpsU+Q3rrkn8nbo+1h+FeYY9c9O+WXuA v0+lsfUV6/hRpCB5tj5dGbO2lnpbfwNsneRbCM3WgOHf9m+HDx9OztUcalLR qJWZExuPH/YFVbz88stz9CXMgU3yUQbsM3322WcbncPmQmJc+HgudKm2zzbf I7WSw++xX1fBOx5k+XHXzb6ry/5X0ybU54vVw0M28HNCyp4y6FFYq7uMtyel ykOTwOfXG6WL8+8MrYnvbGy+Z0+J73BovEe8wxs3buzrFHxuYvT6Tz/9dNtL b0xMJuf52WtARqcGObZB5G6/R0O33TS/cluQQe08i10shvWJYI6Lra0h/yUt d04RvybRB3uPafhK4NNGrSivR2LcfOYzn2ntx4Nups0ebpJYO0Hud0LybH26 MmZzyrMW1mrbX+w7TQk1MWjYVnPi9Q2sGfYZoDNn3qPOM3O3/zzPjVoddXyT YlgdTJP1kr7asfHcc89FP2f33GFfa+OR8K+vAp+9sE7xvexLbCM+hf1zkBly +jbNOuRw457E4r1ishPv/jjYW4Vn3uX6Sr62Vmgl7M3oBaxdBRlrnD7A+2Q1 iXX0832dRixvzlxQTYnJ5KkN3zL0GKVgfmZfHfozLg8I8QC27+jIPcQXhL/X 9YOuImYTSG2sj7lqk9i6Cm3qEeOrkNNfwda8z22vBcmz9enKmLVxjDn3mb4O EPv1pli9Ts7YgZi+IbUhzxEPm1L7NQUbl1C3bjY6PKvLic2/AfwO7HVgt7Ry VFVNM+SnmJ5tXJuFfEzTIuxLR8ULetmJcTZujFEnms+VqHlah1iOJloJH1Cv BydObRz2meTynUUXQTyvbaz56AbRa/qa06V0mhYvk3NN/hrQW27durVfi9Lr ZkvmfbJ10rEVjtM/2DgjGvpyj40BzukzE1uTmCv8fSaPCfOqzb1KY27O9U5h C7bPui7MW+E+5cyRbOVs7kVuJM/Wo/SYxSbEOMNfzM851HOipjHf2ybnUlhn Q2uzP6uz9tQhpm9gPvbPAd9SfErt/j7MY7nqBXDfw3nr1JjF19bm9KzShfr6 TNxPdFPE3F933XVjj+VaYzFmVU31bv8fnlW4J6Pq5BGL5O/fuHcn+OKw9nQZ XycwtGnrlA8dOjRHJhuHz8XXJL9vbL5/5JFHxh6DP5b3my0dk+Nl8qq4V2w1 1Lqzx5Tw8fbyKWvTOLx+lr2Hx+YBzum/GVuTqnILPPTQQ0P7H9Z07GNtsfF7 dfPrIjt4n2nsdW1hTIVrnVT8q+TZepQes+QC5xycDzuzbfY72rwTPg62qWyM rGXPk1Of4/UNVfE37De9fhP/hBw1u5FDwznRz6Ri7V60qvq0wd4d2l133ZX8 XcRv1JVlx8luCw32p9wP9qOj8HlyaON8QIKuvKnP9bTwuaZSZMlJEHJLhFaV Vw9bh/38ONvHKJrM9+Dzm5Ws/RaTyfFVqwL5w+fMzSFr1QG9cPhu1reqWBOf azgmr+JPOk7ebYpfk8gvnwI+b/Y4YkTbYsct8kYqxP95PRmtSb1Jj90Xp4y/ JkxDniV2hWdNHE6dFt4lxnHdY9l/TiLvWpfG7KSwPq913gWPn0dzzoVe31Cl nwygl7XH5fABtGMixYc1YHXGKb5E1sefljtvohhNyENQpePz8+mo/SB+zPyN OS6X38ukiPmo5JQDUojtx6rmE+LE7Oeb5BVoOt+Dlwvw9ylBU5kcbM57WpV+ NCf4FVh5mlqZVXh/lFg9SpsrqkmtuFE0XZPQGdjjxu2ZU2kS82brvvscTLQ2 +ZIZb+FZ5vZZtkxDnvUyxLRaag7IOnRpzE4KO4e08e3z+qrUnAhVcB7/rFP3 e95mnzJHVkHehrr7FOI6664TzAP2GGIOxeRB3gwxSPhdjyOWQy7mfx50821i NabBKD/1ae+lvG0lxadvEnlnU+d78PLsqJj8SdNGJvfyLL6s04K60fa7U/Tr Xg6L1RO2+5w69rRxtFmTvE8F7dixY636Y33eQy3DceDHGD5Lbh3sln78tsln Qkx2OE+TmOlUpiHPEke9dOnSvt6vTgt94r7WPRa/1ZTcRXXo2pidBC+++OJQ H1Pzmcbw/mu5agm10Td4eTZH7W7rj5WaC8LqCGhVuiN0Ff6aVetgOgTbMXN9 lS6VdcDnNWbv6o8LOdZsXYYu4nNjhVYl1+fG60Sq1lbiqO3nx+XXH0Wb+T5W Rxv5rARtZHLr359T/kvB5iGkVelDyDnp73nM19n6MJBXOQfBH8m21Hp/yHf+ 2LZrpc1JnqKfxRcemdN+r7cp16kDb8FHJMjG7DEnaY+S/2w6XRuzk8D3s4nP WcDLYLlyvhB/a89bR98Q/I9zyrOrV68enC9VP2v3vin2F19/mJYrnk2MJ+hz YrbLGNSn8s/K6yTC8yd+pcsgb8fk2WmPPZsPO3Y/PXY9pzWxZbSZ72N6+hIx YTGZHN1dCuTu88cSbzwt7ByZMsd7f+lR/rb2/cyVM6rNmkRst7/PbeM6vve9 7w3OxZ6kCX5PSOO8dbE6pDoxH02QPJtO18bsJCBfou1jVYxSFfZcudZur2+o Mz68vgH7VFtWrFgxOF+KPxb3tG7/8du0x2DvEJPH5vf1NS5Ggd3Fv+s2firY amJ1GbqGtzfTSvhK+foEVbY3m+OJZu0f+AFSG6OKNvO9P5ZWIr9ZG5k8duy0 /EyCf3loKTplr88dpUu28lWOGuXQZk3yx+aoI42PUzgfcZRNsbHOtLp+O8yf Ia8O88ak5zvJs+l0bcxOAvz57P62LXaPXZXnJoU2+obYsTnytdjcJin5Wn1e gyobJvYZH5NTyna50Ah+ZbyvdfJTxeRA/K4grKcl68Wm4vNO0fDlmjZWnk2Z O60+l2uwhDWvijbzvc8PSCthT2kjk1977bVzrqFNHcU6+Dmyau3wNT8YI6N8 uKyty4+NJrRZk2I+EjlyhxAPH86H/bApPs6DVid3F/n2w3HEm00aybNpdHHM TgIrf+bIEWdrDeTIK95G30DeNH9snXyxo7DXiJ2ziosuumioD1U+SbZ+WK7n ItIgTw33vG4cNDm4/FjDNoBMjI81P2P37DKMS38NNPIdT5s6sV3e/mH9REIe 4ar5t818D16fPEo3gB5ykn5nbWTyWK6OWH1SfIXJuZuTunOkz5HMnnEUPpal ab35QJs1iRo4/ljymccgx0eq/6q1GZLnsQ0+xi41hhU9THhviSloW4czBcmz aXRxzObGxzDkyGVi9VT4MrSljb4hlu8+lsue+a1OXWkb/5PiU1HXL8zn3RxV D7cU3C+u++DBg6W7khWbkyTFPu3x+ehp5EwN4yVHjvJJsmfPnqg8m8POUhe7 TlXJoj5frt1jUqOQ31XFk7WZ79EL+mNjPhqcDzl3UjkuYjI5e/pUYrr5l156 ac7nsDPksOVZ7BxZdW5imO3+ocqHAJu3/Tz5RNvg1yR086n4fLk06qx4iP3l bzfddFPSeW3tHMZyG2J9TMndZX3Ip1UzRvJsGl0cs7nxMUfYfNpiYyRz1PX0 +gZsYqmgp/HP4c477xzZ55Q896+88srQ+apsit4vrGot8/F5VXV9pg26JWvb ZS2ZtTg1dDms3ciaVlcTavvV2TNZfN1o33LVvZ4Ud9xxR7TfJZ6vtT+Py6vv c1PRrN9q2GNU5WfwuWvrzPcxOTIWk0NtbP42qVqyxMA1lcnBxxrQfI6BYI+u c3+q8HMkbZRPFuMg1KEOYyPFT9ke0yTGyeLrXNdZk2Jx4jE9UvADDD5L4/B6 KXLutSGWuwt5qIqQXxLfjzrjrg02L1bqGj4tuiTPdm3MTgIfy5xjLLBuhPOl 5MEbRyzeso6+wec2oPk4aeyRIf4nZd22zzYljtT7hTH/EkccA1nZ6n4Zg12T gXz+8pL7sSZ4vzv0Gsw3VifepuZvqGnrW1MZeZp4mS6MwRIgt9h3Ab88//fw fvt8adjHIOwvxsWzcR7mX+8vgA6yjl3a19XydWmYy0I/2+SpH8X+/fvnrFn0 qU6txwsuuGDO88dWH8B3JrwnOf35/RwZxp2fJ7Ff+3gP6lulYOOem+YgQ7ZH 7+j7Sj7yVLBp+eN9TZ6whrLnTvHht7lnc72v3p+jKncXNpzw2Wn4JyEvk9/Z 30vysXWlxmUX5NmujtlJ4GNYcsQi+pxdTX3FqK0T/A5tow5KKtTX8Md7P6uN GzfWmuNs7lnqKFbh40VpxOV6sOtZmxGycpP6RpMmVgu1Tc7iaePzEeeW35Bb vGxEm5ROLif4aft+TzP/qGfXrl1D6ykyLb6yrGNBduP/3HPql4XPokvC9hTs CH4Py/4L2TL2nHwLdcZjefottsZKaEGWpH9Bd5XL3kKOZOT0lGsIsu0on7dA LPdwyHuGbB9yaOfKERDwc2TIr4U8QD1H1lPkZzs/cj/r+DvZa6sTy4J85GvL jxsrjKsqvyKvU7RzDr4QYW+UqrvZsGHD4FxN8i7HiPnQjIvvCnPHOH1NG8g1 w33x+8aUdzdXzuG6lJJnZ2HMTgLrL5Uz5sj6k6f68qAbpT+p45XPsV6Nk/l4 r/wzte970AtwrlS529qtUnJc2jwF2OiCfgFdCHohdEjkWrH9ZJ/R1mY0KYLN 1LZp1sRsSyyvkm05cszF9lHoz7pO7N3btm1b0T4hl8b8OmnYCoJNhfcltv+N 5X0KtYz9nI5OlRZbC/BJGgexMN52wfxEnE44F3HnuXLLk9cztnaPu4aUPE7e V47zMB+FeYw5LPfc5OdIiPmK0fgs+5G6uhfkcTu+U3UFVoYO9ziMFf4fu89V Ohfun5cP+NnqnuvkbbX5dp588snk46rwtqZRuSFC/RlaHTt2HUL9a/8MQuP3 9mcr+7bJ99CGUvLsLIzZ3GDHtn27/vrrs53b1rojD28K3ocq5Tnwc5WPAPKi 9wVCx4j9N5wjVdZgTgzfn1I7xV8T7zr9Dd/tG3qPNrbuacA6wloTngU230nW f8lNLO4nVWZJBXtL0FewBpTyJ6qD9wsPLXccexMYX9gz2Uthy0TGHlVrEbsX n9u8eXP/mqYNeo5LL710IKPxjrCuTSN3US6IP8Xmgo0ozHeskWH+yomfI60d g7mb+4a+duvWrf14kzZzjd1vxGpSTxPWEuwNrEVB7uJeoy+pU4cDO2a4ppS6 YHUgJtbPB7G+WXm6izVQS9EFf4Oc5Bqzk8DHMuesZ2l9FLnuaeTtGAf2vptv vrm/nwjzM/Ixeoc68ZDWXyelLpj3C7NyDfYT9AzIUNjS5luugC6DzBHsv6FR vyKn3w/vfhfrAY4iltuuqzmzxfyBvcmoOTI3hw4dmpjsVwqbd7bKJ6YJVbm7 rMyby9dhvjDf5NkuQ90XqwvNXccDH44u6KFzYvPOoiuowvuFzVoegPkONhSe 4yzJnZOCnJVens2Rn0SIcUx7jrQ+4qV1Sm1BT2R9KKpq6DUhljPD1hC18RSx 3G4LmbAX6Hre8VmDWEB0lBabvxq/s9xY//vc8QMlsHVTUutjW78w9IFCdJVY fbNc/hdCjGLac2TIkRn8zmYZck+Ga5lUTG4sdxc58sDGva9cuXIi3z/L4NvG GOuCz9Z8gLGIHTXY2PHrCtgcN6l16uticyCVqGWeE+sbn5IXn5zfdg6oyucu REl8rqfUcS5EU/wcmZLjNAdWJ2x1jbNG8JliLZ9kTSZqutvnhDyBjszeR8ls YtLgS+/XKCD+KfxMDO6keP755wffQz6dWcXmwU2tZe/9wnbs2DHhXgrRDPa9 fp6glapbKBYGpeZIYpaCjod8Cm3r35bAxlyT02ySxHJ32byVpfJhiYWF900K +TZsLpRJ17IkJjZ8V9dj90exbNmywTXY/OLjkO+smBVidc3q5OgUogkl50hb C28WckNbyCk4bR93m9/Zt1nIRShmH58PMeSmDj8j104a7BIhHxq+6+QXmSXI QRDuV50cL7GcikJ0EfJr+DVqGnODWNjYPJkl6ueRlzR8f8k88HUgp3pYW7Ct +nrEk4LaoTFZVjGjYlpQ9zGMO+I6yQUb7Cz4y02rxjJ5UsL3EvNXqh5aXew+ mLzoqfhcnsrXIboMNQf8OjVfcpKI7mLrZOCjOW3wMwg54tG1TCI/QG5C/nrW U9bVaRKrH5iS50eIXBDTsXz58qE6AKtWrZq6b5zNbzkL9VHZB4e4Tmyv1J9I 5ejRo0PvPLl+hegq6Fj8OjXLcTJiNqCeMXk1iPPInS8yFXL2hbxK5OGpM89P G/LLBtl73759U/9+n7uLvYAQJWAvSu2AkrrRe++9d/Au+JrqXYJ7FWqeIMv6 XGcpbNmype8fNit2LLFwsb4xYb0UYqHw5ptv9u1vXfcFRReFj0Gp2js+d9es 5+8Voi0PP/xwf71MzRNQglDzBL2V4rjEfIbx7XWzvgaQEAsBau92GfpXOhcD unTiQdatW1e0H0J0BdZQauJ2mTp1cIWYVWx++dCoFSaEEEIIIcQsEMtR/cQT T5TulhBCCCGEEEnYXNSh4U8ohBBCCCHELOBz8FBDUwghhBBCiFkh5PEL7aqr rirdJSGEEEIIIZKgdrP3NZjVmtRCCCGEEGLhsX379jnyLPnlhRBCCCGEmAWo w2xl2dNPP710l4QQQgghhEhmyZIlQ/LslVdeWbpLQgghhBBCJEOdPivP7tix o3SXhBBCCCGESOLw4cNzfGdV21kIIYQQQswK27ZtG5JlzzzzzNJdEkIIIYQQ IpnVq1cPybM33HBD6S4JIYQQQgiRDLkMrDy7b9++0l0SQgghhBAiiePHjw/J sosWLSrdJSGEEEIIIZKhBpiVZ1etWlW6S0IIIYQQQiRz+eWXD8mzO3fuLN0l IYQQQgghkjnllFMGsiw5aN96663SXRJCCCGEECKJvXv3Dulmr7nmmtJdEkII IYQQIhlq2lp59uDBg6W7JIQQQgghRJ/9+/f3rrjiit6yZcv69RI8J06c6Ocy CLLs2WefXaCXQgghhBBCzOWNN97onXzyyUO61/vvv3/oM/xs/7579+5CvRVC CCGEEGKYXbt2DcmqNPIYWBYvXjz427nnnluop0IIIYQQQszl0KFDc+TZW265 ZfD3W2+9dfB79LgvvPBCuc4KIYQQQggRwebhWrJkSe+1117r//7xxx8f8kXY sWNH4Z4KIYQQQggxlz179gxk1rPOOqu3fv363po1a4Z0tlu3bi3dTSGEEEII IUZy4MCB3jnnnDMkw6KbxV9WPgZCCCGEEGJWoOYXuWWPHDlSuitCCCGEEEII IYQQQgghhBBCCCGEEEIIIYQQYgL8H3tmcrk= "], {{0, 61.}, {346., 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->{144, 144}], BoxForm`ImageTag["Byte", ColorSpace -> ColorProfileData[CompressedData[" 1:eJyVlwdUU0kXx+e99EZLQEBK6E2QTgApIbRQpFdRCUkIoYSYAoJdWVzBtaAi ghVdFVGw0uyIYmFRbNg3yKKgfC7qYkPle8Ah7O7XznfPmTe/3Nz5z515b865 Y5SWG50OAwCkeOQRzclnSiScghg15EecSCoUiPg8tkjGF/AljDQIcapRkAeg qHHE4mwYicoRySTRQX70xKRkOq4fwIACiAAFXDhcqZgZGRk2Fj3Z/9U+3Adj guCO7ZjWv/7/X02dx5dyAYAiEU7jSbk5CJ9E2iuuWCIDALUb8Zvky8Rj3IYw TYIkiPCDMRZM8OAYp40zGozHxEazEKYBgCdzOBIBAGQ64qfncQWIDtkXYXsR TyhCWIywd05OLg/howhbIjGIjzymz0j7k47gL5ppSk0OR6DkibWMG95fKBVn cwr+z+3435aTLZ+cwxxp5AxJcPTYfMiePcjKDVWyKG12xCQLeRM5jXGGPDhu krlSVvIk8zj+ocqx2bPDJjldGMhW6sjYsZPMlwbETLIkN1o5V7qExZxkjmR8 XiLCCnlWnNKfwWcr9QszYhMmOU8YP3uSpVkxoVMxLKVfIo9W5s8XBflNzRuo XHuO9E/rFbKVY2UZscHKtXOm8ueLmFOa0kRlbjy+f8BUTJwyXizzU84lzo5U xvOzg5R+aV6McqwM+SCnxkYq9zCTExI5yUAIwgEHcOmqkwSAjL9QNrYQVq64 QCIUZMjoTOSE8elsEdduBt3R3tEZgLHzOvE5vI8aP4eQVseUb9WvAHidHx0d PT3lCzkPwDE35LU0T/ksGchRJAFwtZkrl+RN+MbPEgZ5e6qABnSAATABlsAW OAJX4Al8QQAIAREgFiSBeUiuGSAHSEA+WAxWgGJQCjaALaAS7AJ7wUFwBBwH jeAMuAiugBvgFrgHHgMF6AOvwRD4AEYgCMJBFIgK6UCGkBlkAzlCDMgbCoDC oGgoCUqFBJAIkkOLoVVQKVQGVUJ7oBroGNQMXYSuQV3QQ6gHGoDeQV9gFEyG abA+bA7PhBkwEw6FY+G5sABeABfCRfA6uAKuhg/DDfBF+AZ8D1bAr+FhFECR UFooI5QtioFioSJQyah0lAS1FFWCKkdVo+pQLah21B2UAjWI+ozGoqloOtoW 7YkORsehuegF6KXotehK9EF0A7oNfQfdgx5Cf8dQMHoYG4wHho1JxAgw+Zhi TDlmP+YU5jLmHqYP8wGLxWphLbBu2GBsEjYTuwi7FrsDW4+9gO3C9mKHcTic Ds4G54WLwHFwMlwxbhvuMO487jauD/cJT8Ib4h3xgfhkvAi/El+OP4Q/h7+N f4kfIagRzAgehAgCj1BAWE/YR2gh3CT0EUaI6kQLohcxlphJXEGsINYRLxOf EN+TSCRjkjspiiQkLSdVkI6SrpJ6SJ/JGmRrMoucQpaT15EPkC+QH5LfUygU c4ovJZkio6yj1FAuUZ5RPqlQVexU2Co8lWUqVSoNKrdV3qgSVM1UmarzVAtV y1VPqN5UHVQjqJmrsdQ4akvVqtSa1brVhtWp6g7qEeo56mvVD6lfU+/XwGmY awRo8DSKNPZqXNLopaKoJlQWlUtdRd1HvUzto2FpFjQ2LZNWSjtC66QNaWpo OmvGay7UrNI8q6nQQmmZa7G1srXWax3Xuq/1ZZr+NOY0/rQ10+qm3Z72UXu6 tq82X7tEu177nvYXHbpOgE6WzkadRp2numhda90o3XzdnbqXdQen06Z7TudO L5l+fPojPVjPWi9ab5HeXr0OvWF9A/0gfbH+Nv1L+oMGWga+BpkGmw3OGQwY Ug29DYWGmw3PG76ia9KZ9Gx6Bb2NPmSkZxRsJDfaY9RpNGJsYRxnvNK43vip CdGEYZJustmk1WTI1NA03HSxaa3pIzOCGcMsw2yrWbvZR3ML8wTz1eaN5v0W 2hZsi0KLWosnlhRLH8sFltWWd62wVgyrLKsdVresYWsX6wzrKuubNrCNq43Q ZodN1wzMDPcZohnVM7ptybZM2zzbWtseOy27MLuVdo12b2aazkyeuXFm+8zv 9i722fb77B87aDiEOKx0aHF452jtyHWscrzrRHEKdFrm1OT01tnGme+80/mB C9Ul3GW1S6vLN1c3V4lrneuAm6lbqtt2t24GjRHJWMu46o5x93Nf5n7G/bOH q4fM47jH7562nlmehzz7Z1nM4s/aN6vXy9iL47XHS+FN90713u2t8DHy4fhU +zz3NfHl+e73fcm0YmYyDzPf+Nn7SfxO+X1kebCWsC74o/yD/Ev8OwM0AuIC KgOeBRoHCgJrA4eCXIIWBV0IxgSHBm8M7mbrs7nsGvZQiFvIkpC2UHJoTGhl 6PMw6zBJWEs4HB4Svin8yWyz2aLZjREggh2xKeJppEXkgsjTUdioyKiqqBfR DtGLo9tjqDHzYw7FfIj1i10f+zjOMk4e1xqvGp8SXxP/McE/oSxBkTgzcUni jSTdJGFSUzIuOT55f/LwnIA5W+b0pbikFKfcn2sxd+Hca/N052XPOztfdT5n /olUTGpC6qHUr5wITjVnOI2dtj1tiMvibuW+5vnyNvMG+F78Mv7LdK/0svR+ gZdgk2AgwyejPGNQyBJWCt9mBmfuyvyYFZF1IGs0OyG7Pgefk5rTLNIQZYna cg1yF+Z2iW3ExWLFAo8FWxYMSUIl+6WQdK60SUZDCqMOuaX8B3lPnndeVd6n /Pj8EwvVF4oWdhRYF6wpeFkYWPjzIvQi7qLWxUaLVyzuWcJcsmcptDRtaesy k2VFy/qWBy0/uIK4ImvFLyvtV5at/GNVwqqWIv2i5UW9PwT9UFusUiwp7l7t uXrXj+gfhT92rnFas23N9xJeyfVS+9Ly0q9ruWuv/+TwU8VPo+vS13Wud12/ cwN2g2jD/Y0+Gw+WqZcVlvVuCt/UsJm+uWTzH1vmb7lW7ly+aytxq3yroiKs ommb6bYN275WZlTeq/Krqt+ut33N9o87eDtu7/TdWbdLf1fpri+7hbsf7Ana 01BtXl2+F7s3b++LffH72n9m/FyzX3d/6f5vB0QHFAejD7bVuNXUHNI7tL4W rpXXDhxOOXzriP+Rpjrbuj31WvWlR8FR+dFXx1KP3T8eerz1BONE3Umzk9tP UU+VNEANBQ1DjRmNiqakpq7mkObWFs+WU6ftTh84Y3Sm6qzm2fXniOeKzo2e Lzw/fEF8YfCi4GJv6/zWx5cSL91ti2rrvBx6+eqVwCuX2pnt5696XT1zzeNa 83XG9cYbrjcaOlw6Tv3i8supTtfOhptuN5tuud9q6ZrVde62z+2Ld/zvXLnL vnvj3ux7Xffj7j/oTulWPOA96H+Y/fDto7xHI4+XP8E8KXmq9rT8md6z6l+t fq1XuCrO9vj3dDyPef64l9v7+jfpb1/7il5QXpS/NHxZ0+/Yf2YgcODWqzmv +l6LX48MFv9D/R/b31i+Ofm77+8dQ4lDfW8lb0ffrX2v8/7AH85/tA5HDj/7 kPNh5GPJJ51PBz8zPrd/SfjyciT/K+5rxTerby3fQ78/Gc0ZHRVzJJzxUgCF NDg9HYB3B5A7QxIA1FtI/TBnop4eN2jiDjBO4D/xRM09bq4A1CG1dBRSu7O6 ATi6DylnEX3VFAAikZtJrDuAnZyUbbL2Ha/TxwyL3Fh2h31Ly0kD/8Ymavg/ 5f33HoypOoO/9/8ENvgTOg== "], "RGB", "XYZ"], Interleaving -> True, MetaInformation -> <|"XMP" -> <||>|>], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{346., 61.}, PlotRange->{{0, 346.}, {0, 61.}}]], "Text", CellChangeTimes->{3.92176000874265*^9}, CellLabel-> "In[408]:=",ExpressionUUID->"aa025d90-5201-463b-b0f5-3d814dcbd3e8"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Clear", "[", "\[ScriptCapitalL]", "]"}], "\[IndentingNewLine]", RowBox[{" ", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"d\[Zeta]dR", " "}], RowBox[{"-", "1"}]], " ", "R", " ", RowBox[{"\[Rho]", "[", "R", "]"}], SqrtBox[ RowBox[{"1", "+", RowBox[{ SuperscriptBox["R", "4"], RowBox[{"f", "[", "R", "]"}], SuperscriptBox[ RowBox[{ RowBox[{"\[Rho]", "'"}], "[", "R", "]"}], "2"]}]}]]}], "/.", "changeRto\[Zeta]"}], "/.", "rulef"}], "/.", RowBox[{"R", "\[Rule]", RowBox[{"Rconf", " ", "/", "\[Zeta]"}]}]}], "/.", RowBox[{"\[Rho]", "->", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", "Rconf", ")"}], RowBox[{"-", "1"}]], RowBox[{"\[Rho]t", "[", "#", "]"}]}], "&"}], ")"}]}]}], "/.", "rulef"}], "/.", RowBox[{"Q", "->", "5"}]}], "//", "Simplify"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[ScriptCapitalL]", "[", "\[Zeta]_", "]"}], "=", RowBox[{ SuperscriptBox["Rconf", RowBox[{"-", "1"}]], "%"}]}]}], "Input", CellChangeTimes->{{3.921653548928135*^9, 3.921653627949162*^9}, { 3.921653691262238*^9, 3.921653697771696*^9}, {3.9216541179777727`*^9, 3.921654125391624*^9}, {3.921656594447818*^9, 3.921656604275363*^9}, 3.921760113367313*^9, {3.921760143425295*^9, 3.921760183233221*^9}, { 3.921767408592514*^9, 3.9217674202913446`*^9}, {3.922095549796821*^9, 3.922095585144804*^9}, {3.922095629872468*^9, 3.922095696088894*^9}, { 3.922106725249013*^9, 3.922106741087491*^9}, 3.9221067821529083`*^9, { 3.9221069761248827`*^9, 3.9221069879035892`*^9}, {3.922107133327043*^9, 3.922107133821217*^9}}, CellLabel->"In[96]:=",ExpressionUUID->"7ea45a91-557c-4536-9af0-ebff55607b29"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{"Rconf", " ", RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SuperscriptBox["\[Zeta]", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]", "4"], " ", "\[Mu]t"}]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "2"]}]}]]}], SuperscriptBox["\[Zeta]", "3"]]}]], "Output", CellChangeTimes->{{3.921653569986945*^9, 3.921653628468346*^9}, 3.9216536983816957`*^9, {3.921654121205229*^9, 3.921654125616543*^9}, { 3.9216566049340343`*^9, 3.921656607225134*^9}, 3.921656778355277*^9, 3.921656831784124*^9, 3.921658813848873*^9, 3.921660283274584*^9, { 3.9216605485585737`*^9, 3.921660552102536*^9}, {3.921760000745064*^9, 3.921760011041176*^9}, {3.9217601141927843`*^9, 3.9217601160414753`*^9}, { 3.9217601663886766`*^9, 3.921760213471957*^9}, 3.9217674204570723`*^9, 3.921900722528732*^9, 3.922095546209673*^9, 3.922095585523817*^9, { 3.922095619483576*^9, 3.922095724187961*^9}, {3.922106709693966*^9, 3.922106741403687*^9}, 3.922106782385416*^9, 3.922106988589555*^9, { 3.922107134394552*^9, 3.9221071450524406`*^9}, {3.92210719162042*^9, 3.922107201909429*^9}, 3.922197908604*^9, 3.967863951968542*^9, 3.967868002297835*^9}, CellLabel->"Out[97]=",ExpressionUUID->"944f3ece-b8cf-4bc0-bc37-a985af2a9c66"], Cell[BoxData[ RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ SuperscriptBox["\[Zeta]", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", "\[Mu]t"}], ")"}]}], "-", RowBox[{ SuperscriptBox["\[Zeta]", "4"], " ", "\[Mu]t"}]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "2"]}]}]]}], SuperscriptBox["\[Zeta]", "3"]]}]], "Output", CellChangeTimes->{{3.921653569986945*^9, 3.921653628468346*^9}, 3.9216536983816957`*^9, {3.921654121205229*^9, 3.921654125616543*^9}, { 3.9216566049340343`*^9, 3.921656607225134*^9}, 3.921656778355277*^9, 3.921656831784124*^9, 3.921658813848873*^9, 3.921660283274584*^9, { 3.9216605485585737`*^9, 3.921660552102536*^9}, {3.921760000745064*^9, 3.921760011041176*^9}, {3.9217601141927843`*^9, 3.9217601160414753`*^9}, { 3.9217601663886766`*^9, 3.921760213471957*^9}, 3.9217674204570723`*^9, 3.921900722528732*^9, 3.922095546209673*^9, 3.922095585523817*^9, { 3.922095619483576*^9, 3.922095724187961*^9}, {3.922106709693966*^9, 3.922106741403687*^9}, 3.922106782385416*^9, 3.922106988589555*^9, { 3.922107134394552*^9, 3.9221071450524406`*^9}, {3.92210719162042*^9, 3.922107201909429*^9}, 3.922197908604*^9, 3.967863951968542*^9, 3.9678680023136225`*^9}, CellLabel->"Out[98]=",ExpressionUUID->"9f100f48-3b29-4efe-9d78-21fcea539980"] }, Open ]], Cell[TextData[{ "Note the scaling as \[ScriptCapitalL] ", Cell[BoxData[ FormBox[ RowBox[{"\[Proportional]", SubscriptBox["R", "conf"]}], TraditionalForm]],ExpressionUUID-> "e71fff42-0861-4a68-8909-e180ed8dfb50"], ", that we are factoring out. " }], "Text", CellChangeTimes->{{3.922106742661421*^9, 3.922106779719117*^9}},ExpressionUUID->"0fab98fc-b122-4ab4-8f92-\ 63ceddfc40d7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalL]", "[", "\[Zeta]", "]"}], "/.", RowBox[{"ansatzUV", "[", "6", "]"}]}], "//", "Simplify"}]], "Input", CellChangeTimes->{{3.922095679918559*^9, 3.922095690770392*^9}, { 3.92209572705294*^9, 3.922095759011629*^9}, {3.922106790903803*^9, 3.922106794321883*^9}, {3.922107253548751*^9, 3.922107254269701*^9}}, CellLabel->"In[99]:=",ExpressionUUID->"51d4889f-326c-485b-a27a-5cbb7f6032d5"], Cell[BoxData[ InterpretationBox[ RowBox[{ RowBox[{"-", FractionBox["a00", SuperscriptBox["\[Zeta]", "3"]]}], "+", FractionBox["1", RowBox[{"8", " ", "a00", " ", "\[Zeta]"}]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"7", "+", RowBox[{"128", " ", SuperscriptBox["a00", "3"], " ", "a40"}], "+", RowBox[{"4", " ", RowBox[{"Log", "[", "\[Zeta]", "]"}]}]}], ")"}], " ", "\[Zeta]"}], RowBox[{"128", " ", SuperscriptBox["a00", "3"]}]], "+", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"173", "-", RowBox[{"6144", " ", SuperscriptBox["a00", "3"], " ", "a40"}], "-", RowBox[{"147456", " ", SuperscriptBox["a00", "6"], " ", SuperscriptBox["a40", "2"]}], "-", RowBox[{"768", " ", SuperscriptBox["a00", "4"], " ", "\[Mu]t"}], "-", RowBox[{"192", " ", RowBox[{"Log", "[", "\[Zeta]", "]"}]}], "-", RowBox[{"9216", " ", SuperscriptBox["a00", "3"], " ", "a40", " ", RowBox[{"Log", "[", "\[Zeta]", "]"}]}], "-", RowBox[{"144", " ", SuperscriptBox[ RowBox[{"Log", "[", "\[Zeta]", "]"}], "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]", "3"]}], RowBox[{"18432", " ", SuperscriptBox["a00", "5"]}]], "+", InterpretationBox[ SuperscriptBox[ RowBox[{"O", "[", "\[Zeta]", "]"}], "4"], SeriesData[$CellContext`\[Zeta], 0, {}, -3, 4, 1], Editable->False]}], SeriesData[$CellContext`\[Zeta], 0, {-$CellContext`a00, 0, Rational[1, 8]/$CellContext`a00, 0, Rational[1, 128] $CellContext`a00^(-3) (7 + 128 $CellContext`a00^3 $CellContext`a40 + 4 Log[$CellContext`\[Zeta]]), 0, Rational[1, 18432] $CellContext`a00^(-5) (173 - 6144 $CellContext`a00^3 $CellContext`a40 - 147456 $CellContext`a00^6 $CellContext`a40^2 - 768 $CellContext`a00^4 $CellContext`\[Mu]t - 192 Log[$CellContext`\[Zeta]] - 9216 $CellContext`a00^3 $CellContext`a40 Log[$CellContext`\[Zeta]] - 144 Log[$CellContext`\[Zeta]]^2)}, -3, 4, 1], Editable->False]], "Output", CellChangeTimes->{ 3.922095691140903*^9, {3.922095724563993*^9, 3.9220957593516617`*^9}, { 3.92210678406667*^9, 3.922106794554*^9}, 3.9221069901972713`*^9, { 3.922107145538622*^9, 3.922107193038604*^9}, {3.922107249122238*^9, 3.922107254776185*^9}, 3.922197908706215*^9, 3.967863957185384*^9, 3.9678680024079094`*^9}, CellLabel->"Out[99]=",ExpressionUUID->"d968845a-293c-47c7-8b2b-9871f336c44b"] }, Open ]], Cell["Then the counterterms that we have to consider are:", "Text", CellChangeTimes->{{3.9221068005330667`*^9, 3.9221068112644873`*^9}},ExpressionUUID->"84eb7fb2-da08-4432-b0a6-\ 14b919395e4c"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalL]ct", "[", "\[Zeta]_", "]"}], "=", RowBox[{ RowBox[{"-", FractionBox["a00", SuperscriptBox["\[Zeta]", "3"]]}], "+", FractionBox["1", RowBox[{"8", " ", "a00", " ", "\[Zeta]"}]]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Sct", "[", RowBox[{"a00_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{"Integrate", "[", RowBox[{ RowBox[{"\[ScriptCapitalL]ct", "[", "\[Zeta]", "]"}], ",", "\[Zeta]"}], "]"}], "//", "Simplify"}]}]}], "Input", CellChangeTimes->{{3.922106816598631*^9, 3.922106837399411*^9}, 3.9221071514033127`*^9, {3.9221072386104517`*^9, 3.922107259832094*^9}, { 3.967863967493626*^9, 3.967863967977536*^9}}, CellLabel-> "In[100]:=",ExpressionUUID->"02bd9cd4-a609-4657-8bda-8b06d1e80f8a"], Cell[BoxData[ RowBox[{ FractionBox["a00", RowBox[{"2", " ", SuperscriptBox["\[Zeta]", "2"]}]], "+", FractionBox[ RowBox[{"Log", "[", "\[Zeta]", "]"}], RowBox[{"8", " ", "a00"}]]}]], "Output", CellChangeTimes->{{3.922107239189827*^9, 3.9221072770057707`*^9}, 3.922197908715951*^9, {3.967863959321466*^9, 3.967863968711717*^9}, 3.9678680024408913`*^9}, CellLabel-> "Out[101]=",ExpressionUUID->"e99f4fc3-aae4-4885-89f1-83d796d4b550"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Sct", "[", RowBox[{"a00", ",", "\[Zeta]"}], "]"}]], "Input", CellChangeTimes->{{3.922110019385818*^9, 3.922110021341516*^9}, { 3.967863972161831*^9, 3.9678639740152636`*^9}}, CellLabel-> "In[102]:=",ExpressionUUID->"57d6962c-e07c-46d4-bdb5-8841eefbf611"], Cell[BoxData[ RowBox[{ FractionBox["a00", RowBox[{"2", " ", SuperscriptBox["\[Zeta]", "2"]}]], "+", FractionBox[ RowBox[{"Log", "[", "\[Zeta]", "]"}], RowBox[{"8", " ", "a00"}]]}]], "Output", CellChangeTimes->{ 3.922110022925411*^9, 3.9221979087194853`*^9, {3.9678639637935896`*^9, 3.967863974515587*^9}, 3.967868002455838*^9}, CellLabel-> "Out[102]=",ExpressionUUID->"577acf1c-4f99-4ed8-9214-00accc0cdf5a"] }, Open ]], Cell["\<\ Here we fic \[Mu] to zero, otherwhise the integrand would be different\ \>", "Text", CellChangeTimes->{{3.9678639795347805`*^9, 3.967863994377695*^9}},ExpressionUUID->"f010cdc8-82da-46bd-becb-\ bbd0e7f0757b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"integrand", "[", RowBox[{"a00_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalL]", "[", "\[Zeta]", "]"}], "-", RowBox[{"\[ScriptCapitalL]ct", "[", "\[Zeta]", "]"}]}], "/.", RowBox[{"\[Mu]t", "\[Rule]", "0"}]}]}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.9221068634881563`*^9, 3.922106932158584*^9}, 3.922107237825255*^9, {3.9678640098877535`*^9, 3.967864015023842*^9}}, CellLabel-> "In[103]:=",ExpressionUUID->"084fd101-313b-4f75-bd88-c7090f93a7de"], Cell[BoxData[ RowBox[{ FractionBox["a00", SuperscriptBox["\[Zeta]", "3"]], "-", FractionBox["1", RowBox[{"8", " ", "a00", " ", "\[Zeta]"}]], "-", FractionBox[ RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{"1", "-", SuperscriptBox["\[Zeta]", "6"]}], ")"}], " ", SuperscriptBox[ RowBox[{ SuperscriptBox["\[Rho]t", "\[Prime]", MultilineFunction->None], "[", "\[Zeta]", "]"}], "2"]}]}]]}], SuperscriptBox["\[Zeta]", "3"]]}]], "Output", CellChangeTimes->{{3.922106865634721*^9, 3.922106932531337*^9}, { 3.9221071468099833`*^9, 3.922107194979158*^9}, 3.922107231204908*^9, { 3.9221072641032248`*^9, 3.922107277208186*^9}, 3.922197908730607*^9, { 3.9678639759656334`*^9, 3.9678640153419633`*^9}, 3.9678680024717083`*^9}, CellLabel-> "Out[103]=",ExpressionUUID->"228e0a98-13a7-4be1-90be-b8867b5ead67"] }, Open ]], Cell["\<\ To minimize the error, we use the expansion to compute the integral from \ \[Epsilon]UV to zero analitically.\ \>", "Text", CellChangeTimes->{{3.9678645107952833`*^9, 3.967864536057175*^9}},ExpressionUUID->"a5633c1c-e125-430d-a117-\ ac5a2e594db9"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", "integrandUV", "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"integrandUV", "[", RowBox[{"a00_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"integrand", "[", RowBox[{"a00", ",", "\[Zeta]"}], "]"}], "/.", RowBox[{"ansatzUV", "[", "orUV", "]"}]}], "/.", RowBox[{"\[Mu]t", "\[Rule]", "0"}]}], "//", "Normal"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Integrate", "[", RowBox[{"%", ",", "\[Zeta]"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SUV", "[", RowBox[{"a00_", ",", "a40_", ",", "\[Zeta]_"}], "]"}], "=", RowBox[{ RowBox[{"%", "-", RowBox[{"(", RowBox[{"Limit", "[", RowBox[{"%", ",", RowBox[{"\[Zeta]", "\[Rule]", " ", "0"}]}], "]"}], ")"}]}], "//", "Simplify"}]}]}], "Input", CellChangeTimes->{{3.967864409829963*^9, 3.9678645064427557`*^9}, { 3.967864543282811*^9, 3.967864612996149*^9}}, CellLabel-> "In[104]:=",ExpressionUUID->"968612f1-353d-487c-aaa1-4818ac91a91b"], Cell[BoxData[ RowBox[{ FractionBox["1", RowBox[{"141557760000", " ", SuperscriptBox["a00", "9"]}]], RowBox[{ SuperscriptBox["\[Zeta]", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"389760000", " ", SuperscriptBox["a00", "4"], " ", SuperscriptBox["\[Zeta]", "2"]}], "-", RowBox[{"7372800000", " ", SuperscriptBox["a00", "7"], " ", "a40", " ", SuperscriptBox["\[Zeta]", "2"]}], "-", RowBox[{"283115520000", " ", SuperscriptBox["a00", "10"], " ", SuperscriptBox["a40", "2"], " ", SuperscriptBox["\[Zeta]", "2"]}], "-", RowBox[{"33340000", " ", SuperscriptBox["a00", "2"], " ", SuperscriptBox["\[Zeta]", "4"]}], "-", RowBox[{"8985600000", " ", SuperscriptBox["a00", "5"], " ", "a40", " ", SuperscriptBox["\[Zeta]", "4"]}], "-", RowBox[{"1474560000", " ", SuperscriptBox["a00", "8"], " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"100", " ", SuperscriptBox["a40", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]", "4"]}], "-", RowBox[{"39286547", " ", SuperscriptBox["\[Zeta]", "6"]}], "-", RowBox[{"2690664960", " ", SuperscriptBox["a00", "3"], " ", "a40", " ", SuperscriptBox["\[Zeta]", "6"]}], "+", RowBox[{"14155776000", " ", SuperscriptBox["a00", "9"], " ", "a40", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{ RowBox[{"(", RowBox[{"2", "+", RowBox[{"56", " ", SuperscriptBox["a40", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]", "6"]}]}], ")"}]}], "+", RowBox[{"1843200", " ", SuperscriptBox["a00", "6"], " ", RowBox[{"(", RowBox[{"1500", "+", RowBox[{ RowBox[{"(", RowBox[{"317", "+", RowBox[{"4948", " ", SuperscriptBox["a40", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]", "6"]}]}], ")"}]}], "-", RowBox[{"240", " ", RowBox[{"(", RowBox[{ RowBox[{"960000", " ", SuperscriptBox["a00", "4"], " ", SuperscriptBox["\[Zeta]", "2"]}], "+", RowBox[{"73728000", " ", SuperscriptBox["a00", "7"], " ", "a40", " ", SuperscriptBox["\[Zeta]", "2"]}], "+", RowBox[{"1170000", " ", SuperscriptBox["a00", "2"], " ", SuperscriptBox["\[Zeta]", "4"]}], "+", RowBox[{"38400000", " ", SuperscriptBox["a00", "5"], " ", "a40", " ", SuperscriptBox["\[Zeta]", "4"]}], "+", RowBox[{"350347", " ", SuperscriptBox["\[Zeta]", "6"]}], "-", RowBox[{"2375040", " ", SuperscriptBox["a00", "3"], " ", "a40", " ", SuperscriptBox["\[Zeta]", "6"]}], "-", RowBox[{"1843200", " ", SuperscriptBox["a00", "6"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{"1", "+", RowBox[{"84", " ", SuperscriptBox["a40", "2"]}]}], ")"}], " ", SuperscriptBox["\[Zeta]", "6"]}]}], ")"}]}]}], ")"}], " ", RowBox[{"Log", "[", "\[Zeta]", "]"}]}], "-", RowBox[{"7200", " ", RowBox[{"(", RowBox[{ RowBox[{"38400", " ", SuperscriptBox["a00", "4"], " ", SuperscriptBox["\[Zeta]", "2"]}], "+", RowBox[{"20000", " ", SuperscriptBox["a00", "2"], " ", SuperscriptBox["\[Zeta]", "4"]}], "-", RowBox[{"1237", " ", SuperscriptBox["\[Zeta]", "6"]}], "-", RowBox[{"322560", " ", SuperscriptBox["a00", "3"], " ", "a40", " ", SuperscriptBox["\[Zeta]", "6"]}]}], ")"}], " ", SuperscriptBox[ RowBox[{"Log", "[", "\[Zeta]", "]"}], "2"]}], "+", RowBox[{"24192000", " ", SuperscriptBox["\[Zeta]", "6"], " ", SuperscriptBox[ RowBox[{"Log", "[", "\[Zeta]", "]"}], "3"]}]}], ")"}]}]}]], "Output", CellChangeTimes->{{3.9678644527236795`*^9, 3.9678645068601723`*^9}, { 3.9678645373281307`*^9, 3.967864562377446*^9}, {3.967864602370217*^9, 3.9678646136096134`*^9}, 3.9678680037353277`*^9}, CellLabel-> "Out[107]=",ExpressionUUID->"32e5fe05-430b-4659-a82a-4dd6b605c03b"] }, Open ]], Cell["\<\ We can compute the subleading coefficients from the near value of the \ following combinations:\ \>", "Text", CellChangeTimes->{{3.9221073017693043`*^9, 3.9221073326804028`*^9}},ExpressionUUID->"63691da1-ff34-413f-b986-\ 3583db413de7"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Limit", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"13", " ", "\[Zeta]"}], "+", RowBox[{"12", " ", "\[Zeta]", " ", RowBox[{"Log", "[", "\[Zeta]", "]"}]}], "-", RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "3"], " ", RowBox[{ SuperscriptBox["\[Rho]t", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}], RowBox[{"384", " ", "\[Zeta]", " ", SuperscriptBox[ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "3"]}]]}]}], "}"}], "/.", RowBox[{"ansatzUV", "[", "4", "]"}]}], "//", "Simplify"}], ",", RowBox[{"\[Zeta]", "->", "0"}]}], "]"}]], "Input", CellChangeTimes->{{3.922107336190447*^9, 3.922107376443967*^9}}, CellLabel-> "In[108]:=",ExpressionUUID->"116c292c-74d0-4fd9-a326-ad37739d3f50"], Cell[BoxData[ RowBox[{"{", RowBox[{"a00", ",", "a40"}], "}"}]], "Output", CellChangeTimes->{{3.922107343794942*^9, 3.922107379722722*^9}, 3.922197908812541*^9, 3.9678640185760536`*^9, 3.9678650250929117`*^9, 3.9678680038601894`*^9}, CellLabel-> "Out[108]=",ExpressionUUID->"bb25748a-a8b8-4270-b6aa-7a46c8325199"] }, Open ]], Cell[BoxData[{ RowBox[{"Clear", "[", RowBox[{"computeEverything", ",", "computeEverythingIR"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"computeEverything", "[", RowBox[{"\[Zeta]s_", ",", RowBox[{"compute_", ":", "True"}]}], "]"}], ":=", RowBox[{"Block", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"a00now", ",", "a40now", ",", "EEnow"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"If", "[", RowBox[{"compute", ",", RowBox[{ RowBox[{"computeSolFIX", "[", "\[Zeta]s", "]"}], ";"}]}], "]"}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"a00now", ",", "a40now"}], "}"}], "=", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"13", " ", "\[Zeta]"}], "+", RowBox[{"12", " ", "\[Zeta]", " ", RowBox[{"Log", "[", "\[Zeta]", "]"}]}], "-", RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "3"], " ", RowBox[{ SuperscriptBox["\[Rho]t", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}], RowBox[{"384", " ", "\[Zeta]", " ", SuperscriptBox[ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "3"]}]]}]}], "}"}], "/.", RowBox[{"\[Zeta]", "->", "\[Epsilon]UVnow"}]}], "/.", RowBox[{"solnumerical", "[", "\[Zeta]s", "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"EEnow", "=", RowBox[{ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ RowBox[{"integrand", "[", RowBox[{"a00now", ",", "\[Zeta]"}], "]"}], "/.", RowBox[{"solnumerical", "[", "\[Zeta]s", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{"solnumerical", "[", "\[Zeta]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], ",", RowBox[{ RowBox[{"solnumerical", "[", "\[Zeta]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "wpc"}], ",", RowBox[{"AccuracyGoal", "\[Rule]", "acc"}]}], "]"}], "+", " ", RowBox[{"SUV", "[", RowBox[{"a00now", ",", "a40now", ",", RowBox[{ RowBox[{"solnumerical", "[", "\[Zeta]s", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}]}], "]"}], "-", RowBox[{"Sct", "[", RowBox[{"a00now", ",", "\[Zeta]s"}], "]"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"a00now", ",", "EEnow", ",", "\[Zeta]s", ",", "a40now"}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"computeEverythingIR", "[", RowBox[{"\[Rho]IRnow_", ",", RowBox[{"compute_", ":", "True"}]}], "]"}], ":=", RowBox[{"Block", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"a00now", ",", "a40now", ",", "EEnow"}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"If", "[", RowBox[{"compute", ",", RowBox[{ RowBox[{"computeSolIRFIX", "[", "\[Rho]IRnow", "]"}], ";"}]}], "]"}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{"a00now", ",", "a40now"}], "}"}], "=", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], ",", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"13", " ", "\[Zeta]"}], "+", RowBox[{"12", " ", "\[Zeta]", " ", RowBox[{"Log", "[", "\[Zeta]", "]"}]}], "-", RowBox[{"16", " ", SuperscriptBox[ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "3"], " ", RowBox[{ SuperscriptBox["\[Rho]t", TagBox[ RowBox[{"(", "3", ")"}], Derivative], MultilineFunction->None], "[", "\[Zeta]", "]"}]}]}], RowBox[{"384", " ", "\[Zeta]", " ", SuperscriptBox[ RowBox[{"\[Rho]t", "[", "\[Zeta]", "]"}], "3"]}]]}]}], "}"}], "/.", RowBox[{"\[Zeta]", "->", "\[Epsilon]UVnow"}]}], "/.", RowBox[{"solnumericalIR", "[", "\[Rho]IRnow", "]"}]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"EEnow", "=", RowBox[{ RowBox[{"NIntegrate", "[", RowBox[{ RowBox[{ RowBox[{"integrand", "[", RowBox[{"a00now", ",", "\[Zeta]"}], "]"}], "/.", RowBox[{"solnumericalIR", "[", "\[Rho]IRnow", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Zeta]", ",", RowBox[{ RowBox[{"solnumericalIR", "[", "\[Rho]IRnow", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "2"}], "]"}], "]"}], ",", RowBox[{ RowBox[{"solnumericalIR", "[", "\[Rho]IRnow", "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "2", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"WorkingPrecision", "\[Rule]", "wpc"}], ",", RowBox[{"AccuracyGoal", "\[Rule]", "acc"}]}], "]"}], "-", FractionBox["a00now", "2"]}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"a00now", ",", "EEnow", ",", "\[Rho]IRnow", ",", "a40now"}], "}"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.922107400543754*^9, 3.922107527286919*^9}, { 3.922107603814163*^9, 3.922107609612896*^9}, {3.922107641386341*^9, 3.9221076493089*^9}, {3.92210769913686*^9, 3.922107870705677*^9}, { 3.967864029233429*^9, 3.9678640629049263`*^9}, {3.9678643522593107`*^9, 3.9678643742060795`*^9}, {3.9678646330740795`*^9, 3.967864676837498*^9}, { 3.967864779650963*^9, 3.9678648119376535`*^9}, {3.967864845742697*^9, 3.967864863323841*^9}, 3.967865563140829*^9, {3.967865692724778*^9, 3.96786569294078*^9}}, CellLabel-> "In[109]:=",ExpressionUUID->"4ad41725-716c-4b7e-abc7-7bcff8266759"], Cell["Examples:", "Text", CellChangeTimes->{{3.9221078718257027`*^9, 3.9221078799712753`*^9}},ExpressionUUID->"2b30265c-589b-4122-ba78-\ 45ac04394dba"], Cell[BoxData[ RowBox[{ RowBox[{"\[Epsilon]UVnow", "=", SuperscriptBox["10", RowBox[{"-", "5"}]]}], ";"}]], "Input", CellChangeTimes->{{3.967865068555353*^9, 3.9678651864983344`*^9}, { 3.9678656022162356`*^9, 3.967865608253415*^9}}, CellLabel-> "In[112]:=",ExpressionUUID->"92d6ac0c-45c6-4d54-81e2-d968ab9c79b8"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"computeEverything", "[", RowBox[{ RowBox[{"1", "/", "2"}], ",", "True"}], "]"}], "\[IndentingNewLine]", RowBox[{"plotSol", "[", RowBox[{"solnumerical", "[", RowBox[{"1", "/", "2"}], "]"}], "]"}]}], "Input", CellChangeTimes->{{3.9221074605908117`*^9, 3.922107465701828*^9}, { 3.922107580141377*^9, 3.922107585355918*^9}, {3.922107883755089*^9, 3.9221078953524218`*^9}, {3.9678648709611635`*^9, 3.9678648748131795`*^9}, { 3.9678655810978675`*^9, 3.967865591709882*^9}}, CellLabel-> "In[113]:=",ExpressionUUID->"40181b4d-018d-4005-bb58-70a5bc161f61"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.3887131950850789252120394317699789308216163426517244785309`40.", ",", RowBox[{ "-", "0.163879377674855582852933360631869173027380443249573818688`40."}], ",", FractionBox["1", "2"], ",", RowBox[{ "-", "0.6551992324319419474616268034271453242252603825739693091563`40."}]}]\ , "}"}]], "Output", CellChangeTimes->{{3.9678651060787544`*^9, 3.9678651882327456`*^9}, 3.9678652829763956`*^9, {3.967865592808839*^9, 3.96786561025351*^9}, 3.967865697760935*^9, 3.967866673530072*^9, 3.9678680042877293`*^9}, CellLabel-> "Out[113]=",ExpressionUUID->"3814b615-6df0-43fb-90b0-91a29a3c3cd2"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nk018sbB/BChURKsu9Rt0JdJZVCUciaKEsIhRTZUpK4SCVb1i/hypJ9 ufbobYtosSQ+xPcjSiX5WYok9Zv+mDPndZ6ZM+eZM/PMSJ5xNXZgWbZsWRtp f3qjG0IGBcMUph1HQ8u/v3vMYYH9f2yoOOPGdNyE0cPjHH/MviGvWaBBCQbK SRX5xB95hwwbXxyA3OZujT+2v3lzcteFw2ByRBTmEfcEp5Xd9tDGw2ddC7nE h4Oqr9JX9BF3iiHzx+bqThJC9UbIT/4on0McXe/1z+FDJvh+tVbgIXH7wcCx iy2mSO3bMJJFzIJw7UTtU/gS/fV2JvHeA0n5Tc8tYH/75PoMYve6bJ5Jg9No SVD3TSc+IWauEuZkA8m4osa0P/lZDTtL5tmivFhwKpl4y9DEC115ewy6behl ELeIePwednXApENsUgLxGcsFRe+Ss0gWkHxyj5jxZkVMmpITxuy3bYki3i0c 9mSXtzMCWR+5hBN3m6+bb688D7m9ttGhxJwDYubf9l6Em56PZzBxlmDmndvX XJGYw7s7kPjf/Fgmj7UbxATbzXyJVSeE12amXYKVpfYGF2Kv85s9OqQ94abv PHvuz/7d+bya0eyJQ6tWl9gRr8srzLB38EKkbXu7OXHhuFLvQpY3GvV2+xwh HnNSV5H56wrMhHSNNYjLbrF1T7ZfgWHK4GpV4sCcVufq81dxXsRTdCex2Ce9 ZP0CX0gWONYIEZs6mv/2UbwOt9+mkXzEMqGiCYe6riPM47EmN/FM9rAit7s/ 0DGnv5y41ePvkq5TN+Cl/3vgPU3B7r/qkbNJARB8+J16SJy0s0UzSiwIMw27 vqYSB2rINVZ7BcGWTf5THLGjceiBkedBMBw/ZhNEvNtdR/lv32D8WNr+jxVx Z8nLza/7QsC6vonBTsy2o2+1YNQt5EQYGi0xKYyr7QlV/3gLWwvuvJ0m7jJM ZHM+eBva61ZFDBCnuFks1Xy5DbeZedFcYpVietJSJwya6e85NYgvKnzsSmON wAUGZaFEbHJQW7/NPAIOqk4hssT7DHLbp0si4Khk7chJHKRcYSupGInhvf7W nUMUjM18zN2ZkVhBRQueIJ6I+6nLty8a5o/zy9QHKUjyr1A4+TUG/PrfLikS x0lwiXOIxsKbI3ONODHX1vU8NZqxyEveNbz4hsLcQcn/CcfHwoD75/R/xM+d VItolTgsKxNvFSX2rvNSOOcfDxWLawpUP4nbjyl4czKQNe1c2Uis4fpFXO5v BtQCGaIFxJVXvvJQFgx02FcGBRCnh7NMqRQwcCy1qW4z8eUqseIlgyR4Bv/s d6MoSHGZKQbHJsPzllnJh14KPv+1KsZIpEIrQfbGS+JJE/Z2n6OpyK+3kC8n dpg7amfllgqnFzObA4mNVdpjZetJPD4/Tog4zvqs36BCGqqL1x7XfE3h0nvH kYsdaXjB5aAZ+IqC7PSF/Hvc6fiVtu2XPfGIOvdCsFQ6Agy3xh0hvh9dqOmz Ox08z1vtuIj5lP7HtDydjiwfI6+YbgrLL7vxyham43CGpltKF4XBn+7eVXoP wNJoXZPYQSGK3UdtKCwDIcXzN7yIj6kInLqRnoEAvccSRsTszlWXpKsy8Gng 5edVxNeffU93Gs3A7BCKPF5ScA6/smJOJRMfh6YmDr0g95HPt537Qybq/y3d 1tpO4bv4dRM19WzoBl1WPfmEgrVykOODbzkQSk0z3E5smcMz0MORC79FL3UW 4pPCSborxXKRzStam9dM6u3vEnknrVwcuC+5YamJgnor/VU+Phc2MXImiY0U pM32BdTsyQN7Met8JSh88J5J7PLNx18erMfvVlNwrbB59nt5EZSNfricIHZh n2Af2ViEqbPzVqLEjuaXtZq3F8GK/XtzfhUFm193G0JPFUHHoy6rrZKsr/Wo krekCGtVsyoWyykIfubs5lUsxtWmlTNqpRR+XHV4LE0XI9gmTsogl0ItQyj+ iGoppnpCR14kkHqrIzbYNlEGkzSZmc0hFNZK3T6w8WIleEVshS1dSX1YmJa4 vqkGH8VFrsabUUhdaJAoLqwF78/ZkQ+qFMKctpaJbAXeGipe1RWnUOPy1K5r sh6svu/8+ZdRwB6FnwuKjejmiE3SedOHRrYYE4XwJrBV8/TwlvWhM/TJ3PL3 zciQ2RKTHtaHSYk8uRqZFqi89w/LON0HzupwAX//VqzK8hyLVeyDsoNswpam pwj44KYps9iLM7y1fcOS7fDWzWPONvYiwUvMdtfVZ9AO0/28/k4vmF+Urrg+ eo6UOL7hKJ1eSJ3VNqrY+BKBgtw//Th7cXmGt2rEsgN+8Wvbxlpf43zScaVe vU68Tcx7t9/3NRiq910afnTialyJjanCa3R9UnMRT+4Cs0pQgJfqAXvc6DNW 3W5ELK/mYvfrweEUl86KuW4cnMvn4pLuQWixQfJg3CuIvqiqjX70Cs8adzwN PdyDo1n/+fGdeAV++sKj7LEevBH7UlMw3o1zZpHHY4Nfw9I0w2i9WzcqO0p0 OXb2Ymv96WqXuS7wGG9fPdXdCy0T3oYxpy6c7cn+yyqgDx0aXKJNQ514YnON V1WGwuzI3U4h3U78pa18/zM5l/JudwL71DoQvmM6VOJSPxytbAvvfXqBH9Ir 9j9dN4Cxe6fno02fw4FfwGCuYQByd2OPsWS147U976rZC2/AmCqP7x5/Cv06 +5Az3IP4Faa0z7+nBS0bKh1O1g4icrDtnFNaM7R87LgaTg+hW+fV/W3xzVBr ivqkajuEUM+covG7zdjLXd9SYzcEzrFcHTPfZshniASUOZLxnW9ip080g7/z 9bds9yFQNkErZTib8UHuKB0eMgSBJ88Tj15sQmjftlLLwiF0WFbM3pRuxLPd c2bfl4awqMDW372xES1+Gfp5y5jIL+Dp4ONqRH2zseZpViZusazM9vvagDLj op3N7EzoCKRzvW1uQPJFxzWR65noPV/JybRrgEvWQKPcFiZcneoqRBj1WMOP 7WYmTISz2QdI3a0Hu9UFGU4zJjKXNqaI3KgHS4awcN0pJjT0V5z+4lCPuR0+ 7NLWTITNN3QuKdaDqbdjdNKJiZUhhSb+t4DC4AcJIf5MJOcsqGQ21cHg203W ilwmzqbIDu5/WAf3jONP9hYwAabkjqqwOsQcF7+JIiYe6K4oO3miDlRJBWdb GRNWq6S59ryvhc3F97yDj5koFIhelPz9CO4fNCRYXjHxQeuaVptADeL6l/br LzLxj5C5s+BCNapC2351LzGxyKp57mB/NQaUY+vNltE4Y+jvxZlYDfG4bYdt V9D4Uetdf5u/Gg+NLXQ9eWis40kQj2GvQvWzqlMMaRoh/gHPGY3lGKzz8B7T JfOHL7FGxZcjRaNHqUKfRlNtWdNWl3JYtyrNBhvReNe3c6UWXzlGOr+5bjKj obHqgX67dRk+jl52sj9DY6HngkXc21LMclyzHPGhobVayjOyqBRl4YNCpb40 sjeJn1u6Vgrv9ar9AddpJO/6pSvKX4rvIr9OSAbROGtXVDCqVoJfCjcMbCJo jKotqia/LwSnaZAGM5PGlTvbcyWdC/F84N2ywoc0yhL4VJImCnDXWhN+eTRy WbNrf4/nY63Tyv2iJTTU5niC1rbngv9a6C7LWpr8L7TvNe3NBbXs0+xW0GiN v/9A82EOEoO1SxcbaDxINdDr9HkIkQhOhaRWGhMt1Y8nyTsjlR62eaCbxqVJ iT2iypl4J/tlLOc1DV31LB+NGxnIzNPLvELRmPuWpla6lI7N5dxSgkwa/0Yt PVBXTMe4iuvwx2Eabq/Up1VO/Yu8xx0pVaM0vK67T+1emwr5p5HCJz/ROMJ2 1PzI+vuYOjbdLzdBI92gX+/BFAMlXUYJ85M09mVs3OSXkgB301LT1mka8cJr 1AbWxEHpzboN8V9pKOeLbS/cdA/frD1enZ2ncczgXKLp+QhUvHsVtfsHjbQU LmP+0BD4OCkZrlyiMWic290m6wCVyRju3t80/g+zYyBR "]]}, Annotation[#, "Charting`Private`Tag$10876#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nk01c8bB3ChQiIl2fdoRX2VVBoUhayJsoQsuVJkSyTxRSrZ4uISsu/b 1x49togUru1D3I8oSvKzFEnym/6YM+d1npkz55lz5n1G4qqLkT0zExNTOx5/ Z8P7gvqFYwSad5wIrfj58SW7OZz8awOFBVeG426YODPN/tdsO/Nb+BsVQV8p sbIA+zPPqEHT21Mgu4eu/td2Dx7MHrlxBhjsEUX52H3BqeWP3LUg503PSh72 maAaH/KOHlAv06T/2kyNIi7YYAgFSZ/lcrGjGzz/PXPaGH761PHnYHegwMmb rSaQMrhzPAubGcK1ErQuw7fo748ysY+fSixo7jQHu0eXdmRgu9Vnc8/qX4HW eDXfNOyLombKYRRrkKAWN6X+7c9yzEki3wYqSgTmkrD3js681ZGzgxHXnQM0 7FZh9/UxF3uYtY9NjMe+arGi4FXqAEn8Eq+eYtPeb4xJVaTApN2BvVHYR4XC Xh3xcoJAlhfO4dh0s+3LHVXXQfa4TXQoNsewqNmP4zfBVdfbIxg7SyDz8aO7 LpCQy3M0EPt5QSyD28oVRAU6TH2xVWaEtmWm3gJLC62dztie1/e4d0l5gKue 0+K1v/f3+OsWWosHnN68pdQWe3t+UYadvSdE2nR0mGEXTSsOrGR5QZPuUe+z 2JMUNWXpfXfAVFDHSB27/CErfbbjDhgkj2xRwQ7MbXOque4D14U9RA5ji37R TdIr9AWJQsdaQWwTR7N1b4V74LpuEsmLLR0qEn+65x6Eub/U4MJeyB5T4HLz B+ha0tuA3eb+T2nP5fvgqbc+/IkkkO1/NeMOiQEgkPOTyMFOPNyqESUaBAuN R76nYAeqyzbVeAaBDavcFyq2o1HoqfHOIDCYPm8dhH3UTVvpH99g+LV28F9L 7O7Sd3v6B0OAZUczjQ2b9dDgFoGoh5AbYWC4xiDQtOqxULXPD2F/4eMP89g9 BgmsTugRaG3fHDGMnexqvlb77RG4LiyL5GErl5CzFtphoJH2iUMd+6b8555U lgi4QSPMFbGNkZZeu1kE2KtQQmSwT+jndcyXRoCjopUjB3aQUqWNhEIkjB33 t+oeJZCRqbeZGyMSNhLRAhexZ6i/dXhPRIPZy4JytRECSfBtlL/0PQb49H7c UsCminOKsYvEghd75lYxbM79O7hrNWIhP+nI2Op7Ai0hif8JxcWCPtfv+f+w OykqxaQyFZjKxdpEsL3qPeWv+ceBsvldeWII1+0m5b04aJA171TVhK3u8k1M 9h8aqAbSRAqxq+585ybMadBlVxUUgJ0WzjynXEiD8ynN9Xuwb1eLlqzpJ4JH 8O8hV4JAkpymCsGxSeDx0LR0aoBA3v+1KcSIp4BmvMz9d9izxmwd3udSoKDB XK4C237pnK2lawpQ3i7sCcQ2Uu6IlWnA9bgCqiA21crBb0Q+FWpKtl3Q6CfQ rU+O4ze7UuEtp71GYC+BZOZvFDzlSoM/qQf+2GGPq3GtBEumQYDBfupZ7GfR RRreR9OAu7PNlhObV/F/DIsraZDlbegZQyfQhtuuPDJFaXAmQ8M1uYdAI7/d vKp104G5yao2oYtAUWzeqqNhGRBSsnzfE/u8Mv/l+2kZEKD7UtwQm82p+pZU dQZ8GX73dTP2vTc/0ygTGbA4CsXu7wjkFH5n45JyJnwenZs5/Ra/R17fDq6p TGh4XnagrYNAP8XuGauqZYNO0G2VS68IZKUU5Jj+IxcEU1INDmJb5HIP97Hn gd+qpxoz9iWhRJ1NonmQzSNSl9+C83a9VI6imQennknsXGsmkFob+V0uLg+s Y2SNE5oIJGV6IqD2WD6wlbAsVwGBprwWEnp8C2CfO8uFJzUEcqm0frO+oRiU DH85X8R2ZpthG99VDHMOy5Yi2I5mtzVbDhaDJdvPloJqAln/edIYerkYtN3r s9qr8PmaL6p4Sothm0pW5WoFgQS+ctB5FErAp3nTgmoZgX752L+UIksg2Joq qZ9HoDqaYNxZlTKY6wsdfxuP81ZbdKR9phyMU6UX9oQQaJvko1O7blYBj7CN kIULzoeVefF7u2vhs5iwT5wpgVJWGsVLiuqA5/fi+JQKgcIo+8uF9wN8MFDw 0REjUK3za9ue2QZg8f3oz8dEIDgm/3tFoQno7LGJ2u8HURNrjLF8eDOw1nD3 8ZQPou7QV0sbPrVAhvTemLSwQTQrni9bK90Kyp/8wzKuDCKOmnB+f/822Jzl MRmrMIiU7GXi9za/hoApVw3p1QF0laducEyiA7x08hmLTQMo3lPU5ojPG9AK 0/m64/EAYnxTvOPyohOSqbxjUdoDSNJBy7By1zsIFOD67ccxgG4v8FSPW3SB X9y29sm2fnQ98YLigG43fEjI/3jStx/RVJ45N/7qBh9qqbWJfD/q+aLqLJbU A4xqAX4eog+xUSfesOjQIWJDDSebXx86k+zcXblEB7RUwMkp1YdCS/STRqi9 IPK2ui76RS9603TodeiZPjiX9Z8f78VexEfeeJE92QfvRb/VFk7T0TXTyAux wf1gYZJhuMOVjqq6SnXYDw/A/oYrNc5LPYjb6OCWOfoAaBrzNE5SepBDX/Y+ y4BB6FLnFGke7UavrO/yqEgTsDj+pFtQpxvt01J69rWZADnXx4GDql0o/NB8 qPitIXC0tCl6+uUt+iW18eTr7cMw+fTKcrRJJ7Ln49dfahwG2Sex55mzOlC/ Hc/mxRvvgTZXEUeffo306u1CrnKNwJ8wxRP+fa2odWeV/aW6EYgcab9GSW1B mt62nI1XRoGu3fvsQFwLUm2O+qJiMwqhHrnF009a0HGuhtZa21HgmMzTNvVt QXIZwgHljnh99/vY+YstiK+7/0e22ygQ1kGbpDla0JTsOTI8ZBT4X3UmnLvZ jEIHD5RZFI1Cl0Xl4gOpJvTm6JLpz7VRWJVnHaLvakKtfhl6+UwMKCjk7uLl bEINLUYaV1gY8JB5U7bf90ZUblR8uIWNAdr8aZwfWhpR0k3HrZE7GDBwvYqD YduInLOGm2T3MsCFUl8pTGtAW/ngoKkxA8JZ7QIknzQgNssb0hymDMhc25Us fL8BMWcICdVfZoC63sYr3+wb0NIhbzYpKwaELTd2ryk0IIbuoYlZCgM2hRQZ +z8EVBScHh/iz4Ck3BXlzOZ6pP/jAUtlHgMckmVGTubUI7eMC6+OFzIAGBKH qsPqUcwFsQdQzIB0nY3lly7WI6K0kqO9nAGWm6U4j32qQ9Y3P/GMvGRAEX/0 qsT6C+Q2pS7O3MuAKc27mu38tYg6tHZSb5UB/wqaOQms1KDq0PY/9DUGrLJo XENDNWhYKbbBlImEqwb+nhwJNUiMeuCMzUYSftV5NTziq0E5RuY6HtwkbOeO F4thq0Y1b6ov06RICPEP6KQ1VaCRenevSR28f+wWS1RcBUpW71Os1COhua68 eb9zBbJqU1wMNiTh4+DhTZq8FWi8+4fLblMS1Den63VYlaPPE7cpdldJWOm7 YU79UIYW2e9ajHuToLlF0iOyuAyVh48IlvmSkL1b7Nra3TLktUNlKOAeCUlH /uiI8JWhn8J/LkoEkeBgW1w4oVqK/sjf17eOIGFCdVUl6VMR4jAJUmdkknDn 8cE8Caci1Dn8kakoh4TyeF7lxJlC9MRKA/zySchjya5bny5A2yibToqUkqC6 xB20rSMP8d0NPWJRR+L/hdbT5uN5iGD6srgfSGiLe5aukZOLEoK1ylYbSUhP 0dft9s5BwhEc8oltJMy01rycncpEkmlhe4bpJNyaFT8mopSJPsp8m8ztJ0FH Lctb/X4GyszXzbxDkLD0I1W1bC0N7angkhRgkPA8ai1dTSENTSu7jH0eI8G1 V21e+fJzlP+yK7l6ggTPe25zR7elILnXkUKXvpBwlvWc2dkdz9Dc+fkh2RkS 0vSHdNPnaKi0xzB+eZaEExm7dvslxyM3kzKTtnkS4oS2qg5vpSLF99t3xn0n QalA9GDR7qfoh5V7r8MyCef1ryWYXI9AlR97o47+IiE1mdOILzQEeVMUDTat kTBilEdvl7FHyrMxXAPrJPwf5du7wg== "]]}, Annotation[#, "Charting`Private`Tag$10876#2"]& ]}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->300, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0, -1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{{-1, FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, {1, FormBox["1", TraditionalForm]}}, {{0, FormBox["0", TraditionalForm]}, {-1, FormBox["1", TraditionalForm]}}}]], "Output", CellChangeTimes->{{3.9678651060787544`*^9, 3.9678651882327456`*^9}, 3.9678652829763956`*^9, {3.967865592808839*^9, 3.96786561025351*^9}, 3.967865697760935*^9, 3.967866673530072*^9, 3.967868004319741*^9}, CellLabel-> "Out[114]=",ExpressionUUID->"8b63b473-a5ab-4801-b6cb-7f48ebbfe096"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"computeEverythingIR", "[", RowBox[{ RowBox[{"1", "/", "2"}], ",", "True"}], "]"}], "\[IndentingNewLine]", RowBox[{"plotSol", "[", RowBox[{"solnumericalIR", "[", RowBox[{"1", "/", "2"}], "]"}], "]"}]}], "Input", CellChangeTimes->{{3.922107904475417*^9, 3.9221079068613873`*^9}, { 3.9678651977722545`*^9, 3.96786520108943*^9}, {3.9678655187288632`*^9, 3.967865520130231*^9}}, CellLabel-> "In[115]:=",ExpressionUUID->"34b53bb4-39a9-45a4-98e0-74d1df87f301"], Cell[BoxData[ RowBox[{"{", RowBox[{ "0.7578028769857230712204642786317009655542345488937284564978`40.", ",", RowBox[{ "-", "0.2750903586884049173048321823422711392774218218197270760338`40."}], ",", FractionBox["1", "2"], ",", "0.0667340965829000581962419496054614301623930390913876306861`40."}], "}"}]], "Output", CellChangeTimes->{{3.967865268283594*^9, 3.967865286644386*^9}, { 3.9678655139422493`*^9, 3.967865520681181*^9}, 3.967865615642247*^9, 3.9678657026796865`*^9, 3.9678666769947767`*^9, 3.9678680051760325`*^9}, CellLabel-> "Out[115]=",ExpressionUUID->"4658f459-93d9-4fa5-9355-498be7528981"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1Wk411kfBnAiIRk1U7JnG0MlTbJkKUJkKypF1CCPfYoyshaijbFnKxRj T2MZDXLLMhVSlCjKj/8qy5/Kvj2nF+c61+fdOd/7PteRdf7d5twaLi6uu2R9 3zcuP+wa3c/GlDvtevUcvcFFdBLf/SGFV2rPU3U0ZA/e/m4N/iGTIz5GuJYQ qvXd4a37V/mCrFDPeNH0mdjV4FW/08FjMEpq2f7d/DkrmrVmp7AS5+M/Qly2 sjN58xEnTLa3pLOJix6qBmqV/IZTOm33WMSLjiY/u6m6oq0jNIJJbLXB6W3S 327Q8B00YhDn1F+KeKruAT4hDoNG/MUrVo1T4wXphNJzw8RGEvmfJHV8scAU baGIzc85mSieOY+iaTXuQeJvup5S9TkXINjrJdpPfGjsavuI/EUY+8dO9hFP Nsfev3LuEi46nC58R5yRmX5ZtCAAaincVV3EY4f/VjJWuYyUv3rXvSJOkXuy 0u8VhKJI+30dxPoLz3v8yoJh+5Obzn/E8UVUZI5aGGbDJgSaibWvjtlr+oUj UF6+BsQXdixtZZ26guWQ+LLHxOK8/JOhmVfROBkgWETsUylzr0Q6Chsfne7M IzbMzhf4A1EoOTF+Pod4y63tlwzPXkNgtrDNHeJGZ02L97nRqHpvHhVJvGmT 9QKf4g0kJEXqhREzl9+e6269AaMS155A4roR+667bjdBbZPL9fme31O3QvXC W2jYG1V4nPif82EnnLfHwfMbl5018c3TvE07O+IgeVKRbkp8xvTmznnvP3FZ 0TVDh5hXxHyNqV08/jxeGSBD/JB14v2ntAQcXuc8QemzwXXHN0ZIMhlaL1pf 9xKb6gsH7PVPxoLEt1udxPGMMlentmT8IlV+u45YRn3c4FFgCvIEUmqSiPW7 vJZse1Kx7NRdoUscvN7jQmZcOiKqqmV3EzdV8J9tYaQjaM7RQ5FY0L7Qalw3 Aw2vFiM2EGcUsrbvH82Aoq7zYL8eG4+N3ZjDh7LgFR+le4F4JtzFQYU7G5us bmi6EOsr8Ry2PZmN9B6L9ceJr3Xe1wopz8ZksbCeFvFN4SlBlmoOKjX9Xizp kvwc1dhaH3MgJ+J0LYxYa+Hh/QHt+9j3Ly3aVYeNAPVSUYWveWBlWPfbEC8F Cej1SOSDNzRggwFxxFM352ijfPz+8augFHGclWwZOyUfAcYPPN/sY6PAPdWw TOsvbBGPrtcm7su64qMRVgDhPFrBmBbp19rjzaYCxTCU5658R9xoXsGe312M U6c6MxuJTRJ/EC6xL4ZGeABfMrGNTNvJDaXFqG79ul+b2FN7/0SXVQlkpm0O hmqSefkoizkkl6L0px03RveS8/Ys+/rIlONQS/XLLuKV/uu6NofKMZeuPVVD zDX8o6Dm7+XY56HaE0nMM6Gcz4Vy1AQ2i4gTr+UpGTfb9QiPn9mcOKDOhpBE r/zHzkeguTzfevFXNiTMd8XzCFcgW31W5wSxZOe3mWnZCozPbtbX+u6jtY7s vRUwEJcbXNzNhrSd8faXjhXYru6dfJVYzsXhv9SyCuxJiGyPVmNDJThmSdmy Ei/tCz0CVUkeJYPuR25XoXxaKMaWON5+4O7X3Cpk1YeFqhKzBd53p9ZUYdDp +jRtJxvp7t26H4erULCgvMmSeEGxVcRTuxrVo3bLojvYqM8pfhzJrIZf9HJa vDIbB1Iv8dccqIGQSfMbIQU2zK6uL5Sa/hdKtCbrIXnyHj8Lq1sL1EJsoKWo mnjAZlPjFalasDa+mnUk9lUQ66MZ1yJ5ZmaxVI6N5Gc/8xen1iLO2CPPSJaN wQ2G7hpadWhYSrxoL83GpYzAX6yD67GjwEhg21Y2cisZhVe4ASdPi/kOfnKf 0NbM9XpNuFn/xcV2loU6sW/nEsZaUBrVGdJPZ6GCNi8y7PMMu2Js2YGdLCRr MSIsFNsgvLbJ0amGhYy6gp6rDzvQ3z7PKLrHwmkNk5IplVfIvRe3nHiVhbXS jAdPJl5jZUDunZUrC+M1icMstW4oC6g5WBiyYC5aySsT9wbZa5M+5EqzEO1n 4P6V/haDS24nziwy8dZVR7dM4R3+sVwWW+1mIk2y8Kt/eC/s5CIPOZQw4et1 RWJbcx9e24rSjocx8W94+8/vZT+gPoTHSvIIE0N/RvnvCuqHkmO00355JiQ0 i9S86gbAk5Tp2DbJQPuDA12Vop/QvOezmXAjA7EFB4eHTg9CIfqYxLs4BlJt 7TPeWVLYtdRnPmbHgKyGRXXTAgVpekTIKXkG9tL9r8tmDUEhvGmQf4QO3ulj L/nMh6GnxHcn9iEdTTzjFbUzwziV+P447x90CHyqPTKUSoPhi8wPPdp0rJcw PBtnRIcnr5zD1CoNqfKrSg+ZdCh2dD9L+I8GERX/+KxrDPym8mhbQwyN/Js5 nht/ZWLUky+6yoIG7uc8y3NkLnenjzLPCtFw+cw27v+RuVvtUq+WeT2MoCa/ J4dIz0x7rFMWk4fhKR8iPtvMxqq+0dzgsWFsZumP7LgwgkWD5otqYsMwC9A8 37PpM8ZixFaf9w1By33EnbfpM75i/uZU+hA2n7RZs8Z3FHxfQnSbzwwh+Mcp Wz/hMeR2mZoekB1C1m4zUY/6MXC/8L4TwaJgItGb2O00jobeECq2nMLgGsly wZVxeH+Zzsnzp7DHUlzvRfEE6D80Ld3SpSDiYhW5YM5BdpzNmzs6FM7aOhm3 WXEwJxVe+2AfhUcHfddlHOXAeeuT2jotCkcV4m5p23FQevdA5Jg6hUTGy6RA Zw7cDFc1j+6k8KO7Zd5MIAf0xmILJWkKW3wsWr/kc3Dj6AP9vVIU3BxPxzQV cjDQ9tjgoCRFeuZtlljCgeWMWfAZcQp2qrdf7v6bg7eKF+rTtlBI47T3nK/n QHNeJUj4BwrifubMiW4Obss3hEsJU/B0dihs6OGAS7EkdccGCrU2Xp5xfRwI pOXOHV5PwWHPrYmdnzhQVnaPvb6OQta3thnvEQ5E1/0qncZHYYz+4bHuGAdD x/0bC9ZS0O35HCTE4WAPy1P7GQ+FgWrB1ZJvHGRd/EWkdw2FHX+JPw2e5eAe v/cck5tCSKpKpPkCBxOG2l9muCh0RO8zlljmYLYxaZmPWOqPw+tGVzn4P9i6 dlY= "]]}, Annotation[#, "Charting`Private`Tag$11547#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1Hk81tkXB3AiIRk1U7Jny5CkSTyy3AiRrUhC1CA/+xRlZM0SbYw9W6HI TmMZDXJkmQop6omifHlWWb5k33/XH/d1Xu//7j2fc6608x9Wl7dwcHA8xGez 7lyr6BlDbDTtTrtdu0hvchGegk1/SeWWOPJSDZpyhu5vWp132Oi0jwHcSgyl bDq8HW3wBFlAI+NNy3dsV713A04nzoJBctuBTfPmrmvUm9jBeryP/yh2+frB lN2nnWCqsy2DjV1coRJIKf0d7LQ6HrGwVxyN9rupuEJHV2gkE9tih9PH5L/d QN13yICBndt4PfKlmgfwCJAMGvYPrzhVss4LJBPLLo9gG4gVfBPX8oVlpnAb gW162clI/uIVKJ5T5RzCntX2lGjMvQr8fV7CA9gnxyM6R2WvgaF/3FQ/9lRr 3OObl6/DNYcLRZ+wM7MybggXBoBqKmdND/b4qb8VDJVuQOrTvm3vsFNlXqwP eAVBcZT9sS5s3eXXVL/yYLD+xU3rP+yEYiIqVzUMFsIm+VqxNSPG7TX8wiFQ VrYOsK8qr+5l2d2EtZCE8ufYoty8U6FZEdA8FcBfjO1TLfWoVDIadj670J2P rZ9TwPcnREPpuYkrudh77h24rn/pFgTmCFo9wG521jD7nBcDNZ9No6Owd+2y XOaRvwOJyVE6YdjMtY+Xe9vvgEGpKzUQu2HUvueh210g9snk+Wzm99KtSK3o HjQdjS6ywf7nStg55wPx4DnLYWuJffcCd8vBrngQPy9PN8a+aHz34JL3X3BD 3jVTC5tbyHSLsW0C/GVTHSCFXcE69/lbeiKc2uY8SeiyEccD31gB8RSgvGl/ 34dtrCsYcNQ/BZbFZu91Yycwyl2dOlLgV4nK+w3YUmoTes8CUyGfL7UuGVu3 x2vVmpoGa069VdrYwds9rmbFZ0BkTa30YeyWKt5LbYwMCFp09JDH5rcvspjQ zoSmdyuRO7Azi1gH0FgmyGs7Dw3osNFzQzfmyMls8EqI1r6KPR/u4qDEmQO7 LO5ouGDrKnCdsj6fAxlUs+022Le6H1NCKnNgqkRQh4J9V3Can6WSC9Uafm9W tXF+jqpsytdckBFyuhWGTVmueDyo+RiO/UuLcdViowC1MmG5mXxgZVoOWGGv BvHpUMUKgDs0YIceduRLN+cYgwL44+sMvwR2vIV0OTu1AAIMn3h+OMZGhe5p +uWUp7BHNKZRE7s/+6aPelghCObTCscpeL622rQa85WAvixn9SfsZtMq9tLh ErCz685qxjZK+kmw1L4E1MMDeFKwraQ6zu8oK4Ha9hmkie2piSZ7LEpBas7q RKgG7pePoohDShmU/aJ8Z+wovi91zddHqhJOttW+7cFeH7itbXWyEhYzNKfr sDlGfubX+KMSjnmoUKOwuSYVCzigEuoCW4VEsbdylU6YHHoGz19ZnTuuxkYC Yn2yX7ufAc3l9d5rv7GRmOmhBC7BKshRW9A6hy3ePTs/J10FEwu7dSmbPlPv yD5aBXqiMkMrh9lI0tbwwFvHKjig5p0SgS3j4vBfWnkVHEmM6oxRZSOl4NhV RfNqeGtf5BGogvMoHXI/fb8GKucEYq2xE+wHH87k1UB2Y1ioCjab73NvWl0N DDndnqMdZKMM917tryM1ULisuMsce1m+XchTsxZqx2zXhJXZqDG35HkUsxb8 YtbSExTZ6Hjadd6643UgYNT6QUCOjUwithdJzP0LCrQWy2FZvI/fBdUs+epB ZLCtuBZ70GpX802JemDtfLfgiO0rJ9JPM6yHlPn5lTIZNkp5tZ+3JK0e4g09 8g2k2Whoh767OqUBmlaTrtlLstH1zMBfLYMbQbnQgG/fXjbKq2YU3eQEcPI0 W+rixe8Jbc/artMCdxt/uFgvsFCDyOzlxPE2KIvuDhmgs1AVbUloxOcVHIq1 Zgd2s1AKhRFpJt8BgltbHJ3qWCizoZAaUdEFA51LjGL8Q19QNyqdVnoHeY/i 15IiWGirJOPJi8n3sD4o88nClYUm6pJGWKq9oMin6mCmz0KmwtXcUvEfIGdr 8pc8SRaK8dNzn6F/hKFVt3MXV5joo6uWdrncJ/jHfE1ko5eJ0sWLZvzD+8BW JuqkQykT+XrdFNvX2g/vrYVpNmFM9G945/7P0l+gMYTLQvw0Ew3/Fe1/KGgA FBxjnJAsE4lpFKt6NQwCV3KWY8cUA3U+Od5TLfwNWo98NxFsZqC4whMjwxeG QC7mrNineAZKs7bP/GROwKHVftNxWwaSVjerbVkmQJIeGWIny0BH6f63pbOH QS68ZYh3lI64586+5TEdAR0FngdxFXTUwjVRVT8/AnZJn224/6Qjvm/1p4fT aKD/JusLVZOOtovpX4o3oIMnt4zD9AYNpcluKFQw6SDf1fsq8T8aElLyT8i+ xYDflZ7ta4qlIYPkXM+dvzFhzJMnpsaMhjhfc60t9jLh4dwZ5iUBGrpxcR/n /yJYYHFIrVbq/QgKavF7cVKODcZUy9SVlBHkKRsiutDKhg1dg8WhsyNoN0t3 VPnqKKzotV5TFRlBJgEaV6i7vsN4rMjG6/5hRHEfdedu+Q4zsHR3OmMY7T5v tWWL7xjw/AjRbr04jIJ/nrb2ExyHvB5j4+PSwyj7sImwR+M4cL7xfhDJIpCR WF9Sr9MENPWFEHGVBBraIl7Jvz4B3j/mcvP9CXTEXFTnTckk0H9qWb2nTSAh F4uoZVMScuKtPjzQItAlayfDDgsSFiXC658cI9CzE77bMs+Q4Lz3RX0DhUBn 5OLvadqSUPbweNS4GoGSGG+TA51JcNPf0DhzkEA/u5vnzweSQG8uMVOQJNAe H7P2HwUk3DnzRPeoBIHcHC/EthSRMNjxXO+EOIH+Mfc2SSolwXzeJPiiKIFs Ve6/Pfw3CR/lrzam7yFQOtlJvdJIgsaSUpDgTwQS9TNlTvaScF+2KVxCkECe zg5FTVQSOORL05R3EKjeysszvp8EvvS8xVPbCeRw5N7kwW8kKCq6x93eRqDs 2Y5571EShLf9JpnOQ6Bx+pfn2uMkDNv4NxduJZA29XuQAEnCEZan5isuAg3W 8m+UzpKQfe1Xob4tBFJ+KvoyeIGER7zei0xOAoWkKUWZLpMwqa/5Y56DQF0x xwzF1khYaE5e48GW+PPUtrENEv4PT6sn1g== "]]}, Annotation[#, "Charting`Private`Tag$11547#2"]& ]}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->300, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{-1, 1}, {0, -1}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{{-1, FormBox[ RowBox[{"-", "1"}], TraditionalForm]}, {1, FormBox["1", TraditionalForm]}}, {{0, FormBox["0", TraditionalForm]}, {-1, FormBox["1", TraditionalForm]}}}]], "Output", CellChangeTimes->{{3.967865268283594*^9, 3.967865286644386*^9}, { 3.9678655139422493`*^9, 3.967865520681181*^9}, 3.967865615642247*^9, 3.9678657026796865`*^9, 3.9678666769947767`*^9, 3.9678680052038145`*^9}, CellLabel-> "Out[116]=",ExpressionUUID->"dd8bfb46-e4a7-46f5-b0b7-43ac2a9d6482"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Full computation", "Subsubsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106125437221*^9, 3.922106130015802*^9}, {3.922106457179372*^9, 3.922106463976871*^9}, {3.9352193859556723`*^9, 3.9352193869157057`*^9}, { 3.950671865924531*^9, 3.9506718681946917`*^9}},ExpressionUUID->"ef2b8986-23a0-4a19-8fc5-\ dd4024f3f16a"], Cell["\<\ The following computations can be parallelized, if you wish. Otherwise, \ replace \[OpenCurlyDoubleQuote]ParallelTable\[CloseCurlyDoubleQuote] by \ \[OpenCurlyDoubleQuote]Table\[CloseCurlyDoubleQuote] (it will take quite some \ time.)\ \>", "Text", CellChangeTimes->{{3.9471357466364813`*^9, 3.947135759480401*^9}, { 3.9471358327790422`*^9, 3.947135849387638*^9}, {3.967868189740678*^9, 3.967868225145337*^9}},ExpressionUUID->"938d1cf0-4584-4bf3-a719-\ c0a4d8200e03"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"LaunchKernels", "[", "8", "]"}], ";"}], " ", RowBox[{"(*", " ", RowBox[{ "Choose", " ", "the", " ", "number", " ", "of", " ", "kernels", " ", "to", " ", "do", " ", "the", " ", "computations"}], " ", "*)"}]}]], "Input", CellChangeTimes->{{3.967868227108845*^9, 3.9678682400255785`*^9}},ExpressionUUID->"f1431753-2453-4356-832f-\ e3105f2813c2"], Cell[BoxData[{ RowBox[{ RowBox[{"tableEE", "=", RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", " ", RowBox[{"computeEverything", "[", "\[Zeta]s", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"1", "/", "100"}], ",", RowBox[{"99", "/", "100"}], ",", RowBox[{"1", "/", "500"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"tableEE2", "=", RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", RowBox[{"computeEverything", "[", "\[Zeta]s", "]"}]}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"9901", "/", "10000"}], ",", RowBox[{"9999", "/", "10000"}], ",", RowBox[{"1", "/", "50000"}]}], "}"}]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.922197964221012*^9, 3.922197981386677*^9}, { 3.9471358039317703`*^9, 3.9471358153242292`*^9}, {3.947138891326459*^9, 3.9471388968817883`*^9}, {3.950682883785563*^9, 3.950682893447468*^9}, { 3.9678680733217134`*^9, 3.9678680764859505`*^9}, {3.967868127355488*^9, 3.9678681607241*^9}},ExpressionUUID->"3bb9c640-6363-4a78-8caf-d39815a4839c"], Cell[BoxData[ RowBox[{ RowBox[{"tableEEIR", "=", "\[IndentingNewLine]", RowBox[{"Join", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", " ", RowBox[{"computeEverythingIR", "[", RowBox[{"\[Rho]IR", ",", "True"}], "]"}]}], ",", RowBox[{"{", RowBox[{"\[Rho]IR", ",", RowBox[{"1", "/", "1000"}], ",", RowBox[{"1", "/", "100"}], ",", RowBox[{"1", "/", "2000"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", " ", RowBox[{"computeEverythingIR", "[", RowBox[{"\[Rho]IR", ",", "True"}], "]"}]}], ",", RowBox[{"{", RowBox[{"\[Rho]IR", ",", RowBox[{"2", "/", "100"}], ",", "2", ",", RowBox[{"1", "/", "200"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", " ", RowBox[{"computeEverythingIR", "[", RowBox[{"\[Rho]IR", ",", "True"}], "]"}]}], ",", RowBox[{"{", RowBox[{"\[Rho]IR", ",", RowBox[{"21", "/", "10"}], ",", "3", ",", RowBox[{"1", "/", "20"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.922107924680929*^9, 3.922107952335073*^9}, { 3.922108993796974*^9, 3.922108994168181*^9}, {3.9471358224795647`*^9, 3.947135824324615*^9}, {3.9471381036570463`*^9, 3.947138179004653*^9}, { 3.947138228951038*^9, 3.947138255680304*^9}, {3.94713829598943*^9, 3.9471382972239428`*^9}, {3.94713869200768*^9, 3.947138696585133*^9}, { 3.9678682493116274`*^9, 3.9678682762903547`*^9}}, CellLabel-> "In[127]:=",ExpressionUUID->"5351f96f-12c4-45b7-b865-5a281a2936f7"], Cell[BoxData[ RowBox[{ RowBox[{"more", "=", RowBox[{"ParallelTable", "[", RowBox[{ RowBox[{ RowBox[{"$MinPrecision", "=", "wpc"}], ";", " ", RowBox[{"computeEverythingIR", "[", RowBox[{"\[Rho]IR", ",", "True"}], "]"}]}], ",", RowBox[{"{", RowBox[{"\[Rho]IR", ",", RowBox[{"31", "/", "10"}], ",", "5", ",", RowBox[{"1", "/", "10"}]}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.950674734914484*^9, 3.950674749046598*^9}, { 3.9678684189068456`*^9, 3.9678684277388563`*^9}}, CellLabel-> "In[137]:=",ExpressionUUID->"d3ed0c58-9729-46a6-8aee-20595b316a92"], Cell[BoxData[ RowBox[{ RowBox[{"tableEEIR", "=", RowBox[{ RowBox[{"Join", "[", RowBox[{"tableEEIR", ",", "more"}], "]"}], "//", "DeleteDuplicates"}]}], ";"}]], "Input", CellChangeTimes->{{3.950674754220332*^9, 3.9506747780693693`*^9}}, CellLabel-> "In[139]:=",ExpressionUUID->"9c231cf1-73f7-412a-9d29-cbff1412f81d"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ListLinePlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Join", "[", RowBox[{"tableEE", ",", "tableEE2"}], "]"}], "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}]}], "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"45", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Join", "[", RowBox[{"tableEE", ",", "tableEE2"}], "]"}], "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}]}], "}"}], ",", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{".6", ",", ".7"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", ".2"}], ",", RowBox[{"-", ".25"}]}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"45", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "Input", CellChangeTimes->{{3.9221079590866117`*^9, 3.9221080193260508`*^9}, { 3.922108074353325*^9, 3.922108085566554*^9}, {3.922108154612418*^9, 3.922108172204536*^9}, {3.922198009715933*^9, 3.922198022724287*^9}, { 3.9678666885859795`*^9, 3.967866688914488*^9}, 3.9678667589956055`*^9, { 3.9678670647846065`*^9, 3.967867065089548*^9}}, CellLabel-> "In[143]:=",ExpressionUUID->"d0ade19d-8297-41dd-a140-e0ae89155401"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], Thickness[Large], LineBox[CompressedData[" 1:eJwV2Hc81V0YAPAGSSgksqLMJFRGEgdZmdmSFpIVWZGVVUZIEpHIKKOyV0bH usa915a9uaGkZSve5/3L5/u59/5+5zznnOc8j6OWzga3du3YscNt944d//8t so8o829vRKvq75gbGLtRylBgatS3RlTgllW6XNSFzhYr+kYfIaBs0Yprkcxd SFTh2aUn+gT09INF/Ll7nehZNxNXTAgB+VoVilVXdSDV3ktjMeUE9OgkB/X7 2HYknTAR//QrAYUl1yZRu7QhZWUd1VjuJmQ3ZGQZaUJGtwuPzMdeakLbHHwy ey6QUKDpQOCz4Cb0fiwGyUkTkSPP+v64siZUe0+5a1m8FcVrbz6Jm29CHJrN JrskWhDDFSOq51zNyFzjk7S4dDOaH3N3eK7XjM5cMKjWVm5CYlYtjc+DmtGv /es7ThoRELtG6YH40mY08M+hP8OhEZFeJ2vFzzUj18my8kdhDegO45BnPGcL uphj9v59bj3KfdvwLF63BY1VXlNc7KpDyVU5KfGBLSjZxcVJYKsWMZL6EuJL WtBWT2XMSfFaJKf3xD9+tgXJX9HOaGr9hD4lMRnEc7Siwqy6cxcVahBn0XOm eJ1WxCEqIZxWVYV8+HWqnwe0orKmtvVopUo0OG2p/7y4FUWtdrp+7qhAAVyb HXFfWpGEfbebrE05+kp3RiaOnYhMpPVnAqnK0O8+3kfPtInIOtvglWduCbp6 vacq9gER/aXba0wxLUZVhw36nxYRUdcOx8cJ9EUoYSS5P4ZCRH5MbZ4WLQVo s+Zd1ZPDJHTC5vYiDWs+UhtxCorWIiGnvUqrn7LfIy2pdpEofxJ69/jwWrBG Lqq7l1P8uJCEVp/qEbeXstCOjn7OiBkSauFKOjT24Q3aXSNkGcZGRhlCUpJt rhmodPzaw0eaZNTZfu2w/4U0FNQoGxLiR0Yfju620UAp6HSpw9WgAjKSSJov +8qQhLZDUg4ETJMR6m68a/j7Ofpj4Zrox9qGqu6oGq5+e4oCQv3WvS+2IRYL HXLK0mN0VU5bzMu3DXFpWacVyoag+Fs3pD3y29D2PT6ygfZ9NOJ6itF1qg3F qJrsVZyxRvSHRSudDrWjax9fMGu6X8Jf2YtOO2i0oxfr5VQsVq6YjYXD67ZP O9Lw+/GvWyIAi6P8MKu8dqSJ/pkqMIRiPulCy+uT7Wgq1aI7tTkKV1QaUl1h 6UAL1LHBlhKxWPb+JwcT9Q50yWe8o9LxOTYg0Sfoe3eguei2RtnEF5jZWydE +0MH8v/lFCdf9hKzPgg6pT7RgZg8fRuPNqZge8tL7a9pOxGr8uf01MnXeO+f 5kluvk6kp7tXdeVyOj6zwtKddL4ThQSbtCmQMvD2I+4UNpNONPmAljVd6g0W Ka1ViXPuRKvFxwbVE99iequ+RsbwTnSjae6jyUoWZuET545K70S1tSy6S9o5 uIclTpu2uhP10rwVVH2Vi0PrmvQffu5ETnnXBxxn32HJtYATO390oou2f3ZH n/iA1XLcB3z3dqEbVGNXiXZ5uLhOy3TtaBdySV8tVU7Px2nU2W/d5LpQrO21 B4/tC3Ds12OERaMuZH9GWOTMzkLM7KJTaOfUhQTUUgOFnhfi8X/5djOhXWhd yV/dU7AIx58mLlxL60LKMYdHJEqL8ACBWXawsguh4xZKlkrF+Kf5qrZhbxey jsPc7KRi/MNsRLDtexfiJdBjS4MSrFzHRVCj6UZUgoe5tftLcA31PsFa3m7Y JxYjk5dLMe/YN3XZc91oWOjBJYmhUkzPveN4kWE3ChrG/hfMyvCdEO9mkTvd KJVNj1eotwxfSgw5mvGoG20TYzO/6JRjcU95Kc7X3Ui8wPhMFKEcp6d/3PHs Yzdqnp3KE5CrwEHDu4L29XQjnXjGssq8Cnx3ka08cKEbFbLIvDXh/YhbHi68 WqPuQbIfDr/aHfMRr6/bSjrz9KDakjJv0r+P+PxRey/K2R5keJF9utyuEhce qbt9xaAHUWT2KHb3VOIRiTM7uhx6EM9Qbj3f+Srs9+A+UnvYg97dlbpVml6F CXOKfFUpPcj4rNXCE5pqPNl2PEe8An7fs2O+yr4aT401t2d09aCfPVc/KpGr 8S9K2lO2bz3oUkBJxHHRGjz+9NSPCKpepLDnkblPRA3+i6Zn/nH3ommBb6sK szVYiXDo7l2ZXuRSNkTlq/wJ10lzRE9d6kXzMrdWZZM/YZvCM+eN7HtRfs4X joClT3iRN8GTENyLvMzEnhprYXxqj4O89KteJHE81bDuNcbp55sj3pb1omXR C5LEJYwZcYkFa2cv0rl8x7mKrxanOJwseDjfi0bUfi7YaNfi9SbOoKVdn1G9 V0ODvXstLv9k3mHJ9RnRh5scJL6sxb/sS+M6pT6j4/u+zIfW12Lqji/t8nqf kcfmokrWXC1+mJjonWv7Gf32SGE6sb8Oa03fjmMN+oxEDymcZD1Th4u/Dx0O evkZqSwk33IwrcOL4/ZU30s+o6Aaj/snfeqwf7C/oWn7Z7RU33X4ekod/rht v6tu9jOKKbCl7Kqrw25xbgwiO/tQveCWK+d0Hc4xbL0by9GHUhur1N9R1WOl oQjhjTN9aFsmfKREoB530zRK3NTpQyTnm6/OqdVjh9I7D5tt+tAjuzfzCjb1 2MLhzrGTAX3ocIwjS+PDerx96Pnu2MQ+tDLZbU3OrMfOH9P5V4r6kFiFCqt5 Qz2W4lcMvEzuQ99jW8ycJ+vxl9e7DlVT+lBsmJr+/u16/PKt/TD3dh/6xNzO LsvVgG+ETXf4H+5HTH6Ddb/ONmBHvobvY6f60cbgE91zxg1YPvKihIIWfJ5C VcXi0oBDK1/HJlv3o/xFj7WgyAZMOTNyYMOvHzmshy0+ymrA10rX0k0S+hFj eYjPsfoGnDY8rFZU0I+s/kW4m4404K1WwxV6Yj+SZOt8I7TSgNk6Wd/bTPej rMbO7rgDjVhuf4Ml/tuP2vsflb0WbsS3Do+xsLEOIHOj5N06So2YktBbfUd8 AOUovLJ+ebkRx31bN2rQGEAWo0K+US6NOLsptJ/NcgBJnuei8Ic34j3trxQc fAaQbG7raavXjfiIpFJITdwA2orn/HWxvBErGVqk788bQKq7CZlDbY3YSu1T 7LXmAdTaZ09inWnE+gEceh8mBpAVe9vw9nojVr65t2tjfQBReH+oJhwg4Fri Lmb1g4PIKEzBbYyfgGcKb9PFig6iHW4fm/pkCXgo37NsWHUQ/Q4/+CpQl4CT Y4zp+a8PInO+Ie0JSwKeGqfe4+A1iGK9EgSX7hGwkrtTcsHTQSS9tOT+KYKA r68ZtyzlDqLzoSO+iikEjFytgmQaB9FaRqKfTyEBJ7ZwN3iNDqLTJmsFdxsJ +ITat6CKlUEUV2GtdbSfgDc4mCpXDgwhqx97faPnCThguOjGmeND6FjyV8eP mwSc/6/LyUl5CEV601zIYGjCNYY6I1lXhpCIocsRHZ4m/DFk4vW4+xAieNlx VEg0YVIQX8mh6CGUteStQ1Fqwhzb4QyaWUNoozOu9bNBE9Yetsz0rR1CsoJ8 yRFWTTj8Rb/zh8EhtHNeqJ3KvQmvNHyzGfk9hGYGDaxVQ5pwxg3fAFr6YXSQ if26TlwTJuiiYkmBYfRwiFTJndmEFQvql68qgOnzncuLm7CtpqPCQ9Nh9L1r vytnQxNemPEKzr07jDS/GxVpdjdh8pvNyrbwYaThxc2tNtmEL9uPDi2mD6Mv vFov9/9swgLcIwMM1cPo5zIH85utJty8NyJX5PMwGk2SsdrH0IydhHRUVReH kZ842RFxNuNjztdSrtKMoOOZ8bSqx5vxG47WXDfeEXQnb52RS6YZf160ux4q O4IunNlvSlBpxmG+iwUvDEaQ4bOS90oGzbjyWu+zLIcRtIv9zfjT6814w932 b3HICMJ2AZVljs2YiqNprObVCGq6Nk5VeL8Z25r0iRHKRlBxtGVw4KNmzHNA b6K1YwTtdKtbFX7WjHdIFH0hzY2gCMlB3uzUZrzQpS1F2jmKfnNXVW6/a8Yv LKRxM8co6sCV/hIVzXgoQ8+z7swo0njmwyfX2IwtdihfqtAeRUqvtyx4O5tx iJX/+fe3RpGtX/7IxHAzfmJzXuyV/yh6IOKi7zcLzzO6z/Y4YRQxPc+9vfK7 GUeIr857FIwillqDVu2tZtyQL5dwtXUUNa3+5Q6kbcEqCk8YladGkTfzzL44 lhZ8eX5TjW8T3n9o5fQjnhbsbah9YifLGJI5Ny5tJtKC1ZL35Q2LjiGvNpbS fVIt+N6FB7hIdQxl4/GLKagFR1EX6D26Nob2b9k8OajZgjmLrumaeI4hK7+P 3A5GLdhlk+bdsZgxRBIZiHhzrQUHoCmjb9ljiGCG7RtsW3DjxZFzBXVjyNb4 rh7BtQX/Y0jWchkaQ513Nlre+bZgnyt+HmJ/xtDAVPAtz0cteDgs5u0s3Tg6 FmNQKBzTgsfYEsnJ/ONIPrVXujaxBZ/Vp/+sIz+OaiKy/RUyWvDegQMfNozH UbDYmwOZ71swQdJLKcNpHK3RTjn9Km3BJqbN/uqh46jb+xOPEG7BzIwn9GdT x9Gvu/MZqi0t2PGBT2ZQxThaL7P10elqwd98ZK3Zu8ZRV0cqPxqC9y1G+ryb H0ez5qZcnNMQn6dp9lw7J9BX3YbRyW8tmBL25cMNhglE3RI+9WypBe9uS/FN Z59Aauat6af+teDSwQzSpMAEckU8z6uoW/+P6pMjpyfQXcsPYqf3t2KRGaoa M4UJZCzNO/2ctRXHp3FqxGhOIFObEv7ZI6244MNvfoLJBMo2P28tKNSKxW7c Ul+1nEAL8QJMRuKtuF2cPUPQeQLVj/gl3pVpxbwpvicMfSaQheqanS9qxdxc TT2+oRNov+Dv757qrVhl9nd0xrMJZJ/p+cRKrxX/GSPoNadOICdnjXJkCs/T b9o7924C6dKOkOmvt+LReoX31BUw/oM20iSbViz0Vk6Ut3EChVoPmfk4tWI3 lghvmc4JdGvtZwL3vVa85lEWpjUC46k+blLk14of89FpWMxNoGunO5dkH7Zi jq3oHLulCXTm91ZPSWQrpvq7O8VtxyRS+pJuwBcHfk855E0/iZoy/NsfvmzF yh9u7/Q7PIkOmJ3MHElvxee53C/58k8i60IBceHcVky3lPPbU2ISJUdXt9oW tuJsqyv9zucn0UadUFtKRStuYo38bqUxiQRkA54ScSuucvnBZ2Q0iabuNt5Z aGrFh2q/2CremESy4UPlVO2tWNv4Qa6w4yRiOBvbePBzKz6aereP3msSpSe/ nWUfacX7jnMMLQRPIsEp7MY23YolYwLTW55MoiM17pX0X1ux1+1LXK9fTqLq Wi36jZ+t+O2+7jNuWZOox7e6Yny1FT+/8atXqXgSlcdK7P+01YqlHkt/o8OT aMaFyvw5NRHTP2y82UWcRFb7wuZu0ROx1jsTvti+SXRGbZtK4iARfz6jwKE7 NYme6qev/2EnYt3o6xLUi5MoFb86UMRLxA/yxfXK1ydRhDvzE3shImZUK7xu TT2FeG0OYW4xIm7vd9GkZ5pCIYL5FJIkETs3PVrN45pCT5SG1T3kiHj+XISu tvAUCrcIPc6hTMRoJUF65swUuigZ21apQcS1ezTj76EpxKNC9DDVI2KvG6WG u7WmUJ3RguVPYyIuM7UxijCZQhJVab0PLYjY8K+FH53lFFJ08Kc9bEXEjka0 xY/uTKHL9VsKWXZELOyhPrjpNYXyGR8WnrlLxCxeV3rsQ6bQ8UWT5Jp7RByk 9T2458kUijqXJKvqR8SXLajapF5OoXNf9euJwUQcy7Y75unbKcTkYu6kG0HE 6UrpH74UTiHj9VvunTFETDm6QC1VM4VklNdo9ROImC5Axsu3ZQq18Vladb4i Yk+XY9PVPRCf/upi3UwivrgUyb8yNoXuts6IknOJuMP4Gbvw1ymULu6+rVFI xIM3w1IMlqdQPFeNOaGciE3MfkR77JhG59UaHJU+EXHoWw9CDN00yraVsqxp JOKeGwucmazTKPW4jY0siYjFvZUc8o9OI5lUlYzSLiKeKfV6XCQ6jcw0jJRO DxDxmUuZhh9kplFHaubt/DEiVjEfTUxVnkZNXC1yJylEHECQOxOuM41yK4iT 777B+nC0/7Ezm0a8w0K+J34Tsf/nmDwlq2mkV4ZPvF8j4l12t6QYnabRxR3k A2LbMP/BvZc/e02jA4y9qoXUJHz7N+18TPA0Crjwel6KnoQ9D+Ji5ehp5FAo eqiamYTPBMk9+vpiGkUcfTlxgZ2E2S6qiIZlTCMLEX7LNh4SRnEqdznzppFY GE2emSAJN4YqcWZWTKPX4T59FFESrg5tWzraMI3K415+cz9DwuvzG/VxbdMo 7Z3xJvU5Ev6yV1fzb/80Cu4xYUpUJOH7eXk6ZlPTqObFirSYOgk7t5lFZy9M oydiR90IOiTs4k8mLaxMo3FbReI1IxJelapp4N85gxbC+BQ2zEl4v9CO05fo ZtBnM0pbwk0S5m+63+l0aAZNcXV5yNiSsNy1faYBPDPoZ5uq+KATjDfnvk/I 8Rn0oijhp68HCdtdv/nL+8wMipb8+f6YLwnjNFZ7K/kZtKPvhBExiISLUWyc vPoMYjta1u0WTsJ7i0y5afVn0IEAKyaeGBIm1JrnEcxnUHWjxjIpnoTrPk4v ulrPIAH1mOver0i4iMc1mNFpBqXaa58UyYT4lr9iSPGcQQ+vqcsM58J8epdP cAbOoLTpDv2oQhI+1D52PzRiBtnOBmkrVpBws+2dJ1PPZpBpKdPvP59I+K+w 4k7RVzNIKZBqbzaBhCX1TW5YvQVT39e1IJOwr+OMbFj+DPKeG3nA2APvPy3I llQB432VcalxkIQZ4076vaibQbzXVp08J0jYuCRvIYg4g7imrYOOz5Lw5xct k2Y9M+jDvcATQ99JmF2d2MM+MoPMRiN2hy+R8F26JUnCzAza82ZHstQmCf9K kHQ1/z6DvmtI+4/vJOP3mZO/B5Zn0FjsqMijvWQsW+hwWHFrBt2NDWM/foCM lfzpFZ7soaCbzscqmg+R8SzRuYKwn4Luml2zv8lFxrv7jD9PsVJQVgxn+PIx Mq44JD5MOUJBVwg1N4OPk/HnsIK97YIUVBbpJbVPgoxDlq7HJYlREE1P5Nlw aTIu0WF7rylNQbp/7j3dPk/GVF7+7qPyFHTuH52Z4wUyznLw3mugSkG3QkPi 2i+S8ZfyGK8sbQpaOeemIHCJjJ+fVSCOGFJQy/43cs4mZNxagFZ/mlOQ7Le5 a+8syPhyL3Fh6iYF/eSsthmwJGMCR1lEoS0FkZoHNpdsydglICr9ijMFidNn 5G87kfEF7tiVcQ8KshVx2VhxJ+M7Euln5X0pqCMuV3bQm4y7F/fQugbB8wU/ fsgMIOO4nQLLvmEUpCTY7Gn6iIzNztDfs4imoOnNCwk/HpPxO42pxf1xFFQY LTxr/xTmZ8v/LjaRgqb0/nA0x5MxY8PHEUoKBSXkG1TtTCbjcze6EvdkUpCm qduxw2lkvDAfPPQ7m4K2eymeNG/JOFzx1L3sDxR0/RbDe3IuGfuLxPAKFFFQ tiiNm3U+GZM+W9vYlFHQ3ssrCqRiMlad6Myxq6SgFOUU2X/lMJ7TJ4+IfqIg 7yBx+ZUqMo6mv9KQW0dB9TuEyYUY4rnv3o2pRojPHM/eEw1k/CSC7NfRTEFN zCZZFk1kfPzm1lUnIgVJHyXMKbaScS8z50olmYKOPX3wqIsE79eKmSlopyCK 8663NO0Qz9w8G61OCsrYx9003EHGfbf8tB92UVAdWs5R7SJjC8aQr2bdFPSp 5pni+W4yZjHnpK0F5xUphJWCP3+s6CwG93BWOr4FZ1QFFYmCS7jUU3eBL5y6 qH0Mnndza96mupOMFfor1B53UNCwKfPtRng/jZOa6NU2CjpyRtyclkzGgSsd 0pEwfrezf6o9W8jY0kSViQ7mJ+S8dWsd5ltIVR5OrKegqzSiVB6fYL+6dot9 rKGg07IVPm0QP+3Ib1315RTkZPOcbRLi3UFan+4ooCCLRI2AMFifPka2142w Xs2mJ6yfvyTjA4IDPx+kUtCX1unSzmgy1n+TszoI+0Fob8i1tQdkzD+czZ4O +0cjoA1Vw/4b+PU4JNkb9uuV0w8rzcmYicE0Z/g+Ba0JCTW+uUzGOu6D30vA 1xy9RJzAuTee8EeDG9fsfaTBW45uOrfBR46tlG2ZkbHPqQBbRfB9WabRJnDR hQIPdvCuyOLv0eCn0lvuv70oiNqqd84EfCvJ2oYEXtzt0H4EPPR39GImWKfA KeWLKTx/zprHD9z3ps8sDyw/++eLMfjmkaR/HmAbv4evxcC/9Aoi5cHZYiza NOBCR8Y91OAEn6T5cU8KWk8vtCPDeRWZYr5fAdblflz+DFwz6rkRA7bZFffD HMw823DHDizi0cB0DHzJ/Ve3Erg8jvHIvDEZ713fOM4BtvR1ZSkAn/oy5Pr7 Hnx+YWLpHlgs9/EHIjh46xKWB7cV0Aylg9urq9yowBpWF9e8wTMRbMwkIzJW F9baawg2crmS9BQ8YUWz7wR4xd2f3gyc5On1bxd4Md7T9gjYqf7F1BDki9xe +bwZQ8g/ry0/FoG/CrWM5oIjHTsDI8ANjxhW74IP+I3IWYLTp6k2pMHHhAJn ZcG6J998+WsA611TEcIE/q5Lqa4Hp0X7HZx3h/MsUe0bBmadb31WC44q4RXU BUuxvaB+Ae6vpv14EKxyc8rWGfxewElqUJ+M9zFk1KiB1VtUXqaAB6/27j4C NvUO+WoFDo27K7fsBs/fz893HOz5w8WaDKY24FBdhPz6IrfbPwPsz3TtUjH4 9nZkhDf4OMsXFS/wMv/LUH2wzpGcY/Jgit6qhzC47uer+Z1g96KXxtuuED+N qsQmPTL28A0S7AOvT6yefgy+Mvxm7j3Yy1mzVA8svbH9MhhMzsrhZQF/3PlY 0fz/78vSewzown47rNQnAS7rti1KBjfc5LpKA77HWTZwA7y2zfp51IWCbld+ neUHyzKfUCgBBxr8G5/TgXxdavAiAvwweKb2PbiDKmz6Bpjma3zEXbDNYQKP DNiNh05eEpywh0qHAcxWKTOwqk3GV6cVHKbvUpCAzkGLKrBvrbP3RzC2jWvx B/t9iPF+AjZPLORWBleUv3S4Bdaxv3mFGmz2NUJHDsxgmRTYogX3k64ZLxO4 hsow5jE4/uu/6S9wH8X1BIbqggkNHi+qwbPa3LeZwIEjH+VjwWILnOK9mmSs JdXYcxvMIOI+Hg+OJUeby4Nv+nJ5XQaXpRzsZgarmNCtc4IPvNU+N+dEQazC MpZjcJ/+HDrzrAYceT2++DU470zDSCy4+DbPd0tweuYSqy34X3bLfgGwFG+9 kjxYKzzs8KwGGU/GC1xlBi87GO/LAcusHrabvUNBA4UCM/bgLyfjb1WDLT7+ eCMKrhNIMHgKDh7L0VtUJ+OW5kMSNuDf3pqT+WDhTbqtc+C/lGZzF7DGG7fq A+A898PVp8GkHDWHGUfI7/dPUy+pwXn86r/vI/i4Gr10KfirOmtSFJhdOFn3 HvjC6z0cluAwpwFdGXBY58UIafDmtXLpNVUy/ls8+HUfWEdFfM9HsC5/gdy4 AwWtWkvX3Acnrzf5FoOfUTdcOQd+sO9wXih43pY0uaFCxgdFX3VcAW90qOpV gTdOXZoUBzN5C2f6gB0XRaZ3g3sy7SbkwOdPC33ut4f7PXJ791+ob8bICuXv wKv2E/urwZ6RDuEPwFP3d+30BU/IZ2kZgrN/XhmSA5e+//ZPEPyEejppUxn2 U8bp1xt2FKS2EKVcBd75zeN0O1h42KDLG9yklV+SBg7eLax+DpwZOSDoAR6L 3525rkTGj92+hWmAawjDsxVgO8LkECe4AL9l9gJLqpVy/YB6ybHYnF8GvFpx XbcePNj+nWtFEfLJ+JDzc7AwMvlbAhb35Q20BU9LRNS7gUN0RYLkwLSdD5xP g9+y/nbdD2bTOLn7F4L79pmL4eRtCjrRGOaXD+YNSecrAdM5h43dAfe+8Z9+ BFZzOyYoChYu2469DFbd1Db6qgDjceE5LQq2OrVlmw0ufN5fu2UD95uiqLUN +NboUdQFfqvfpsoPbqdae58Bpn/azzAlD+e92XDfPbDicaXqVLDrhJipBrhS dYf+VTALXfAzDrArMx2ZA2y0SxMv3KKgndWmJwegXj0X6Df0CVzmPOL+HNyr zEaJARdfeZJuANbdxTRuCabJtyk7AN72tm6RBJMTzQrIcpA/bOnS9oBVda7E hIOzH23bDljDedq0NlEDNz89x5sLbhx02LUbHKtW1uQDZuOyicPnIN9bOlro gP+sX6T3BRenm0weAXO9Z7A/C7ZscjL+aQX1y52sD0uy8PvIvIo6cN99hv4C 8OXSA3TPwC2M0l8cwWU7I7WtwbRubMPC4DdnuP2kwDtmskpnzsL531+TvAec nDPq8RqcanzrXb8lBXnS53NagK90HMjJBm+aMmex/f995bLn98FhQ//YemTI 2OGegYsmOIly2ykaXCk1JscJ/tGmlnsRHKhluPwN6vX8bzEkKnBXyLtX1eC4 pPPdGPqFyIIJySiwlqziJ2+wb+pC5VVwnWjsEymwI3+ruBg4YVhY7acUGaux 3H22dQPWr3BjMhcsojZMaQdfO7JleQv85BmVUCp4K/54Kw/YfIBi4gwuiXNj GZKE/PDbywOB+553q8SB4xrLgw6Ah7nlzXXBNKeS/cevU9Dj0hyjvWBeHl67 fPDpb/sl68/AenjJKz8A9xhYrfmAK0QWafXAlx+9SpMCOwmI1h4BtwuUiP84 DfOx+GW9eI2Cnva/Ss8GMzbLrNWAH2vob9wE09xYvx8FthElSHOC6QQlvlqA W+V/mvaegvuSs09DFByl0Ho1CtygTnm+eRXy96qahhqYq9S0iwg+IHeDbRv6 MVY3oc1EcMYEHakcHPlc96AduLZV0eoumE6qmf0suGd8eVwYvOb0eD8N+DfL MaVJcTKuvvX812cLCuK2rn6UCJ5XHK/PBAd3VRXogx1OWgW5gRvt2TAtOO8q p4Qy+Kx6U2GdGNy/tLvIjP87DIfdBxOcmUzGr1DQncsbF06Bn/dcaP8A/vfz zvTcSYjPg2eSvuBdMUy3X4N5GzfCNMHVQSPtpuCmNTfSYfA0bxPHAbCfz/rm F+gH/7URNJtEIV8WPuQoBeesd1/zA7/cc1AoGLzBQzGRBK8vvjyqDya0/jn9 7QTcVxSOfTzgv5Erv9PAR5wiJhYuQ33EQIk3A2scpGRWgg9tlh05AG60FTAN A0ewWkcQROD+2Ke2agzWOjkz6ANOfKX0kA+swiPOcBr8sIN55y8zCjLoPs8/ B/2yjWmJ/SewsSo1TwoYL/PWPwbzhwT8MwR3uhvSXAYzvHuLacGj2WrnBMGq s863sDAZ299dNv9jCu/z7F10B4eVmNvVgi3eka+IgFnsXG5FgScpl96PC5Ex bZSknjl46uXliThwjUiqoBD4vvH46kWwrNn7b39MKOhi3tDvLUHoJ2RMU2rB a8YqXcVg4kqSQhT4HeOhZ7bgPV2u5Mtg6nLVs9zgJYYhdUFw0tmO2i4BmP8u csFvY6iXE3JFH4FDmVRoMFjgT6fPOfD5d/Jaj8GmPnJ5i/zQn+uW+JqCGbyn G9LBvmEZL/nAcvr11SbgnOU92T+M4Lz4dL3YB05QGkqrAtNF7TP7xAfrK8Qe Hgp+fOb2hgv4iBu+agj2lJ58IADeu6OVhwes7eM6N3CMjLmrTnV8NaSgczsO SUaC76QvO5SBhyfqLRG4ksC4EgjuNr7n/vsoGc+pPbijA3YvPW73BuxgLt99 GHzPvV/RDFymrs4/YwDnS9B7cx+4xC7RKh8c9YA+sYYX4isuEeMNvmgYzn4X HMC5N1cVfCLhm+8xcHoTdyEjONxSrKGXh4zZxu68GdaHevyH9sIjsJTA8qO3 4NKXymtnweUeBcYuYJn5fbNfj0A/XJvMdB4s9yCtIhk8QV9euQe8LbLrji64 wOfvpa5L0I9MCFPtAOur2ve+BFNVM/kXcsP9XfVPxQacvfPjkCWYcLEkXQKc wsPJwQIe9Hj8fUMPxpMneZ7ABfXLRIAAAXzBdZfSPfCYaqzmE7DplUBhIbCP f43FZXB4aN7vfk4yfvZghwUfmOVCaGoYeP7KZQ3ofVAmLa24LPiuStPRcrBD 6Km0eQ6or8JU5wLA4klby4ngXy8+v9QE2xs4ndQE76fyOM8Ctl3yV99gJ2NO n2PEUR3ob3aIq+SCizpHVLLAgWx+fOZgmo3093fB54VtKbTgwgPuO8+Bk/V/ hH88DPlDV+/CbvDlWSYmOzA6LOlK1qYgSliH92Hwh6Wj0c/Bj3YKNzezweex hxOugYevc67cAzM1s0UJgQt/5dAIgtue8tz9qQXjU+3d7GWFep9DQvEj+OaJ l93B4J0lF/8Fgv3Ltx+fBtOMOGZpghOVdwtPHoJ8LJ+kcBDM4pj19gl4KK+7 fliTguw4F2kUwOUybJKZ4KbAQa0FFjJ2ZrCLdQQXcDq6JoHt4ltHJcFlRdk+ GuB2+3Os/y5Cfrkee3vlINRnxjVyBDAxXFQ6E0xtYqQbBW7+7j2rD1Z8vVPX GHwzKdBnm5mMhVKbz3GD55ZUfr8HKy1ns1A0YD9VtmqZgzn9s4ffg4m7DoXR gF/otT5xBz9RFM0qYYJ+u2r/qfPgMpVDOTfBjXq+eDc4QKkvaj9YaOiQHEkd +h2ih3EVI+yH2+MZseCNvo3t22AatdH1y+DFJscoFrACDYv8UbCMZc+/2gNk PB4QdmdODdZnRFr/DrilHT3OB4f0p4aygx8Zofh7YO1bbGmE/ZAPcWS0PHgX XdYrF7DhHjF3KrB9g5kfN1jR+bg6SZWCXu+UUWxlgPou6iFNLLizWPuLO9hH 5WKpGfiA2htnXvBRks8lHrBapvYIiR76rXf8gxQVCuJQ0hP1BE83a+m9B/cx V14/BtY2Wy9yBROSku610ZHx4k8pKlnwhdmtu15gnqB9F7YvUNCehGVdPvCG eYAzAXxvJIqxfR8Zvz6RFv4YzBXYX+oFjqTxfKoPFpmfUuADL9ymD2UDH2Cr e9dGC/e/mKP9qDIFofzgv55gqrdpchngL5vnTx0DT4dVbNiCx39uXyTvhXy2 XZ0lBs4Tn1C7B973tkp5SQn2J91vIV5wZWQd6SM4ME7zeysN1B/nR5QfgNMC tuPdwGcr2bNVwJaGQgLc4HOhYZu0YKergwlNe8iYIUtGvkORgt68PfnDGayW Jn0nDnyeVv4EO5j64fPHl8EHTh3VrqeG/nfB+sURcPHrJX0HsMN26bNpREGp Zd3nWcCRXkl+2eDQon76Gip4Xha/yR1wbyVv/S3wFffb3KfBSlMki/3g8Fv3 elYUIP+cXBsp203GHmm3vKrAE4kE5evgj38u0geAN44aR9OAd3WdfaICtiS0 4Pxd8LwrGjtpwVbRF/pNwU9snli2yUM9nzTfu72TjLN8BYqfguU5JiqywHFT x/4Yg4mWOsF64KXk18c4wP4LZpKrO6Decq9QGjsP62d5gpwC9vgXcikd/Dh1 UVMNzPLiqJ4NWB23FXzfJuFi71x5EbDr0eV/ceCJkvNci3Kwv9xiT58Hh0mt fC0EB1f26k5vkXBP53KOB/il2YJBBPiI2pXLsmB9djp0Ciytpr7+9xw8X9b6 4MA/Ei67Pxxee+7//5eKdvqDX4SeowsB+64negiAtznD/NTBY+kzu8l/SVj8 x9zEPrB3p6qPK7iWHCTVLgvxf7w2fBhM89LX5yn4R5SsIN4kYWy5VWQEbtBU N78F/mJyaoQNzPTvphcdmDKCVofOUlBsESmgcIOEv8YZU6WAI81a3EzBLyxT d98EN7e80v+3TsKLHlrLfOBvfc84MsAPjMIHv8hAfXRtqV0DvDwVXpAD5r9E 57y4BvFyeuDtCNaoF9x8Bh6oeCUjDtbcineTBS9tsc/9kqYgvqd5A2OrJJxI cyKyBGxypV4kBPxWlJbfE5yddtz+OHjNZjFfFmx4RCGhfYWEL5uzSvyV+v+8 WxS5gbtufsr8BL5qPlV1GGyZLLA/EIx9T5fULJOw1Eak4wWwQH3BS8v/rSlT Sw2+rN7oSgMW1LCjbZGE/cPcL/t+iYTPvbPTiAAripj8ugTmlwr00wZfySlM XP5Dwvl1G9n7///+gMWZJPCiCR+p8wwF3VBr/6QA/imlORML/jv64Pz0bxJm XahdMgJr7f7xPhS8+9bwX1Zw8PtkRlHw2X8//g6chn7Yn8G28xcJGzw3XU4C r3xpLXYH07y988UC7KxwbekweMQopvMI+N2MuUjNTxJOCuctmThFQUevG5nc BCdQBT1NB4v6TntRgzs8OO2swYXub2JzfpDwTJyJnCAYmulMHfA/2dd75yQo SKdZJ+/XIgmnedp25YCNfz0sfA6OLj0W7wCOG43LkwW/IquangS/YZB4O/qd hD/yaR/6IU5BR0yYEwPBG23FnQXgVIa/oQLgzZytcFcwzblit9YFEr4ZVKQk Cb5E2H31DrhG/PLashjUC9lYhQncUhWQVw4+LIBPlH4jYaZHVdb3wbTrE8yX wWL2rznlwEov9m3+/UrC/rPEnr8nKWjWRpjyGvxCczjqE/jdysluFfD9gXua AeBYNdaGuXkSDt5U36cMtqKeqYgEO7hute0Gn+xLK5EAiwbqxRNEYf+9tCzv nSNhDv4Vq1Bw5yelei/wadVimYvg0gCrPi5w8x8dZjpwg9byUu0sCaenPFsi n4D6n1aM5xaYcMlsPBq84KNrQgv+/vNezyXwlZdpLz98gXgFd3Uxg49v+v7U B9901R/uFYH48ymZrFDgPHXO/owHB9CZtyeBX7yPOngZTBuNzBG4wlxFhRMc W+uxOT1DwlTkQyGjxymoMjqqOAxsMsPSmwruFhEIOQm+1XdVyhLskDDn1D1N wrQhrDn84E7pWA9PsOa0k8SsMAW9Nf+WyAW+Z5tGzgHrzpFH66ZI+JnHH39H sOUSz4Xb4NCOUg1xsMndMRI9+Dy76onfQnCfTh70LpokYRnjfcKl4EnuMT0z 8NIdH0UvsA+Lk97WBAlHEjjvyYHjUvf6ZIL/kn2JW4LQj1jSfNYEl2UooHow oXjw+q9xEh7GjH0P//88kfrIC3BPalHMRTBtnjAzAvc+XLrLAO5zWVf4Mgb5 VL7Cq0sA+rcTGllR4Mkfv3Keg/vQDl0pMM3f7D3m4PcOx6VHR+E8fVmLOQJ+ xj5v+RA8qMesNc0P9W9vcP9JsO+mnEw2mKHmWkLfCAmzzPWY3gHnie58+wAc 53kp/zQ4/wYrzXGweq6S4hof5Gd150/dwyScdceA4RP4qhNVpy84ZIcmewh4 fnsVCYFPOTHc1gTXLicwdw+RcPixtHVGcJjdDW0/cPULkd7+YxTEO//vlzCY Uej3egp4xuDS3s+DMJ+v1k42YHaHO3GBYJsuVikxcNRCxksxMGd3o/7KUQr6 /smfb2QAfq9o2vIJLHSt5VQE2N1wJjkUzB8eTT4LVh4t6rkEZpUU3JjtJ2E9 cXkXDrBtpXhdAjj0vKT3DC8FSXu/FNYAR60E/ckDFxTkyaz3wfwW9afug2Ua 9q7kgp0QnbYq+PJytsNV8IXWa9JM4IyIpdeM4IZGtaxRHqh3XGtSGj+T8FwF /ZtccKbfRaf74F0jutJe4GQxc3ZxcPY3aks1sIWsVC6lF/Zf2GPxQ+AQ/OHE KzDXsbS3M0coqOSGWI4xuDjMs6MEbCXVKHYAnHKyvOghmKFdpLW1B+53ifDL puBYs8GHD8GmWmltx8EHqJjclMGhHzXY/3HDfhlcSN0Bvilrr94FrjjixlXb TcL2mqlWb8EdidnrAeDALgVvX7AG6c3FC+Ac/TsvDMG2Lnk8NODkH2LkE+CR 91ox5C4SVnrgw08NtmKzK3wGfjRjVDjOBfeLlEeSBfgF90RwFXjj40NrIXDs lcC8F+BJowCRpU4SHn29qeIJfuSpQdsADnWNszAFZ3L/4YkDV6mcp5cFOxjv jLkNdnCoduQC6w2m+8mDVwO+vdgJJq7tZGQFf7WZ/zDHCfVIRJLLrw5YjwvW pC4w19yrzg7wgsTcwRrwvKbN9UKw0nu5D7ngDMJfo3iwmC2pNglsb1v63R88 li/sGwXWNv3i4ABmdU1hCgbXFODDFuBnh6cqfMBSxVqq+mCNxi/5nuDcgtda WuCz7sNy/7tYTT9GEyx89nquN3iSIBKiBx4/umEQBObVNn1rDp5MXHwRDT72 Z/uRI3hPod/3VDBd+nPiQ/C9P/XdZeCE5OWTWWDaVPPxHnCQS/HjLrC5AkfD Knhg6OcUdef/9ckFHT6Iz0U68xuq4CPMTe7/x/fBuaP2T8F7LO9ZPQePHlQo +AbWmPV8OAb2ZehUNoH1In6vT5GE9S0dNivs6fr/fPDNJ4JLRjWlb8N++A86 mytO "]]}, {RGBColor[1, 0.5, 0], PointSize[ NCache[ Rational[1, 120], 0.008333333333333333]], Thickness[Large], LineBox[CompressedData[" 1:eJwV1Hc8Vf8fB3CissssikRK2iWV5E2RSuuLkJEoo9LQJDMqySijQmlIpGWk jNLbKnHtPeNy9724uK5r/87vr/N4Pt7nfT6v93m8z1npctnCdZ6QkFCwsJDQ /68CRkwMZQUV/ls1a/qzmYQR5MtBB9WpsEVKzeJYCwldLmpZWxJO8HryyZGw Go5EehKWntfjFUz4oR3zbwzhC6HnNxQQDvlteL+UcMOyzF3CrSS84LfGe5pw Z+aR3VaEVcd9nu1eSYUd/mZ7MgnnG77SDCTs+FcoS66N8F6VF78JU9yUXH0I lwYE5ElrEP2fB336CK/8nXTamrDJfT/rw+0kTA6//+4lYXLP4hffCEuJ3fhB JWyk3a2l2kHCVtJHno4mFTYe+MG7Q9hHR7nwIuHBBS2b+wn/KPj49DPhiJEU DaNOEjZp6CuxCKs1ntkYT9i8k9qrsYp4H+sM6liEPQX6tGTCNMfSutQuEl79 U7x1lsjLE802ayXyHfibIpmtSoUa+2nh9AYS2kw35S9YSoUP4Q177lWS0HRU /rixLBWON5tE1xSR8MtQk/hrcSqQEj8adX0j3tdoxuOTwlQQ09P+O5FOQvFB BaskAQUcrl3tcE8iYW7KAsO4IQo8n3SucHxMwnG1FX7ONAqsVh7hSoSQcFhl DjS7KbC1QHPu2Q0SGuf88RxtpIBCz3EZbQ8SvhQob2JUUuDYhHtMux0J/Xz8 gxRKKCDNSVctP0JCszz5+Af5FNgZnjJPzJiEWx8uMbfIosD1TwvaM3VJ2Ch+ ysk/naiHWrEatUn4NG+4Xj6ZAvXdpId3VEloBXHyas8pgE4KLn/lSNhyJMvg bRwFXpTnpX4TI+Hz24v106MoEH6w6+iJuUq8s89pVDeMAuedN+zM5leimXOg 56G7FPgal3egZbAS+6ud+jiBFOg24oZV0ivxksFCipofBQbOzRk+I1eijouD R583BZKXHRrf11WJqd4a5J03ifNYjUmtrZX4Wj7KXPM6BX4baN63bapEK/Vy w+SrFGgRWn6rqr4SA1a+FnzzokD2Gr2cnXWV6C1Z5HGK8JSF8/zk2koMXndN /zlhKZu2Qimi/kRwrPsC0R/1TqXEj+j/eqQlovYaBXYk7Igca6zEeB0dm983 KLDS9NH228T50vcXaB4m8vFjtLykiXy6nULfXHwp0NX1MiGLyB9L2pqzkJjP K0aQ4cEg5nFw+LIrhAJiX6RO63IrkU+PWjYeSoHAt2wRpYlKfFRzydkwkgKr qIppMiIkVF6+tEU6lgI2Yi/EV8iQMKY7s+RMAgWOdum8NVMhoUJQtqvhawrI nF+Y+mANCQVXR3jP0yhglj0j3LedhJdMvV7dzqBA8zITd0tTEuok8qPacinQ V2V1sOsECaseBjK/FhH1hEKyrzsJ7TzvNkgQ+3OzjLZ1y20S6lqqeHYS+7X8 Sp3EVCQJr+vyWjX/UaD2yp/5bclEPjmznX0MYj6mePSfPGJ/DeIyFXgUiFC8 MlBWS8K7pxzc8ueIeQPGttTTif9HbuGdGkkqnGwxOcoUqkK5jLkNFsT345O/ WVpyWRUuS5FO3KtFheshK5bo6lXh1cw+QdJWKvyM8OA5W1Qhk0q/42JEBUnl 5EUxl6sQXPZ7RR2lQrpdT25xZBXyr24UU3ekAmOqW2PwUxXGkRUiFT2pwMnW uKxQXYV7ztLNL/pSofSmaOqWwSrsV9j1VCucCguEUgv3Lq7GlAL3UoPnVLCz 6E402VaNIS8KNmd9pAJXTVxe16Yag4J9je/8pIJhX+OAtF81it6WcPpYTYV7 mRRazZtqbOznCDb0UGH/N/+Ma3+rccCk7e7CYSrI+4hxBUPVOG6WH6AnQoOC RY8P2i+tQXeLXI98RRr0O661eWZcgxsWbidFadPAM+tgRvqFGtQVq9H9tpsG 1BFJatTTGnQwstBfd4wG+4vOhu0rqcFawa+bQy5EvcJ0fdlgDRrwt4cL3aKB Q0Omo/TyWlzUPKLmGE6DqryCL8sO1WJYi2GPyGsaJE4GZLO9a3H94TOBozk0 SFYTnfN5X4vplYl5OpU0eBMgu7G0rRabDwofet9DA7w1NUgWrcNPliGC82M0 CLLWPPlTtQ4vO1dFeUnSQaBorDOkV4fjwbrdBSvp4KToWOB9vA6p5z7nm+6k w/ghWVeb83XIG/oyt/gYHQLsq8PC7tbh2w2aj5e50cFUSTFC+lUduula/HfW nw7mcfmN5Pw6HPKv3siKo8PgDulq0eY6dFG3V/70iXCFHPM6tw77m3sXpJfR 4cpQWtJmqXp8Qjk60tNFhwvbPrrqadcjZ+Rh57ExOlR3qRbfNanHuQa78nFp BvD+Gm9Xca7HlKPHsGU1A4aDvh4e86/HxTNf6tnAgK2/gp4pPK/HibXOsnon GVAXvfvjzbx6NG1ue5JzlQEjThKaKi31WFs/d9stggEre3JezYzWI1dMg3wo lQEpB7+Ur5BrwGl6G+d0EQMcBpabBW5uQNtp/p+0DgaQTHpqVY41oE7JtRdq YwywLIlSHr7YgK7pNi/LFjFBcD2ILBTZgIes3gsn6DDB8lMp68CnBjSWOzGX aMqEVFSbLSc1oG+CZlPFaSY8VJFg+bEb8JZwUtEqPyZQMtKD3SQb0UxoSuzj MybcHCl7E7KuEVd5Ko7Zf2XCpyuFqxvNG/HpvON1erVMkNh8l2/p2YimNx8w 9dlMuNAXOSUa2YjWZaKx7gtZML7ojxb1cyMO1Ttr/NRkQZ35nfOjNY142yKY u8OIBbnhl8o2chuxme9/ssOBBeW5odueyjZhOfXxz2QfFtjdFy7U3taEqf6S fo+fsuBkrv4FqlUTbnLaO5P8lQVTRR+OkG424YnigPftdSxonq31bo9vwirp Ica2QRZoXVNdsOhHE/b8frY+S5INBmsZ8he6if4ME8rxtWwQN7P6zZlrwj9m t0PkzNhQ1mG8N1ajGelB7kFjZ9kg4rUr19G0GYWLWi0ngtkQG2B7wtyjGWdX afmovmHD1/d7LOzDm3GH4rpLzsiGJ2M8esSXZjSS2PW1rJsNxwf7rXrqm/Hb 2/mk/dNsqCz41vnfWDNunHqjT1fhgCeYlfYvbcFruy6GvdvFAdK+WOs4gxac 5ylmfMeWA+EfXlJcTrfgbMKhAZ9bHLj942zR0bstGLtk+/JHTzkQH1VqZPO+ BWuUGI5F3zgwHutR5FvVguPXn5lIN3OAvbcw6Qe3BT1LA8/e4HGgfaRRX0mx FUXDOy0F8gPAI1vNPNzVikN/2z482TYAbhcvHFU+1YorU6JEjlgOgHrA18Si 4FY0tBudUL02AOs2rLEISmtFkTMN68RiB0AyWYphU9WKUFGyU/LrAIRuoDTs H27FA3mqJasbB6Ao2TrisFIbzhiMnbcbHQAPrma0x+42tNol2fZOfhBeTMk6 J55uQ5+wvxliuoOQXNgZQL7Xho9O6iYGWw3Ch3fqV/Z8bEP5j2wj+RuD4A1W hZ/r2nBMTPlYwZNB+LTiy/AWfhtePefpdev7IGxTUnlesawdqw3krQ+1DoJ1 mvah68btyE3L/LRVMAiJpLnoLe7tKM06sXqz8hA855uLCUe242XO7Rt79Yfg 29ktpn3Z7eg/xT9yzn4IsjP39De1teP69xNnU/yGwPrzycC22Xbk1Yl4jSYN QcyDH3mcVR3oW9+71hqHwF+3fbOseQeqtb06UNU7BHpy9uGmXh1olvmnVEeY CzcpMpfCnnWg9TmleoEsF36IdQZ1FXbgZY0EnToNLvRysy4aUjrwyWbDjMxt XGD33Ov9ItGJynqhhokmXFBgG4Ru2NKJP/Tu5UWc4ILO7neyBTadKPqzeSbU jQv8qHNbrAI68b7466HwW1w4NzM/cSqlE9NOx1yOf8CFGv5PoUxSJ8Zb9jh9 TuCCyN2I5V4jnaizZvfbyg9cIJVophoqd+H6fe3LuT+4cPxlm81Soy6cyDyX qVrNhaqSpIEZty5kpCnttfzHhfMkwaqhyC60XhP8/fEQF+zSBT/ZOV3ISSod aRYaBqV962+OdnYhLcm1S0NuGPoPJcgtEOnG+S/PnLylOQw3zL+e0NTpRuaf NccbdYehmmkhav5fN4ZUPUjT2z8M2+0/U/y8u/F8Y/n+NzbDcFnm8K+8V91Y 4BylKH9uGBaGitrN/unGw/acqfDbw1BxjnvnyGA3sR/WfZIRw+CU7yqcqvgP X+gkZ8UkDYPm3qGUhXv+YY+8mKV6BpFP11T/6tl/KNGomplTNAzKLNPH1PB/ qO3Skn2sgejvHrzp/PUfDpIDTYf7h2F32QmkdvzDY/+KLRLGhsGw883uq/N6 0PfF899mC0eg2WY+LtDpwcVXXcKml46Au0iu6tv/evCYVlFYrs4IyM6y15v5 9KCadVa2t8EIrH9fXzLyugdfDoVw4egIvM0K/f7ubw+uS27eJH16BI4eVel1 4vZgvGuMY6/XCICZYcRiqV70EBl1yw8hnn+x+AVvRS9S3/vuin8yAoYVgzJd 23qxL2iyxC9tBH5Rw+r+mPXitNX9Ybf8EchWxtoc+15cp+f/1Zo0AvvFVk69 u9yLwetDxs27R2DfllTjxJBepA0Efdo/NALxj1Njop/1Ytrz5OL9wqPQe7i9 O/xjL/66b736sPwo3LpuIR+Gvfh60rzSWmsUqv4GaYY19qKrzNUktx2jkPxs 3Vw4vReN/fiPfA+OQuObK8+ip3pxYaBJzBP7UbBfVNKdsIiMWd9EnuRcHAWj K5TSFE3CUkvC2gJHYVklZ3f2DjKKfn7uJBwzCv1ZhjtLzMlYw6WLb0oZhe9e Dz82OZHxiuNDH+fvo2CpT3rAvEbGoeQDr+P/jsK4k2mp0AMyxrxWu9LUMQq2 yXePqrwg44tLezoVBkbBP9BOTS+TjNOeEk0n54jzortWW5WRsc9a7chbWR5Y 8VwcrreRcZG9ya5hTR5c/HH/61MOGbt2+oTv0+OB2zn1lT+E+vCnM0sv8QAP Ft/an0hW6MMDK8Y2jtnxIIBsriCxtg+jC7XcrS7yIKT4113dPX34O1+vMTeQ B0ocN/Lp//pQwFvkviKGB+bPTdQfufahEPu3UngKD4pXPNqBPn14ZCC+ZfI7 D/QTv6oOR/bhZ2de4qUKHuwttKxYldyHLaKXbGmdPIh4arLF7nsf5m3+LeIy yINZp8jD0ZV96LG6L5osNAZLbN3kKv/14Tv75vGz8mMQ82bHbdHRPuwitehw tMZAXife12hhP0YeNlW/tXMMcp4dlglY1o+K1HfV883HYOee/TqFm/rx69q3 2vGOY1CjkFw+s68ffydIrdl4ZQy0i9P+gW0/agi3/CoPHoOyuL/uIZ79GNGl RDv7ZAyMX720/xvUj8rF4rHz349BXBE7W+ZJPz7+I/kzvWAMBMXxbtbp/ZjC e27zX/UY+F3PufyqsB+ns+0cpnvGYLLpajmzvh9nd4sXfxgZA9ft69230/rx kFyYn8N8PphecDgQPNmPjd6d92SX8mGnSPLZOhkKxg6oN1Xo8MHVp/DbCk0K lqbGn7q3hw95Nx9vv7KDgiFyr5ebHOdDtZzqv2JzCk7aZs9fcIYPZ1TupSuc pmBVr7ss6QYfzO3EYzyuU7Cv+caO2Ad8eDkoFlP4gII+2Z8vn3rOB/2nQiny SRQ8Wzmdtf4LH45LPCw5n0XB0LYL/JkiPkyftGeU/KagS5Ta9oZGPvw5uH/x 8g4ij5alWzqNDwPfd2y/OUjBazzn4JAJPlyb1bOon0fFYeHCO6elxqHU3dVl wxIqKr4acjBaMQ6dMTOnH66j4oe5JCnNreMwyrQ4yAAqkpvvhomZjoOPUr2S mRUVk4a8q7g243DcZ6os1YOKYc1uNZ3nx+Fgquexhf5UnLlg8aDCfxxy+pqz PKKpGPHEejT/8ThMpM7SK99R0ao1Rezz23FYp1k2sKGAiuzZu8XJ38fh9p+l GF1DRV6F1ZLnFeNwq0LElt9HRdNHoSJPu8Zh2Y/XOfbjVHzNfBcYOzQOXotX 1BdL0pB/5si92HkCYH0vTtdWp6H6ms0yTxUFsCX9n/5jXRqqpCsoPNcWwJ37 /4IEB2iY5tj8OHm3ANzXG3g7O9LwjMfpgE9HBdBtcVeV5EXDTcdzW/KcBfBd 58TF7fdpKJwzGFt+XQCHZh3Pvk4kLLwxsy1UAJZNp+YkM2g4vDZDi5MoALqC 9m7vUhr2O/0aFP4igLjNiQrUVhpqV+XPVykWgN/Bdw8sODT0NZd11W0SwOV/ B+KKhOjoqLN/4X90AfBvxepuUqRjch+LdnlSACY2yW4v19JxZUfy7GPpCZhY /WaNjCEdwzQ0DuaoT0De54rrARZ0PKq/obh92wR4B58xH3KjY3ZNvLOw2QQ8 KSl9f9qXjq0BB7XW2U1AQMXhhw2P6Nj3attCm4sToMS6OGCSQsdV8+zn3Qua gBdr39bm5tHROLdB9lvsBGyavr5xXTUdbdt/bqanTkDFPO+Fr8h0XG55yG5Z wQQUVR62lefTkfm+IOy/6gn4HPVK7YEEA3+U2BeE9U4ASbDGdkaNgUq5YfTS 0Ql4R3s/79o2BrY+/SIltHASVm/kLmOaMbB9114tQ5VJmDzT8sbJgYF3pCrX B2yYhI1vDWNarjBQ9V+bWpHRJChaK7GP3COcKTMuYjUJ7kInPvxOYOCi+0uz DrpPQrjEdPWeLwy8pZd5IPr2JMhEKVl9L2Ggq8GL/I7ISdijma+/qZWBDWEZ c1pvJqEtQzjoPZuBhXYVStdyJqFDb4mGhhATxcSbJ4vLJ8Eife2KFwpMlCZX pMl1TsLePK8bSmuZ2M//oOw6OAmBaZs1o/cw0W36/uF84SmIWJm5WsqCiR1L vA0WKU7BFam9AaFuTDz44y3VTXsKbjoZaYv4MvGen75J0e4p6JiQ0gx8xMSa gVtWy45Ngd1t2YtTb5moditZzttlCtKWoKh3HhMVN0v6ttyYghyfKAaviomB BdIP9cKmoDF2TukqmYlXVRcbxL8g7g9MiBoaY+LiN8GRUxlTQLFlHbkowULS h57bp0unoFY51JKtxkKzxI9C5S1T8MBb8uW5bSysSr2+bBNrCsR+K69nmLFw Z2FDefzMFNDK7abdHFgYecp9nqjsNJS98ZemXWEhP6C7/Mqqabjxcccp13ss tHdlKvTsmAaStckAJYGF18MP0I6aT4PiYtf8s19Y6BhQvLPo1DToqzsXU0pY mI6a4tuuTsPtR/NFXVtZOJBqZpV2bxqqxLSCqGwi7z6ZJaoJ09BW+EzXTYiN l4ycj8Z9moYQ893qdAU2+pVtHZcqmga5VyPGHmvZeM/WXya0cRq6Ot/FM/ew sb5iX/Q8+jSEGu/VvGDBxkyZaL/AyWlokivo5bixUWedd/WM9Aww/ETrLvmy UV1J4Y7/yhnQDFTlch+xsfllaNys7gxcbpxvdC2FjWSLGdE7B2ZAtrXk11ge G++fTasVdZgB3rVTF7yr2Xg+GofDLs/AOQm6yRSZjd/FQz0Wh8zAGfvLhwL4 bIyx2b8l/ukMqF+T8RWW5KCw2ZGDKz/MwN64nua7Kzi4vGbk88fCGbDXnGcn psvB92NxDjvqZ6AnJmFBxAEOziuJtyijzEDQseqORY4cPL/8fKSFgDj/09/m WC8Ovv7pK9EnOQsqjQX8Jfc52C5nVn51xSzc/9hi8CKRgwu2Hi4W3TYL52st 0tQzOHitQJb/bP8sdN04t/1dKQczyladWW83C/4utrS1bRwsr1q6oOTiLNxo Op3/hcPBtqTQLts7s/D7RvnnbcID2LVHlsKNm4WJQ00leYoD2NJur/Lw/Sys eNswvkdnAA2z5f1X/SQsJnu41HAAvy1kixfVzsLJTeRfBywHkLI37Ih5+yyI 5o5amjoO4P8AEZJCgw== "]]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{45, 15}, {15, 5}}, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0, 2.134084535947311}, {-0.9176355971992227, 0.2822730715098482}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.9678663926315813`*^9, 3.9678667595645094`*^9, 3.967866805346586*^9, 3.9678669172024183`*^9, 3.967867065442549*^9, {3.967868445532782*^9, 3.967868452654505*^9}}, CellLabel-> "Out[143]=",ExpressionUUID->"d51abbcc-e523-4a37-bee1-f42ffe4b2a13"], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], PointSize[0.006944444444444445], Thickness[Large], LineBox[CompressedData[" 1:eJwV2Hc8Vl8cB/AGySo0VETDSqJkhLiUFSKVrWFmRdkhkQqhJJVRiSRURmZF p0TleW6y0pDC89xSSQuF4vf5+YPX+3Wf5957zvme7/l+LXcN2O4xY9q0aXH4 9f9fRVWds/b8fVRW5v8/zYTnJrMgQqiPenw1uuV4djPZdGvf9MOL+qi59mvy 3+Y1k42SwduiZPoo93JZFYXiZiI4XPQzbG0fdfFUXbNXeTMpdHN6GbCxjxp/ KP/scm0zebww+aubaR8lqxVzhkWayb2D31bu3NlH9R9o3D/4uJksePDBS39v H6WV+KaGp6WZWNgcKVbw66OEN6Q1znvRTJbnHOgSCu+j8i4WfFz8tpkIrFry ZjCuj5LrJ0HinGailhqb9/R0HyVVH3xX6HMzCd+3TfJKdh9V98BcaPx7MykQ aF8fdL2P6oiqq33/u5mc2/uj06Cij6pJWzvn/mQzUU/S+CJI+ijuQR7Hc7ws InS80aWN1Ue5CSQMeAixiPkN25VpXX3UeuMpnrXzWOTFer0llv191BnrvLFf i1nE8tSetbxDfVQOuTT39jIWOVKqYlUz1kedDBY77SPPIiLG5XvcefupZZ4L yFJlFml5edBMSLSfOiZXyrDVWCTg8YnfJZL91GmDbpMQHRb5pH3S0kKhn0p0 jl+1ZBOLUKMXNLjr+6ktamnP7pqyyINZZudDqX5K2pAVYmfFIuF7q3bMNO+n Hu4cdP1uwyLVdp47T9r2U2vv5XYed2aRHX+dDwu69lP6vtH8i9xYxG8nf8WJ /f2UQ8Ok3nVvFlEIMXk9Ed5PlYocL19/gEXmhzt1+Bzrp1YN2V6sD2WRo+Zf 4zpO91Mp2llaRodZxMGZ55l6dj+l/dm6gRXHImniM1PPFPRTogcd/S1Pskie Qd6tD+X9lM2YR3BrKoswywd51ev7Kc1Nf/itL7CIYIxmeNTTfurZSle31kss EnZwBaeuA/Pzsq7CMp9Ftgwny4y+66cONHOV6GIWeW5zdrHC534qTyV4yrSc RV67JFzePtJPnZesd2yqYRFb+2+nQqZxqI3Gj/wM7rNIfEFIU6oghyr0Unet b2SRjr2DEvkLOVTOKk9PLTaLqEQY+JYu51CaOYZXq9pYhFsVnnRbiUPZm+40 UH3FIuu35e+4pcmhnufk7yt9xyKGjj2ZOZs41GPJpzprGBaJadJZn7iVQxXX svpufMH6LGn55W3PoZZ1y0et/ski0S9SSwzcOJRVNVl98w+LzPD2UBfx51Bb ptFzlacw/tezHV6Ec6i5Ip1G5bxssu8n/6fUOA4Vs/nKJ3UhNgmbRyo2neJQ vuVKC+rE2GT9UZ0TnzM41Mnl2b2bF7OJ+BZDpYSrHMpZUcb1mTSbUOmGByRK OJRyAl+JvRybNMYbSOTXcqgriZFdjBKb1MU/G17+iEPVpGd/CV7PJmOfxhvS n3Go3Bs2E7zabPJhtqXZ35ccKq7DVjRTn00OlZRste/nUPUZoxrKJmwS8Mz+ VOEghzqtvDyoaSubHIym2YOjHOq9lz5r9042+a1e/0hmOpcaTFipN+7IJnPk p6luE+RSL+yZZxdc2ETm8aFW/wVcql+yLUTTi010dgvYxUhzqe/PjFRe++N9 iw5FHlvFpTJuX/geFcIm3ntcfkSs51Kn1L7fXBHFJiR3oY+bLpea1rV6J+so m1RQaem6JlxKfHl1e1Aim8y+bbeU35pLzY1xE5VOZZOmB44lTY5cqq7RdIR9 nk0e3uEMBbpzKVmT1D0Rl9jktnRgnIg/l8rxsVijmI/5rbkkfDmMSx3fbaLZ XYzxdI6slojlUrmc59Yp5WyyoOXdofiTXMrr41EL/Vo2eeK1/3T/WS5lVyX6 89d9NvmroD9d6RKXMojlmV3YxCZq1rZ73Qpg3kOWzjSbRPlxtRJKuVTEwNsj Ih14vqqceFYt3vfS1W2Nr9lEJH3N4YyHXGrZ7t/+Yb1sYlNZMniUxaUkOe5H V31kkxcZT/vsO7jUrdDY1W++ssliE1bH4rdcyr7n5MzEYTY5IDis1sTlUrOu TbuoPsEmPy6oBTp+5VJfTTWi30+nyc38vp+vRrjUu7QexROzaaJV7rtIf5JL HUhLWLxqLk0MooX0Ts9iKJeAFbVPFtDkIyugtmkOQx2w3+3jIkmTmV02L/oX MtT1VInEkRU0qV2g0s1IMZRTU71L3CqavEgom90ix1DVyeHqAmtpcmx4T3qW MkPxdSRvSNSgSeVW8ZtmGgxl+Sv0zNRGmvCERwf36DKU9j9Be7/NNLnuGzF7 uxFDecQfS2/ZQpMPNanh1y0YalQ7SE92G03ObdBjvd3BUE/nXNMJsKVJcxn1 +7sjQ2l9Gdh9w5kmDp2swX4XhvouUef5ypUmTUuqT5Z7MRT7yauJYS+aHIxJ yXMKYCgVoaulU/402bw0bfR9CEN5KR4cHw2myf61eRt0oxjqeXqx1usImrQP zeIPPIr7y925lR9Dk/TpsiNRCQxlIPckzO4ETezXC4U6n2IozsTmC9+SaHLD tH9oTjpDlZ9S+OhzBuPzkrmRlslQ/Va/ljw5TxORR3feMpcZ6kLp9nvTL9JE e29b5qx8hjKzC1qxKJcmg5/i3vwsZKipTiaMr4AmifrrQgtvMdQeD+GbdDFN ohVTl8neZqhCJb4g91KasF+4e3pWM9Rsh1E9dgVNjHpbi7zvMtTlTZe1/tXg fVTXSCndZ6iIoyq6o/dockrI6VHxQ4ZqmKZAlxPMp0Do3v5GzM+A9OzVj2hy +iR9+PkThnosZnvd+TFNVrlM7vJnMZTG8qYB/WaadIpJjN6lGWrFmSMn2th4 vnkqt6yFoZiAGQV8LZjP4hJP81aGuiqw9HH3c5p0eRy2ON7GUA+pkSKjNpo4 ixz7bN/OUPfrz+pvbKfJfEcJ/gdwyW29hCr4xZ3a1gq4Q+KuXwF89d7R20pw paRJzgx487otFitwP5fJT551rTTRe1lrnPScobrtxPY14vl8/sZKu54xlNR6 FUd+miaxo881kvH+QRt+1YU9pYmrrZGoIMYnHzDpMYbxlvPUJLIaGGoXnxJP yH3Ea2C78p16hlLVqo18hvmzSP7S1lDDUP6e58T7MN/P2WOc52UM5ZxpGpOA 9ekSEb/SiPV6Yrfa/Vw2TebKvfp+JIehPjRzqlpP0cT6WtHv14gH+dnHdv85 QhOZ7sLFeYgf05hnVB3i79WPpGMXIxCvTqrH7zrSRFTYrqj7EEP9kZdvvOZA k63Br79Wwrv9whX94eK9p2VOwY1/fCI14Em/oK37YKkVo9WT9jSJXBfjpQ8f 0hLteQzf3lwWshiekVzx9RR8RmMy+Gc4Q/G6dQ7Ywh5Z7p5seGimb4sU/OZv z5Z8eGuZ/+UPdrj/gLv0YbjrWpd9Caz78dcHG9hFKutfCOx5+PgVZfiHVVmy LlyoPN+CDy73E5nFC1+IzPr0PoyhxvLKvWnsV8V+sUO1sOXSpJqzcH1P2Hgq 7Dkj/ZsjLPbx0X5vWDHkkegKeFvwj3YDuCZdROqTDU1mj42vWgK7RgXOL4PX fXgT+DMU1zf3DofCysVJt1hw3OQ2ogs/K+N7kwe31N0L4oFN3bb8iYC5J8XF 2DtpYqJgPnsHvPOgU9YZuNeNT2A1PBocLWQPZ4WF/5sBD50P85KC/Rsy+t8g XxR36pZwdyD/XHG9cxv+LP+0pxhO9muNPQk/OiH8+wA89/BbHVc4j8MzrgGv kI/9qAVbrrn24e92rHd97TFR+KslU9cA5546PO9TMPbz2rqoBHjhp+azD+CU ymVylrC6eAZvBvyyjv/OPNjQpd8rAL4p66/+2pomAsJX641hk6eG2Zfh17s6 Z0rBdhHHPrvB8ekHdEaCcP85MitXwWHfDrrTMO/2JUZDyK8Zxe3RV+Fo0d3b KuB9U8knI+BV8z8YhsMjMtnx1vBWqaIVujBj9TtEAX74/dKn6XDw7WybqUDM n+m9zMdWNAmJOirXBY/1/lZNgp26rw3chMMDzKqsYI3xqew4mL5etGw+fGd6 kr7j/5/XEgp5ZYl4W2TQtRaubve6fRF+5CK5iw8Olah+tRf+M7XwRc9Bhtp3 9/NHGVhLbLVeJRy7/d/7ga3I11XbM07Cx+O4D27Cz3kSOHthvs/nTx6APRc1 SWvCQdKCumrwhVk8W4Vh8buar35b0GQXR8+Xc4ChZLfOc74HRz0IiLgDE6/0 p9Hw4VupEadhx8zypZvg2ppsXw94q4+LEy9s//nkVh1Y2DUr9qk5zidL+2Wi cD3PjtQk+Pznf5wPOI/SO2LjLeGmRyEZdfBHi6X7ROHYt3d002DlQQmVTjOa mKs3duyDhRWD35+H0+hTjrqwS5RkuANcfXleuxhsaCs4JgHPLbDQHvBnqIUK mq7vcJ5+f7P+bD2cvOd8xRW4ZP2jt2lwxT7pr65wXv7wQi/4X+HTObKw+rIG A13YPDFh0UdTmvSdl90lBo/42ggUwZq/F3l/3M9Qr8pluT7whzXnPepg5zvf rinBD2UvbD8Dx70rshoyocnTJwvWesI/I8z6SmGFCcFJbfgv88TxIGx6Lahu LlwSvKhOFWYXGfty/ZDfD6nyDhtjP36OFrgDrzIW0qiCP5sszEqBFytctAyF N1+ZtcQVTvB/ZakJJ7RuOakBT+yu0fhjRJO/Fa8/C8BbDVVm3YEtZcp03vsy 1G93jfpD8MWxx1EV8FneR07a8BGBRSXx8Ccvdt+4IU3mKV167gSPPzeyugeP r9vWpwKLRijkR8J+Q4qcmXBHvnevDrxRVf7FSx+c78lTM/+ivnlH69XcgH/7 9M6pg8OSfROPwP2HZkyPgnt1r5vvgAu/O73RgatufvknB5/m5WRNbEI8XVW9 Mu7NUMaDKZvuwdO/hKi2wArd29si4MfmpZW5cNxMBRNtOD/5lVwI/O78zPwx A5okBX1JMIXrm7o/1sLeTX1vJOAyUiAWDqsZV0l+Q73kV+Eoown/rt1j2QC/ bvkqOaqPfPL+TcA5WIGy/VsJq0Qti/WCOWtPNgTBxywVj+rA/K1HAlThgoU/ A+fA4qZrZv6gcN6ePbijbx9DrW5MOFwKLzuWt7ISFgxIeLcf7rwWzTkBGwet kFOCFaqn0hxgowmLnZ/18D4HpVWVYLd1k16FcPm5lw8mPXG+6Su5e8IePcup NrjA+pmRDNzC8+fmVVjozEvhfl3s9yc7BEJh/VUGdTlwYK+ynSl812ia9S54 vmDc2SVwoJggvQTeOcOMDHow1PQ6uzWvUK9qxx5+cx+uDngbfA7u3CTOpMIV TqfztsOWM0Tfu8J8pZ7Vc+GpCPenajCdaV9G6yB/eAnmzoKNtjqlJsKFJ6a8 XrljP0242xrDT85oLyuGG1/7zpgJpxlXP46ExSU904k28r2rn/NW+NfYFqEo uCLPtk8Klrwp7LMBdn3sb/PdDfXL/uu3hrXw/eSS2odw1yHhl2WwQ9VcwbPw UxGND35w9fRkC3eYP0i8WwG+tn7pYXV4Gvd6FXcD9v+c+ouz4ItFPSFX4Bwb jxsvXRkqTKhUwhl2ej63qBCesBO7Lv7/5zdVnzsEJ7z5J96hSRPf0O0HzeAs Zp//Kfiu+jsdCfjbM+PiLXCs+Y6RL6jXS7+ksnngtmM3LtXB6Vkb2wn6heSy XrUU2FxL/34EHJUzeHcX/FAp7bQ67CfTrKIMX+hWMP6uThPj+QfOTu7F+pWP 9xXDisbdTAu8W2rS1QM+fZZHPgeePL+qWRp2fMXYBsCV6UHz36ghP/wMD6Hg rnPthulwemPN0blw91JdR0uYb93F6Pd7GCqpqmjnbHiZ9DLvUlj1yxy1hvVY j3DdTUfgju1ufyLhWsUhfivY4cSlXHXYX1bpgRTcIlup8k0V43H+4T60m6HO vLyUVwiLPNH8Uw8nmVqPu8B8e8cOpcCeSk0aErCg3NrPznCz7ne7znU4LyW6 TJXgFL3mXSnwIxPm3MQu5O/fxqbGsGSVXRsLnquzV3wK/djCIPmJTPhqryC7 Bk4+ZznPG37QrO92ABZUf7J4A9zxfuS9AvzHP2kOH/xz/gqDPhWa1Hmc+/HC maGWutedyIQ/6b9vyIfj2u6VWcO+a9yOBsGNPuKEHy7ZJbF2E7zB5HH5Q2Wc v/wzaJH/nUASDsFNAaK2750Yar/D+OZ18LmOzS234H/f93MG1mB+jpxVi4Jn pIruuwIvaxxPMIPrjr5tsYMf/wliL4I5yx4vmQsfjhyb+IB+8N+zJrPHSsiX 5ceXVMFFY+27D8PZs+bJx8Hj0oytGjw2lL3cGm5q/qX6ZTXOK2aJgDT8N3n0 Zy4s5X+yd9AB9ZEwc94eNp3H5N+FF0xUS82FG71k7RLgkwvdTzYp4vwQMP5t A5uv4b6OhDMvGRxfCRtKqwirwsefi03/Yc9Q29s3ygygX/a0q/S5D9sY8Upf hsnIsoYkWOZYzL8dcGvwDj4HWPhGAeGHewqNteVgo48BHkSBJj4HRhx/2eF5 YZ1DwXBCpaP3A9j5Bu2kCM/3PuiRAvcx226+l6cJf4qalSPcn+3Qmw7XK+bI ycOHbN7/3gJr2d/88suWobaUvPk5KYd+QtPu8gP4j41hWwXMGs3SS4FviCw4 6wXPagukHWDeGqMNS+Fh4TcmcnDWhucP2mQx/hl02U8b1MsXipVOwPGihnwE lv3VGqkNb7yha54E20XqlAzJoD+3rIyyg4UjOI/y4KiEq9krYR3rhjpbuGhk VuG3ndgvkW0ZAvAFgze592DBFAH7+yuxvvKLE+PhpPX7xg/CUkFk1w44TKPv iCw8e1qztDRsERk48GoFTZbeW/f88w6G0p62QC0Z3p834lsNd/c2uFLw3SaR 0Vi43SY0+OdymgwYH9m/FQ6uWuV9DfZ11G1fBIcGv9S3h6tNTGS427G/5CIm BOBK70y3UjjliFBm/TLMr8ra1Ah4y47ExQfgGInZxUbw6gtfolbAeY+XlovA ia7KjzqlaSL+bv+1bmvU498sBk/A6rIjJwrgquxNfzbANSFlNgdhzU8CHz9L oR9+cFF0I6xzJLf2ItwrVHN3FjylOGO/JVwW+Xdb2zb0I70KPNNgayOfzmyY p040unwpzu97/ww94cLpd964wk1bKvPWwpelJZbMh1+HJH0dt8L7lKhtbJJE /dIbI9sEbw6cYRAKvzNKMzsN2znFKsjDkdH1zg5wYnzJz5cSNDl7ZJrzSnj+ 5vicBPiTk4Mpeh8qn59fRQs+YPh4eQ3sG78u99MS1FcJRgMxsErW5Egm/CPj RbYZ7LPdf40ZPIcnZON82Gs42mR8MU0kIleweraiv5mmYlgM3259a3gdjhU/ vNIR5hvPu3kA3qjgxfDD5XODp2vDF62/Jd5ZhPxhabV5JuzwUVTUG6YWqQXS FgzFJDyPWATfGl5+6hx8YrrCkyfiuJ626MJuuHuPxGgoLPpEPEUeLv9RxCcH PzsjfeC7Od7PqHOicyHq/SVr9e/ALquz2+Pg6ZVb/sXC0TVTSaow31u/62Zw 5qaZCn0LkI91s/TmwfP9rhecht+UtDd0mzGUt8QQnx5coymulg8/jn1tPjif JgHC3ml+cJmEX2AW7H2+uUcNrr5dGGkKt/hoL/y3BfllT9q+0Xmoz2zqdZpg VqKSRj7Ma7vTMgV+8jXiozWsf2W6pQ3skhUbOSVGE/mcJ9pL4YFhw583YYOR wvmMKeLpbrO5IywRXdh9E2bNWJDAB2dYNZ8Ohk/rK12vFEW/fW/Ouo1wteGC Ihe40SqKzIRjDLpS5sDybxbosE3Q77BCbO6JIB72vb+aBo93jU/tg/mMe8Yc 4KHHfinzYT2++brLYU3Xjn8P5tLkfUzC/gFjrM9bDev98NMWKqkUPvYyJ34x fGIndT4UtvAQz22ag3xIkk/pwjMEr186CO+YpRzMA/s8sj+8FNYPWGXCNmKo K9M19ZuFUd+lHOdLg1srLD4Ew5GGW6rs4bnG1wKWwcvZkdukYeN8i7dsIfRb N2ReM4YMtcTASikM5jwxt7oJd4nd3bMCtrAfux0IN2VlhT4TpMnQd3UeLXjz x8kD4bD0UYHNU5sZataFEcuV8LhjTEATHPo2RaRFgCZXVucmJsGSsS+rwuFk vrAz1rDip369lfDgPqF4cXiu+MMbz/hx/iv7+fRsYiiqNO5vGMxTkKtzFf4w sXHdCpiTUDvuBb//PrWFno18NlV3XRkuUek1DoUFCu5tGjZAfAr+lF8G301+ yL4Dx6abfW3mQ/2x8e2mI3BuzNT5IHjD3cWFhrDrDnnZpbB2fMIEP+y/6/WF x7NoInxdU/e5PkNdK1jzLQA2ztXYnw5v5NddvRjmPX4uyQGeu265RQMv+t9B 9wwpuOLKsLUv7DtVdZZDMVROdfvG+XByeNbhQjj+9kuheh7c77qM7X648+6y Bg/YKXjfUlXYoJ/tPAdO9AjtGNVD/lnz5231TJqE5HqE34N7M5s27YHv/Noi FAOPL7c5xQfPaNtw2hB2bXpKSmfgfk6m0/lht1ObX9rBpz1Puz7TRT2f9alz ajpNrkfJVpyBdZf01l6H0/tX/LKBWa5b46zg4YtXViyBowft1X5PQ70VXGvw biPWz3U1fRkO+XdsWx6clDNkZgzPz1hu5QmbkGdlX6fYpCKiWFcRDlw+8i8d 7q3cKDmkg/gKSlPdCCeoj34uh+PudlpyJtmko3WkKATOth/cfhKWMnZy0IKt FwtS62ANY5Oxv9q4v5b7vFf/2KT6UHfiA+3//1+q1BoNZ8RrCx6Do8YyQ2Th KYmEwybwuzzuTPovm6h8G+gVgCNajSID4Qf0UfUWLcx/0p/uRTBfdlTkGfhb ipYcmWAT4jp5eyf8yMzE0QP+YLvurTgs+s8lXBBm3lK/32xgqLTb7JjycTb5 nG7DcxlOtn8aZAdnuObMdIGfPL1k/W+MTYZCzEdWwl+6zi65Ch/Zmfj6gybq o93DLabwSH9iWREss00wYOgP5sv/SIQfbNogN3EWflV7SVMFNps8H6QFD08u HvihwVArz5S8evebTTL5VidXwrZODYrH4AIlfpkwuDB3lc8q+I/nUKkWvENK 70LLKJs4OC5c+1f9//3ufDsIbnO5n38f3uXYf28R7HpRdk4sTKJUK+tH2ER9 PNlvMyzbUJbt+r/NNB/wwg4mjYF8sJypN/9TNcSP2Eutm8Nson3D2/QkrK9o +2MbLKMee9gCdioqzxz5xSalD8cL5/z/+VfO67PgIduV7Nb1DLXXuOW+Hvxd 3YybBv/tObKR85NNFg4+GN4Jm8/8djMenunR/XchHHfzoogSvOHft7+vVNEP Rwt7tf5gk+3n7Eay4NEPzRXBMF/B/g/OcIDe7uFF8Nudqa1S8A2uo2L9dzbJ SlxW2buOoZbv2WnrAl/gOXomD1aK4oTzws9DJLzd4fLga2lF39iEm26rIwej mc7fCv/TujJ7YC1DbX2yteTHEJvkhnm1FcE2P46Xn4NPVa047wun96SXaMGX aCO7NfA14bUFPV/Z5M5KiwXfVBhKylYsMxYef1bRWgbnCP+Nl4UniiYTA2E+ 7Yqg5kE2cTl620AN3tY0c9d+uF7F4c+IMuqFQmIoCj+9F1NSAy+SJaurvrCJ 6Il77odg/rFeMQdY2eeKhA5skCEw8fczm0R/ZHX8XcNQHz0VmCtwhll3yn34 xuiadkP40KtQsxg4zXjho4FPbBI3YSKwCXbj5dYmw76Bk89mwmu6civXwkqx VueblBB/2a41nQNsskRm1C0ebr1v0BAOqxpVaG6Bq2LcuiThJ7+2ignCj8xH hh98ZJO8y2eH6dWo//mVpT3gpm3270/Bg5GWtvzw1++hHdtgp+zc7FsfMF9x bW1i8KqJqO/WsEugdXenIuZ/pYHtKIP91Prx+3k4RtCxJQvOuJkyzwHmP0U5 UnCto6GhBJz2IGSCw2UTHnrBsZ5VDHX3VEpFAmzLnd+ZA7cryh5bA3t07VJ3 hX0vDPi3c9iE/9jCIhm4VSMtJAw24/iv/ajAUAWOXzIl4VCvXLoIthygex72 s8nZkF/RfrDrsPTmfXD88ypTFdj2wDu2ELxxsdHqn/I4T/vmRdzuYxNNGwGF Krhv6Tsre3h4f6R+OBw5399qspdNkpskQnXg9JzZkfnwXzqKNSmHfsSV74UZ XH1Vj2qAmype7/nxnk26iUjX8f+vZ/JKZcAdObdTt8D8JQpiFNx5fPiAMNx1 cEzvwzvkU93a8DZZ9G+rTa+nwH3ffhSdg7uoaZbqMN/fwlmO8E3fVRo9PdhP H/6kSsFnF39yPQ6/thIz58ig/u2Me7kGjprQ0SyEhet3X+h6yybzBzrs9sMl StMLjsDpYdtKVeHSvQv5VsEmxQb6f1YiP5sE3G/vZpPr+7cL34d3+fO0RsHH ppktPgZ/mvpNycPr/IX3mcEPRi6Itb9hk8QVuWMicIL3XovDcF2GYufLFQy1 7NO/HwqwiPzPscswd/u22S9eYzyf3f094cW++9NjYc+2herKcMrg1WxlWKK9 0Xp0OUN9vR+98u0rfF/f7ul9WH7303Un4eAd3IvxsEziKXoDvKnndsc2eKGa 3PjHl2xipaJ7cAnsdVfl4QU4fqNaBHcZQ2lEZCuYwimjR3+VwGVlJZpjXRjf kHX/IVjz0ezRYtifErQwgh1GCn13wZubd2uIwldPDl8RgR81Gl/vkUa9E1h/ ufEFmwzUCl0rhvMPb/E/BM94a6kRDl9UdlysAhd+4XU1hp211IuZTsRfQpLK AvgYubX6Eiy5IreAK8VQlXuVi2zgioSw55Wwm3qj8lz48pqa28dh4RbF5uYO nO9rEx3s4DT718ePw3bmuc9WwXN5RIM2wfF3TBf/W4p4eT2YMw120fIxaYNr pYIkH7SziY9ZjlsB/DyzcCwGjm3Ti4iCTdnXtmyGi6z3Z+yAvQ6WSPPBF78p 06vhtzfNU+k2NjE4EinDC7uJe5efhU9wd5a/l8T5oh6S5QxnLO2NuweP3znu Lg+nOcWWZMB9O2MUh1vZpOfKhGEYfCLMlP8RHB+Y7mwH5y/9JZ0O3zPcKKQF +9pMT90H+/rW+UnCVq/zDuvCv2O+ZEyHWX+miyyEP3t+ujUggXrkZNbBH8+x Hpvd2W2w5MCl1ufw4NqBefXwJzPPPeWwwU2dW8Xw1aa/O8/Dyl7sB1mwj1fV 12j4XalCVApsYffB1xdeGHhZNA6uLyOLnOGzi/prI2H1CnMja9i08UNpGFxc dsXcHN4Q3K3zvyuMrVPNYIUNe4oj4L4mxWNW8Pvl49uPwsss7Aoc4b7MoYxT 8IpfUyf84Fnlh7/mwIJ551jH4dBfDe3V8IWLI2uuw/w5ju874KMHK5LaYEe9 JY9+w6/efO/nbf2/Ptm8dSXmZ4ug414jWErscfD/83tEe7nPGXiWa6jbObhn nl7ZF9j0Y9jxd3CUcOsmW6wX62vDZTWsb1W3fXlH2//7Y+WnTLiyx0xjH+Lh P8XjRAM= "]]}, {RGBColor[1, 0.5, 0], PointSize[0.006944444444444445], Thickness[Large], LineBox[CompressedData[" 1:eJwd1AlUVFUYB/Bxg0EYNRlNQEYBScIwpVERcT5QEHFvJCkCCVwgxQVcAkQQ UUxZMiKVzWgkijAZUA6L0mciiu/OgqADBkTAfQOYIgLBuCTdeufc887vfOee +//u+d6zCdkn3zFWIBDsYOu/t6EnPZ3O4uHDOW+8bjwkmNKx75jPbB4Wmknk G3UEQ/bYb9nMnBnx7eVAZgkOpIYzi8a2RxxnPuPfW5fOvPvULqcq5sRaWVIN c4OVcumYJoK7Y+dGvWZuUa5f5stsPRJ9fpkND0uOei9XMlfKvrOLZw6sE5RM bWZeYZlTy0x3Tt8RzVwTF1chsmX7f+mL7mS2qc39bAuzZ1LslnWPCCqSk364 yNzRPiWnjNlMeOg6z+zu0GZv/TvBJlI05GjHw/zV14cSmKMdLar3MPcZ6RZ0 MV+vKjr3C3PKQL6tewvBB7au0x8zSxq3zb/AvLaF/9N2DruPeW71j5nDDa56 BbM+sKa+oJVg5J3fnN+wvEPjS72bWL7VdfmmpdY8aD59PaawgaDf6weVRjN4 +Dm5YflJjqDXoPkmj7d42PTQ82vNTYJXnj0wyTPhgWQVubeWsfsaLD77yRge hIsd6l4UEjTpE/vmGigEHIj8PTSXYHm+kSzjGYXsl8H3As8SHJHMig3WU3jH YqB/YiLB55ajYNdGwbnKbvT8IYIe1+6EDzZSELdvmuQQRvCiweL9Ho7Cxheh 6Y/8CcZGHz0mvkVB9KTQ+u56gt4V5he+rKTgkpw/VuhB0PnM22vlJRQOXjZ6 pJQSbDTZGnS0kNVP+T5udCB4ruL5fXMFhftt5EyCNUFfyDCXZFPAIHFI3VSC uvUlbpcyKOTcrSgoExLMjpniWphGIdmndcNHoxwmrAwalJ6msCvYyaV0mEPv 4PjwNScoXM2oWK3r47BLHdT5JJ5Cm3v/aa6bw71uxlQSS+Hp56Oy8x0cOoYE hHVGUVBYrRlZ2cphQZRth8thdt7jxtymJg7zzNPW2h2kUOtml/TxAw59Z9+V KSIp6AQzv1Dd5zDOJs9QFkGhdO7iay71HEaZ3gzbyvxKHjxBoeXw+LwDrtnM Zn7N1Was/q1hY9tutj/tB8tbsWz/1fW6FO0BCksyl6T+3cjhBUdHv9pDFGy8 vloUw84XJRnZrWP5htPtI0Qsn7RFUBZyhEJr68XMEpb/G+J8zZj1F5FuKA7r Yf0EBFxZmkhBeMXsM2k/h8PdaVYjpyjEX/pr3PQXHH6l2RssS6Uwh5/246Rx BC1mztCJvqHgJ8wxmTWJYHqb8ta2TAobWh0veVsSFB8r3SHLozBpl3HBl3MJ GiIHhrJ/pOBd+s+YzkUE93pFfBdTTOGhlWfoZi+CjlnDac3lFDpVvj6tHxFU nYnvvXqT1TOrO46EEvQPP9Ewkc3P4dt654UxBKWbLcNb2HzN3F8/8VUqwYPS oSa7Pyho99+Z0Kxg+aZ6u3T2sP56Tb6+U8Hm1y1DKR6ikDJt/9PbWoIntgbs rBxl/cb9vfB+N/t/lFcnaEx5+ETnuaFXoMKpxaNOcvb9RFcuEJlaqdAqX5S1 wp6Hg4mz3pYuVmGkstOQ68zDjZSwoWC5Cnv57oQQdx5MLRST0/epEEJWRaRt 4KHQv738t1QVDkfOF84O5KHnVZtt32UVZnSIU6eF8/Ck1HafWK3C5du71+45 wkPN4fEFC/tU2CVees4+mQcjQUH1iilqzK8KrXHL5sFf3pbl+YEaE3OqFpQU 8dAvMTGX+qnx2PEjHgk3eJB1Nj4VxapxfMzEoCI1DyeVVK/5Xo2NXU8MTu08 rCo7WnygTo1PPZtPGD/nwTxa2G94psYR78q4xeP0UDX5rM+nMzQYKi8Pq5ym h67Ad/3Oe2jQyXgRSXPQQ3iJT3Hhbg1KhRpp2TI98AOmfNo5DQa4y13nbdTD qpvbT6+8pUGt4dfDz0JY/Z7Xe7f7NOg2vChZ8IUeAhqUgaKZWpz8cEASmKwH VUXVFas1Wjytk7WPy9ND1su40r+itPjeum3xg9f0oJCMH43+SYuFXFaFI6eH 7+Peml/TrEW33slDQS16EPz/1OO/hyZszQ== "]]}}, {{}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0.6000000000000013, -0.20000000000000046`}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{45, 15}, {15, 5}}, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[1.6]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[1.6]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[1.6]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[1.6]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[1.6]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[1.6]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotRange->{{0.6, 0.7}, {-0.25, -0.2}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.9678663926315813`*^9, 3.9678667595645094`*^9, 3.967866805346586*^9, 3.9678669172024183`*^9, 3.967867065442549*^9, {3.967868445532782*^9, 3.9678684527062483`*^9}}, CellLabel-> "Out[144]=",ExpressionUUID->"d10a7a76-66dd-44f7-befa-54c0b06ead8d"] }, Open ]], Cell["To find the point where they creoss we can do:", "Text", CellChangeTimes->{{3.967866902114412*^9, 3.9678669117533636`*^9}},ExpressionUUID->"7620cd56-5ef2-4b88-bf38-\ 618aca7104f6"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"poscusp1", "=", RowBox[{"Do", "[", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"tableEE", "[", RowBox[{"[", RowBox[{"kk", ",", "1"}], "]"}], "]"}], ">", RowBox[{"tableEE", "[", RowBox[{"[", RowBox[{ RowBox[{"kk", "+", "1"}], ",", "1"}], "]"}], "]"}]}], ",", RowBox[{ RowBox[{"Return", "[", "kk", "]"}], ";"}]}], "]"}], ",", RowBox[{"{", RowBox[{"kk", ",", "1", ",", RowBox[{ RowBox[{"Length", "[", "tableEE", "]"}], "-", "1"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"poscusp2", "=", RowBox[{"Do", "[", RowBox[{ RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{"kk", ",", "1"}], "]"}], "]"}], "<", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{ RowBox[{"kk", "+", "1"}], ",", "1"}], "]"}], "]"}]}], ",", RowBox[{ RowBox[{"Return", "[", "kk", "]"}], ";"}]}], "]"}], ",", RowBox[{"{", RowBox[{"kk", ",", "20", ",", RowBox[{ RowBox[{"Length", "[", "tableEEIR", "]"}], "-", "1"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEofA1", "=", RowBox[{"Interpolation", "[", RowBox[{"tableEE", "[", RowBox[{"[", RowBox[{ RowBox[{"1", ";;", "poscusp1"}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEofA2", "=", RowBox[{"Interpolation", "[", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{ RowBox[{"poscusp2", ";;", RowBox[{"-", "1"}]}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Acritial", "=", RowBox[{"A", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"EEofA1", "[", "A", "]"}], "-", RowBox[{"EEofA2", "[", "A", "]"}]}], ",", RowBox[{"{", RowBox[{"A", ",", RowBox[{"EEofA1", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}], ",", RowBox[{"EEofA2", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "]"}]}], "}"}]}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.9678670891319594`*^9, 3.9678670899768085`*^9}}, CellLabel-> "In[145]:=",ExpressionUUID->"d7850cb9-7fc5-4c63-8dfd-c2c03347e743"], Cell[BoxData["475"], "Output", CellChangeTimes->{3.9678669136052647`*^9, 3.9678670904790783`*^9, 3.9678684550650764`*^9}, CellLabel-> "Out[145]=",ExpressionUUID->"8d281de1-a03c-4e49-bbb2-06f886873549"], Cell[BoxData["50"], "Output", CellChangeTimes->{3.9678669136052647`*^9, 3.9678670904790783`*^9, 3.96786845506808*^9}, CellLabel-> "Out[146]=",ExpressionUUID->"09fa0558-be6c-4e6a-9d66-5f110daaaf61"], Cell[BoxData["0.6600868966165301`"], "Output", CellChangeTimes->{3.9678669136052647`*^9, 3.9678670904790783`*^9, 3.9678684550710783`*^9}, CellLabel-> "Out[149]=",ExpressionUUID->"dac2af14-d1f2-4532-835d-358328b6cfc3"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["c- function (3D)", "Subsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106125437221*^9, 3.922106130015802*^9}, {3.922106457179372*^9, 3.922106463976871*^9}, {3.9352193859556723`*^9, 3.9352193869157057`*^9}, { 3.950671865924531*^9, 3.950671898412299*^9}},ExpressionUUID->"c7e7bbeb-b785-4e2b-9d9f-\ ba72314c5ed0"], Cell["And now there are two ways to write down the c-functions:", "Text", CellChangeTimes->{{3.967866902114412*^9, 3.9678669117533636`*^9}, { 3.967867100580054*^9, 3.967867112761717*^9}},ExpressionUUID->"ff5113ab-c107-4b78-81aa-\ d168f500fc87"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"CLM1", "[", "A_", "]"}], "=", " ", RowBox[{ RowBox[{"A", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"EEofA1", "[", "A", "]"}], ",", "A"}], "]"}]}], "-", RowBox[{"EEofA1", "[", "A", "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"CLM2", "[", "A_", "]"}], "=", " ", RowBox[{ RowBox[{"A", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"EEofA2", "[", "A", "]"}], ",", "A"}], "]"}]}], "-", RowBox[{"EEofA2", "[", "A", "]"}]}]}], ";"}]}], "Input", CellLabel-> "In[150]:=",ExpressionUUID->"e5d4b17e-804a-415e-8701-ca8551899663"], Cell[BoxData[{ RowBox[{ RowBox[{"tableEEall", "=", RowBox[{ RowBox[{"Join", "[", RowBox[{"tableEE", ",", "tableEE2"}], "]"}], "[", RowBox[{"[", RowBox[{"1", ";;", RowBox[{"-", "1"}]}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEof\[Zeta]s1", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "3"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "3"}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"CLM1of\[Zeta]s", "[", "\[Zeta]s_", "]"}], "=", " ", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"EEof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}]]}], "-", RowBox[{"EEof\[Zeta]s1", "[", "\[Zeta]s", "]"}]}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEof\[Rho]IR2", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "3"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Aof\[Rho]IR2", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "3"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"CLM2of\[Rho]IR", "[", "\[Rho]IR_", "]"}], "=", " ", RowBox[{ RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Rho]IR", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"EEof\[Rho]IR2", "[", "\[Rho]IR", "]"}], ",", "\[Rho]IR"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Rho]IR", "]"}], ",", "\[Rho]IR"}], "]"}]]}], "-", RowBox[{"EEof\[Rho]IR2", "[", "\[Rho]IR", "]"}]}]}], ";"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.947137598762125*^9, 3.947137636490857*^9}, { 3.9471377393260403`*^9, 3.9471377464685993`*^9}, {3.947137785211961*^9, 3.947137794282607*^9}, {3.947137835791161*^9, 3.9471379275406227`*^9}, { 3.947138410700061*^9, 3.947138413295314*^9}, {3.9471384677802467`*^9, 3.947138583244032*^9}, {3.9471386581147118`*^9, 3.947138665893757*^9}, { 3.947138786594286*^9, 3.9471388752377996`*^9}, {3.9471389314988823`*^9, 3.94713893254049*^9}, 3.95068248580553*^9}, CellLabel-> "In[152]:=",ExpressionUUID->"cfcd883c-f0c5-45f9-b129-3f9ab0a44eaa"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", RowBox[{"CLM1of\[Zeta]s", "[", "\[Zeta]s", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{"1", ",", "3"}], "]"}], "]"}], ",", RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], "\[IndentingNewLine]", ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", RowBox[{"Thickness", "[", ".002", "]"}]}], "}"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Zeta]s", "]"}], ",", RowBox[{"CLM2of\[Rho]IR", "[", "\[Zeta]s", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{"3", ",", "3"}], "]"}], "]"}], ",", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Orange", ",", RowBox[{"Thickness", "[", ".002", "]"}]}], "}"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"CLM1", "[", "A", "]"}], ",", RowBox[{"{", RowBox[{"A", ",", RowBox[{"EEofA1", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "]"}], ",", "Acritial"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"CLM2", "[", "A", "]"}], ",", RowBox[{"{", RowBox[{"A", ",", "Acritial", ",", RowBox[{"EEofA2", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}], "}"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Acritial", ",", RowBox[{"CLM1", "[", "Acritial", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"Acritial", ",", RowBox[{"CLM2", "[", "Acritial", "]"}]}], "}"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", "Black", "}"}]}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", " ", "6"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"2", "/", "10"}]}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", RowBox[{"1", "/", "3"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"36", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "->", "600"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{ 3.967866868634617*^9, {3.9678669627726192`*^9, 3.967866996682399*^9}, 3.967868473604617*^9}, CellLabel-> "In[160]:=",ExpressionUUID->"49a7ed97-0be1-458f-bb81-65eeef2ab2e8"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[0.002], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1nc8ld8fAHCzKNlbdtmKSEQ+JCsqK1E2iepLSUVWZpIRlZGRvfcm7vPY CpHKzLjPvdcsaZAVv+f3z31e79c59zyfc87nfM4j6uRpdp2GiopKBP/5/9Mn ujqQNBsE+3voM7a37VAtcYFM89uPIcAoZWNyvx2aKVb7+OTCY2BNvOATxGOL ZiV5aW/OBMM3h2dfs85dQydepopOXgsBS+PBt+7OV9HMjmzq1tEQEMsrrIuI tEa3O83aHg+GwoHOhBXThSuotPBeppNRGDTK2ksZHrmCsjc/f3yuJwyYuVS9 JN0t0RBrRgcJnXBwW39kGN9wGT3XdhMYkHDo/BsmK8t6GZWoqxdaOh0B5pPV r1LuWaBSL3//66uPAFVj5GEcmwXK81K1Ja78CUisCHpc2TJD00q1U+/KRILW g9uXpR6aoSJH1B+Z50fCrlKyw6EtUzRt7aj1SbGn4GDyUNk+1BRl6aVV5cl4 Cqz+XQWDx0xR47UR7k2+KHBuPs0j32GCHvuZvjbxKgoiM+jG918zQfdVMNZk xDwDY1ujbga5SyhXRkX8Y8ZoeDAT6Spw7yL6p87ojlN4NHz7G/O+u/0CKhI9 c/EcdQzMndQ9Z62OW/iWvERADGhNW6zxJBujcudWDjJsxsD5rbH18U0jlO6a +9KidyykV8ckzDgYoRxTBgVlt+Og/o4vUg/nUV7u8vC4hThIOChkP9lviBq9 21eteuI5VMeUJQwaGqI+yzbP+cufg0nVa6mIiwYo4jJvPJ0XD5mehdnWr/TQ YAqtxiApHkKIbhYVcnqoMLOQLCqaAMkGHt1N3booVYURY3Z6AlSSHryyo9VF 3edju66/egEb7zSHxIt0UF7Z1FrLTy+gLeDq+t5lHdS1Ni9Hn+0lvBypszxI r4MGjdQFS8e8BD/J3zf23M+iGtc6z3wPewWcnj1HOc210SMhnXLT7a/g67hK C5lFG0207hAYpEqE0xIUg4APWmidZetmpX8iiMkMdmxf1kJbn+fUeXsngYi6 +qTXqCY69fDc3dSGJHDRU/zF56CJnlMky7VvJYHCkCCH7+8zaJSRSC5LcDJk W32/5s5xBg3PepZQHJMCNoK7nMhDdfQUzZGLH4dSYCdzzqKJSx1NvfOWcYPj NfjUmc1V151GC2LnH+u+fg2XmyzYsW019FLUSc/Z/FT4Kp3+LDFPFe2g75HZ v5QKf3el5R3MVdF7zVfm5OXTIK2wK2yBRhX9QHxg61eTBj3L3Shy8xTqUFdq xI2mg+q6cfdxPRXUeGlD0nj8DUS/D40q1VZG/40jd9WYM8GLY8fWl0EZPfAn ZLD/eCasDVbfEPmghA4YMjz77ZUJo9d+NATYKKFcL1lotDczYUO54YjrkxOo fP2Q/Wf+LGB1uxC6aX4CXYmPb72hkQWUxfYnnqIn0PGH7L6xQVmgycsew4Mo orRMbKuT9NmwNHz5XQm9InqGbuiCp2Q2WPLLsE2PKaDnG2JLaAyzwUHMpWay VAGlMj14Qzo6G34qGuydsFJA0zWppx+w5wC8umIx6nYcZSyf6WMTzoXHOj7c IbzyaPq9xbhbmrmAmtjuPh2VQ1PWfpl32eZC5aXznV5JcmisLP1Xn7RcYK00 y17nk0NbLkh8m+HLA852UZZcGVmU1esqUzlnPhRiXNMcntLoo2f2Q/uV82Eu q4Gx7LQ0Wn7J5aWjeT4kVJgK0DBIo8tfbh/mSsiHIfoenchsKVQg1VfOn6UA VNbq7L5PS6LJ0Y+Nzx8ohH0nUwYk70ug/BFBrLnShaBcJugvfF4CZWIK/PzP oBCCzmt4vRCWQD/V+NpUPSmEBKtXQX/7jqJBKrdu89IXAWYVelpD9ihamKcc PbdXBC46OcEsu+KolLKsiZZwMXjktSDHJ8TRSjFRzteaxaB0RutwU704OsVz MO1CQDFEGNGYPrwrjp5dGSmp3SqG39naPdpLYqglh1FfyFoJnKvkuWX2XRS1 mVYUAc5SMNi3wJA/KIrKfua5v32iFBYGfw5rV4uilceIQt53SoEr+13gZR9R dEfW3ev6cik8WR6rM2AQRb2Fz/MZEMvg9WcdA2dlEXT9rqgHHVU5HKxnY9rk F0Hps/62o0LlsHTGkWmAWgQlBGfeVrMph0yxjZLvmcJodTEJkRktB9Vvbxn7 Z4TQUC4Z10MDFXA7QMElxUsQPXf9W/O75Qq42HKqRVZfEB1KGtmvQ18JDKxi qmUCgihG/8pmT7wShv+0t77rOowmMjLs83GshFHbDOp5ocPosGGHlfvXSig8 fVfTh8iPysZ6/jMaroKJp17/NWXzoup0n1//xarg7U5q4rVAXpR2XkU153cV HGEMvfLqKi8qOfrXa4uzGhhuCYi4cvCiiPf1hcIr1eDmv1QxHsmDEoYWhumn qmHBnZ+TP5gbpb6qcKfqezW4Ov4nf8mRG73ad/+Q7W41UJ1hjevW5kYbtbf0 a4VrYM4NaQ+k5UbfRC60ODnVgNS3wXy+KC604alpPjJfAzZfu+g9sjlRkwP3 dG5t1MCH3CCTnAhO9MnH+FluxlpQCTnZhd3kRI9T9fB7yNTCe65wFxplTnTk DXPc4f9q4Xrc25GfvRxolgzDQ99ftdC99mlFfIcdnbHUPaf0rw48Kk9ta4Sz oSLEY5ztTPVwpGd5ueAOG5obzkk2OVwPtixF68o2bOg65VOoh3o9WB72ul2v xIaGx4l2FPnWAwdGGbtFZkU9Q5e1RNbrwQV5chw1YkUp6u9VD/1oAC3d0w2B jszojCMfQ9puA3iP0jd9A2b0Y6LTqAxzIzwKX02NEWJGVWew+wbyjcCrmxng /vUQGvwluTr0ViNYcB/Nqrh6CE126pXZmm+EQuZmFlUHJhRjTuWan22C8E2T Na2YA2jf0Q3Ljp9NwBkgoK3teQD1+HU++Q1NM3hNL38yNz2ArnJ/5Lc60gwq X6aUaLkPoNGz14Tf3WiGsjmukMIsRvSLibFEyUoznNZgphFoY0C3aJ7JeO68 ha/xJr96hPajq5ctbxodagGnQFFHEv1+NOc/9mJJoRbo/Za+LPZ9H3pCyUZ6 FlpAlvDbgKVlH5qnrChpGtoCLKy9mnnX9qHWB+qFlQ60QuWPP1LiWfTo2iaB 5i8PAeQ2fooxnqNDhyOnIsOkCIDeT/yTcJwOFaGdZ2ZXI8DwrZA6VQE69PdC E7/8VQIYRK4+oPyiRWX7rBSd0whQ/1Wf4pBDiz7z1r06KIKAhP0uoxkjLVpj 97T/EycKXwTqNS/OU6Oeugdi+QVRaBUwi/3xhRplfex/yfEoCpmctEzVndSo k7Py8MpJFJ7Il51yyqZGD177PsJ4BQW+rL/+A3bUKNsnxylIQWHiV/TO40kq 9KuP/FSJYBsI0fZQHenZQ4R5Xqq4HG0Dk+MhJp4le0iVyWLcYfk24Ox//KE3 bg8RmbI7G6PRBlG07OEjVntIMJ1Xvse1NggZ+Dzv+W0XubbNeUsxpQ2U+H+0 8vPtIgJ3hCj1nO1g1W5N5/5kBylsp9fwPNwOGzzhDMc9d5AxhZEEySPtEBGg K3b4yg5yMFNRK1mpHXbe8xtKSe4gaTv9Kb5m7fC+osnNo3cb6ap1N9B43g4n 7128Vcmyjdxp64hvO9gBYV6i86kVm4izwlq6CGcHHD6SYRadvIncKKEtDjrc AXxMF58mBm8i9dX1bWfkO8C/VY+W2mITObT/9o+mix1w4khJ6OLmBiLE90Gn Oh7/f9NZbavzG4iWpuiHbJ5OUNjKCjPdWUcg7I1FqHgXQMlskm3GH6TC6sWq uWwX1CwrJH6M+YOY/zSPPqLUBe94xiYsAv4gdj/VOrrOdkGvpf6DpzZ/EJtv sccYnLpAKsn8b6XAH2Sje992dGYXmJ5Xe9Ce9hv52+jglijYDZOlAccSi34h wrzW/oU8PUARnpfUW1pFZu+rlZkK98DcGvdx66lVhGQzMLUl0QMYqbHea2gV GQ4/pHlBpQdOSmVLddevIp06xK2fFj1w3MW/9XfoKpIS63JdPaEHuNuU7PRF VhGd08JbA0y98JVNT02sbQXhVj5F84v6HbCKyV14u7WMfFRZGNQ+8A7knQci pknLiPkWe3o8+zsoFVtI4xpYRiweDZ9UFH8Hl1Q5j3e9WUZijs063Dn3DmT9 BLd2dZeR1PrbaSsR7yBt+ZEuc+ISsufemr108D2oRCq+6NFZRHYFi2tmufog 82ylVsnHOeS/vN2NLME+sN1XpGOHziGsMnlnnI/2Qc/iqV6+ijlki5bcSVHu gzVHI+OG6DnkduahviXzPliZkVGIN5hD+rgU6/7E9wFdLNdKWjsFsX/5cHM/ cz9E7nP7MIyQkYosJjq5fQPQKTSoafAVQ/ZdFWl/wTwA/W6xs3n9GFK0xh60 zT0AjrofRtlbMWR/Z+zae8kBKLOYkz+QgSHxHJWf3Q0HQL36cVuEA4bYXBK/ WhA9AM+kWym180RE4UzSfVGOD6DGy752f3cW0fhzI4JNZBDGLDkbWhKnkYjc uURTqUEwGwjd0A+YRnZYJ/LiFQYBaY80pThPIwbz3Aib9iAwk8YDLRWnEapP FdNsToOwGXJgj3NgCpHqCxtiyx0ELxp+x8n9U0jl2e5TDJxDcCXzorVq1CQS r7LERJc8BF7psuFEwhiiRNEePhr7EV7Ed9BQiXxGmPXNhelShmGYCf6TrB5E ImqqWfbiP4Fk/0XT0PFexMqy+krWm8/QHkxcTrjfjriOjh2TLPwCMpYpvEcF m5Ef5KW46owRWPmlG8V/tQpJFRPrqigaheeMNlW60tnIZeoR/eTsMagcsr/+ eiwEybKlWj2eOA4KzUL9I7bPINzvV/bX9AmYjR2tn+jIgg9uicZaLybB+PbP aPf0YqC+0yVjmvYVhNdfrlR7VUGHnlDvvTdTEH0+U4OyWAurVtvXt+KmwSRx kHyisAGCv/9aOfByGuL3jJUO1zTAUWYXO4HkaSjbz3V4t7UBxiuvr6pnTkN4 +2+Xok8NkJT6YdqvchoOZlD9+/89pp8u83l9aBp+xexQ7Zk1wn/P3r8aY5sB I2UT+ea1RuC3pf+m92IGFNJBOUa8GQpH6esPJs3AVwpBlSzbDBzvT18fej0D 4tkyMcrKzRAQtullnT0DFXYqAei5ZihxRgxvVs1A7NTnrafXm2FIl/gpYnAG ao8OKE3nNcMC1a77F/pZMOlIM08WfQsHJ5jYB7RnYecTvWQufQsoVv9zytaZ hZfikl5qTC3wNSM796HuLGCfywt72VtA7vbMpqjhLFhqokOfhVvAkXv/8n2T WWCpS6jIUWsBn5HRaX77WchIri4Wvt0CrlvVbVb+sxASx/HuZX8LvGgs4JQL nIX7o3aO7sMt8Ldow3IvaBaSnMcZVcdaYOpoSFFe6CzQJBuHdZBawIZxO+xn 1Cw4/OcVmbDVAneJ0QcjUmbB++jIe07JVqgVnqbPrp+F6XmqH2V+rXBniqnj deMs2LhLzyoFt0LK8vLNF82z4FF8xasmohX+5Pg8CiPMgqDhS9qM+FZ4rsmT dL17FpbLk2REClphgy+hUXxkFnz1fXW/DrWC3TCjbNzaLLgGagWcEibAo7+H hMP/zgK9pUUySZwAJR4N2482ZyHx6NbvSPwefoDWebj+m4Vdpg1nRJEAz36G qmnQE2F/L0/RhA5+D8tImZM4idDwDTv7wZUACxg3v7AyEQJY/hMpLSAAA8+1 xNWTRLhuHdQIJQTI0bbeaTtFBLn/PgcPlBOAOlQv3EWdCLbDg5mjdQRY2QdP C8/i1rjZnddBgM7LdMZypkRgYCR4yE0TIPBHuc2OGRHGKl7qORMJMEItYNlv QQTnhGzsBZkA6mc3aW5bEaEoOqmUvESA+0O7Z4vtieCecY9K+y8BnLfZL4p5 EEEi0+wbiRkBJ3ogrXoSQfucvB+BDQFDHUkH5C4RrBx8jV5wIhAbtMhqc58I wVaEQll+BO5OXTd+6U+ErnVBEvdRBFxmbA5TPSNCwtOzkhNqCGB0K/mdBUSw WBB+zmGPgCbZqKK+iAiXtyMMXBwR6JZ9mVxYQoSkTaqL5c4IpF+LOBRdQYQN 80Mqx9wQ2Dl5I9C0gQh/4oJ/fL2DQPmC2Y2RbiLQjK0jG48R0GPUv9fdSwTW LEve6RAEFKcL7OrfE0Ftqb2+JQwBBj/zT68+EOE4t/q965EIqE1FKJqPEOG/ ERHbG3EIlAxnlfRQiKA/6NAqlYaPN4hm183j8f8YJWWnIyBd3/wwZ5EIy37t VtxvEJA6NtYc+J0IymonxBezEGB5/CNbaY0IBdaaO2cKEBjsZ48Q+UuE2I8f 40MKEeC4q6V3aJMI7Rfp76JFCPDEWtrO7RDB9YZElWQpAqePe5AS6TBIN+Zv z69EYDVmryRkHwZHZbev1lUhUJrSbeLBgMExvbTy1moE/mmGHdNlwsAvzfJ8 cy0Cj2TO3VBgxqCvdCa6vA6Bnv19fgKsGJhffsCXVo+vL33XqZ8cGJwteVbl 1IhAzffd6UkuDF7zCsprNCHQxhjv2M2D9x/X3WBuRuDlxYsbrwUwoLAe8sp8 i4CJqpT7WXEMXAXz33gREHhgbRl48Cgez2t/8kEEgWTrPq/PEhiYKIlfeoNb k1Nx87oMBtP8547XogjIWPyKOiaHQdWLPi6VNgTeomnb6/IYPFp3kqzG7Rl/ 0feJIgZe9ufbk9vx/CuXiLikhAHLwJgebQcCnRXP7vKcxOCFXmvkDdzO3i7q MyoYHDZWte/u+P94SaR8VQxu35NxFO7E471/6KbHaQx4bI5Fe+Eu8Cr7cFID g0DZr1MIbsMUe7Z/ZzDIj3pnvr8LAT8nphOdgIF9BRZqgLtxMl3hmTYGKjOz 58Jwr0dtMJnpYNB66KViM+74j7Q9vLoYzJ+O1V/CvchaYDejh8HbSbswzm4E rIvffcozwIBvLIGiivvMnpnE7fMY2EXWul3B/XBIzvKEMQaxYJbviVtzS8N5 4wK+Xq7iD0NwL0q7XyBcwmDdRu9uHG59zWTOMFMMLj3QTkjELcFd1WhojueL W/JoEu4rz1+rsVzGINygX/MFbgcJjaTPlhjIXxuyicT9mCXoY4oVBjRuhw74 4L6WqrdgdxWDlcWAWUfclWK+k+I2GLRnZkzp/j+e3Z3iBVsMLqcu7orj7oxo tCyzx+dzckR7B58vLVfC9F1HDJ5yjOd8wC3t73VWxRmD08UXW17j1ozUDNly weBH0BFXR9wFyEQ6wRUDq3xrFTHc3j/lXoW4YeDBZCczhe9H9Td+N72bGBRM ZEACbs/HUdwHbuPzvRNxTxu3Hq9T5sB/GPi6Vlkv4ft93Z6sa3EXgy87gq6y uJ9csXTkuYeBKHO8WAeePyPKXVcmvDGYmancs8DtkHfsi70PBhPnvdhu4Pk2 brZ+TewRBj4zWuNzeH5mrZi0kv0w0K+UUnDE/SX6Aot7EAZsApI65/B8Rn40 7skEY1Cit7hZiue/YqbB+28hGHx/ptvHgltG6/Z3zwgMht/4m3a0IMCs16ur GImBc32OHydudb6Jh7+eYqB+earTHj9PEwkVbt4xGCSxFxSR8fO3zif06MFL DAbuiKoV4Of1F2PKZ/lEDLg8jhYO4OcZAQ9GShIGQ9LON1fw8y5o20JtnooB eLreEapBwOwqlYx8Ngboqwpd9Qo83/qvWZByMLj6HjFQLkfgXtspq5Q8DI4n o8mSZQhkPGT8RleEQfPIrbqdYgSSJn9qTVRgcJJFJcs5H4FwQSPluCoMOtyT +I7nISAuakh1rgaDGNeft//kIFB3tVG0rB6Dn/f2LXrg9e8oi/qTgFYMggaL N4Tw+mnZX97B3YfB37985/97joDQlVyld/0Y/JH2d52Kxffvtvsjvw8YdNlY vtePQeB44NKzmY94PdvqtTkYhed7a8zbvDEM9i3ekroQitcrxacnZOYw4Ei8 9bDVG69vpnrUE/MYfFAJK/7ohYB24ELu00UMqCLMuGbx++HysOvNhW8YvKpb FVu+jfd/ULGU8xuDjeyOfa0uCLB12eWyU5MgyNCR67w5Ar4/EvaTaUig7k23 O2iCQP/P4pN1dCRYZ+fivXQRgeDIyZ+WDCQwDOsaVDVEIEclg5LEQgJeBq6o Jk28Hh+NeckiRALpFU0HLym8fywhfkqYBGcEwlKj8PswKpnnSokoCdLY/b+l iiFQqJ2ipneUBIrbo05Fh/H808uz8pUjgWBSdpIXKwIJaVUjn0+ToDBToaBh nQDsMdNabzRIMLxnccrxNwGKbpy/465Jgu+fn3+mXSVAAyIk9E+bBMLD9OLK iwQ4oR5VKWpIguP3lp5rTRIg8y1fuP0VEgicFLxzgEAAd8e4qNJ7JNh/hvGj ZSABjnWzHje9TwLbpL3uG48IEOU18nrtAQkOntWI9HqAf1/QhPeceUSCwcwD iLcHAfxlg+70PSbBJQ/yEQU7AhBo+McnY0hQI7ig5qdBgOkmCcJgAQmi6ozi bf60wkgY06/bRSQgufDK5P1ohWvrZvOMJSS4f2/RfX6pFbxenebSKSdB38Mz jFbEVlDmPuRbXUuCsKk/sSsDrcBKslEKbyOBn+2UwUJeK5DFWKk2J0jgay3z aZ9pK3QWjIxXfCXBonGZ4UGjVphXU3ZynSbBtEYVH4NuK3ztjQ8YJpKAbacp b0m1FWYb90byF0hgXcCeYybSCoaGvcOwToLTUZr9ld9bQGN0fUiBjQyX1Xj9 E0JawEzCfOkrOxkeSrIupvvh38M5wYWRnGQ4KXzBLsu7BUZuCbDP8JBhr/mp SZxrC9hTZz5/IkSGLNdsJebzLbD6xeJHtywZ7o73XnzK0gL8Sw9ad3TJ8M7B N/jOy7fQ86dV8ZU+GWRKs6+nR7+FUDZNHXlDMiAPwzs7wt7CWwV9DRtjMpTe WB3a8H4LSRXgX2dGhivXAsOoL78FxWjZWQt7MgzZ6Vu94HgL1oEJAed8yKCR obmRFtUMlN8Z44O+ZCD5KtH2BjeDTsDp7qt+ZHjgmza25NMMUu+uX/IMJMO0 in8Bz41mUOMp4XoRRoZ7F/s4Duo0g8STYeau52Qwz7mf7bjZBLo8OX6Dhbjn njwqsW8Ch5ywwBPFZHA5UoHctWyCYvsAjlclePuuh7/ChSaYGTr0y6qcDKvT pUJJp5vg25Dtg8kaMpz/ZB22j6sJYCtZvY9ABn1Fk2Sf3kbwOC/6xuwzGQIf +xhGSOOeaDxU8IUMiQ3zIxbCjeCSxky1PUKGM0EnYgW4GoHaaue/rHEyuJ85 LhNP1QhcdVccF6bJkOuXmMY72gAXOu8q2y2SYUFZ90BRSAOEtViNU/7h60P7 rLvgUz2YfV7Zp7tHBmPx5JVHPfWQyGcYm0NFgYucRuUGb+shvkqwwI6WAiK5 C1h3dj1kGph+62egwFbun3G9u/UgGxrN/ZQDbx/gi7vFVA/B8qtyj6QoQOXS lbZfvQ5u+tfQdUhTIHox/tZr+TpQmokQOChLAbqEpnExkTr4mJVLkyJPgZZz TKMc9HXgS9BKLzlBgTF69w3PD7VQvMMgXaKBx1P7Yk/evhbmn895MZlQIBL1 arvrUwOxm2dlJE0p4GDiLZB3swZuWPgf1jajgN6ad+AHmxoodFos87KgQPXZ XOdNrRoQ7O9w77fCfdX08neGGpiQt3axdqRAWBrBeCmxGk5NqTAO36XA4aLf c8dKqiAt4LnIsBcFjgRb1gqmVQEI+5l8vEcB49LKb9QxVeDPfWKt/z4FFD5t mRV5VAFXaoxiky8FLDzrP9xSrIIj6a8sXILxePTPWG3VVoLUxZSR7TgKqDKY lIXcqICpoFCWsed4f72JOCP9ClB3qoWaeApwxlQf3JOoAAaFnSDXF/j4V9Z3 RefK4YW5ihWaiM83VHlL3rkcIqlS6bTS8fVjT+gytC4D7lLFrQMZFLj9izWt /FQZdE2iA59x34m6rrXFVQZHL3gzXs+kwJ+AtQtcw6WwLaCX9jCHArwWFY8a DEvBXH4927mIAlqvX4uwKJfAh8rZXIFifP78E3+p2UrgzZ+QG8O4M59/2pn5 Xgz62KqERim+/ys/1K8UFEP0KFhRVVDAxVkkqIu3GHhzn1YY1uL75TNjG/i3 EPYZ/Oz+hptX51rV3+FCcKjeFxBbR4FVMQXUsrwQOAewloF6CjTuLceauxQC AyZrqN5EAR/jtkn+oQLwPH/EbaiVAi/9Dlj4ZecD+doKvxuBAsn+oSJxPvlw iPRs7x/ujcmRI4KX8kF/XP7CEZQCX3W6sn9u50GU/c+kq+0U0IjUHvY0z4PT +dueJNxHmh8mqEjngbl+5bWbHRQw4bvDQt7NhVXWajuvTvz96UlLM0W5YP6s tORmNx6f92x4wr8cqPgrVEfC/U3di817OAeCFo9VX+3B/f5Z2omCHLinleJz tpcCbs9Df5+9lAM+fI8aNt5RYCelwtggMxtqM1/NObynwMLhbSEl72wY0+ZY 6MYdPSD3qUMvG1JKAg2j+yhAnjwgLL+SBUzDl/9t9+PrdefkI77TWTBFdUrO bIACncJPulQOZcGX1BnafNzekT9CjGcz4UeYU7LeBwrM6rean47IhFtRxedf 4KYzfoRsW2WCm65twhTuBW5etSfSmUCujei9OUgBg1Yk8lH6G7ifdKG4DHey QHV51dk3sK47xbDy//aPXzp75zPgXDBR4sYQbmGn8nuyGVBqZPr1DW6GoqKn bEPp4ESuW//y//a/IvHU99Ohj+W49umPeH4ZVZQFImlAe7PUxQ23wuAdjWGX NIg7o/HlBW6fIeUFfeo0MI6IjmnBjSq7WAzmp0LcEfUwDLdBUvYpjwupMPbF oZp+mALPDY61nFh7DQVXuNkkcCu8KylUzHgNgTe8U3RwjymenXpq8Bpaa/x1 7XBbZTSm8ZFTwC/sNesD3FJyWac+xadApe3nH1G4Ufd1JwXdFHh7P34yDbdD 4fBwP1UKrNOo9Zf8/30Rr9KL3yUDon6iuQH3grJyZltxMrjd1c9Acc+WTZiZ hSQDT/mSdzduk6jmOT2hFDhXr/qzB7dPkO/V4PUU+B+K0gjP "]], LineBox[CompressedData[" 1:eJxlk300lGkYxkckKgx2+kC0xtZGH4oyRZ6mnEzb7NbOYCcroVQ7JYPVTjPJ EMU0Zpgh85GG2XGURrKKZPWMr5DNIkfEtEnT6kN11lEWZW9/7x/vec/vXM97 v9d93ffzZVQsI3oOgUAIhmf2XSsvf9vSbUR6utbMN1KKQlus7fTAy/tag58N yhDXfiyuGjjbevrD5yEZ+ityycw14L1X+0XFwCPdWTcKgDt13kNJahlK4r8+ LZqtN8kzucCUoYj1RWFc4G2LX3nYzZEhxn1nWiQwQUD6JrRMiuydenwCgTNs 5zbfCpGi12eq3NyBj/poA5KIUnSK77VwPrCneVqaz60cdPJz4NMXXeBvQOPg zcpB5dXn5HpglvXPM6TJbPQ+JHV1/qwe1/MjQ5WNzEUPZGzgQt3eDcgvG+nN p5q3ABPVY4LNdyQobuXeu/OA9dqplbV2EjSe79yf3wn9lZBusrOy0Oi4lzEU mHh7oteuTYQMNmfEDrN6eF7UTjMRcoz4Ryr504g4c4TcJp4QDW1yGg4ALvSV uIS2ZCLLOJfSDx1Qn/P3vIqZDOTUUMnZM8utn8jdMecR6/mbxp4/oB41aJQX koYsAiXFx4EJqfH1wcKzKAz5FROAibVW3MS6VMS6ruhwaod5tLSFtbumoHor Rq5bmxFFWCwqdh/lo0PM6CWXWiHvS/776nbzUEXmCNNmljfoEpquctFZl5q6 kXtwPmdmk06QiFhdupfRTeDHfaM6qD0GUSt3FtU0AlNt0pNPsRGBaCW3ACaQ bsdMrDyCnk03uMjrQVfMdaXdiEC56i0U/l3QO8k1sQ83owIJk1RSNztf15PB 1QP+Ne/Kqx78DuxtU/ZRvQXv2EWuml9rRIKN/esiA4Lw6LYHUdRq0JeuWDag PIJTX4WFu1aBX5vGx2TOMVzh7m+Yugnnt/psd9oVi9fezu7P/w144rHgZXIC DhQO0TllwAoneq0bH98b+aSw1UF/mpDvPixKwhJah29pKexD2bS5h2UyNi1s mNCXgP+3Gm46OwX3OQ5Tkovg+/BoEYeZjoWK2AO9asj70Hvp4m/P4QFhh4R8 GeaL9qcW+J7HfUlj2stK4AFPA88zE6cfePGIKIP/rbjeNrggC5MNDlpiDszT npchMxPjQXJDoJnEiN5ThPGj02JcInR52SyE/TbtupKWmI1J7LRHpSngZ7yP s36fFHf2uG2kJoOfJN4PS7qkWBXTaGg9DfuddXgc0WRYkaPJKP0F6iX4TtZ4 5WKNs2e9aSLkZ8grNpTk4jMOb8ro8dAv16Sg1SEPt4bzX1w7bkRPA4rNw6bz cCRLTK//Cfy+nfevjn0R295bc6npsBHdcNvV/8Wji/iWOH2pLMKIKBWOLpSr +Tg8dJi1f78RWVj6nThsLcfeDfor9qFwHztLz4k5cjzOrOzazoS8CjPbvNwV uMTS9OOdPUZ0Zdjibq1AgV/pMx8uo4P+mdq5u1uBx558zzxGg/yG6jzWOisx r1kr/zXAiEbaadHCg0pslV5HatkG+n0KI6xIiRfa8Ct7/cDvzjcJR3qV+Mmg vVUPBepruNqvTFQ4P2iio94bdDrt9HUXFfaf9GVqPSG/m4LLsnUqzH0eX566 GvKYWN1xbY0K04RrNUe/hvoM/cFGkgoT48wi2W4wL/EO9apnSrzYNuqdbrkR cbcqGdQLSuzxaeoEfxncN7boXaWlEq+SPwnOcoS8LEwWWD5W/I//A5xYs+E= "]]}, Annotation[#, "Charting`Private`Tag$388134#1"]& ], {}}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[0.002], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwVkXlQk1cUxUEjyFJFKrIqq8iiQAVn4gheBgUXXCgGlw5SqMVatRVZhBSD ClgEtSr5AsEQIouESJTgSEGtcwVBxIKgECVlFd7nBrRYaEHWvv7x5s1v7p3z zjvH9ptjwZFztLS0dtLz/33XW+mzdzkLvqPuXGmuCKeiCqyTHFhQddXUS51F WGfnfaXVngXuh/GafD0R8r3/dZ6xY2F+8JrBJX0MpjYbHpu1ZcGjxDewuYLB jl6YfWXDgtHXKbMcPoMphXFtGdZU7zdN5IoQBi+56c2zWMZCkEvgunueDF7X inmUZsWCOO54ZqI+gyFeEdovLVhoD5RdzP1biFmm68p1zFmo2p42wO0R4tiP HZ8sTVkwe3Hf0LFBiIf/lNeZmrCwV2rQUI1C3O9fUj5pzELCtbikivtCtHiW J20wYiG8L8zrWZUQ95k3C1IWUD3TxjRjut/CNElcDFloGXLdMfBUiPkNzzMe 6rGgtX1q2UiHEJ2W2nls0qX6r+rd1cNCNG7ykyGHhajKhXOvGzLonu71hesc 6lfDnKhZxWDC7PPE87MENgdP+5nwGORkXs57PUVgvgFXdfUUg3vX3FO6TRBo mQn9Y5uKwT0ph0dixggYHbkAdm8ZXBY/J+f2KJ33BzD9tiK8JHeKH/hI4ElJ jc75CMrZQxLrvwicDhFZaeQiHPXufil4T0B8f+UDa8jC4W2CeMUbAtzAhXOb rmThox8qrdr6CXi07uwyHcjCrT1t407dBHrLGe3g4mz08uur43VQf4v64gcN xRh/kv9dcjuBqIRQtV6cGJ86O2ayLwi05/TGfs7Lwcip7GirFgIlk+rV5k9y MN1bN3VPE9X3kJ99CFfxY+ymi531dD/s9fQCHwkaBK5KXlFHwKZ72uQISnBj ea8yoYb6v9WrCvXPxYMKULg/IOB7oMisYL8Ut5Y1emTdo/P+pVzLISka3+5R cKoIJKzO3S1IzkOXx9qPJ27T991G7rqqZJie7NXEUxDo7G593mOWjym88Qsv imlebdNOxdH56D+2VRBaRMDrQOWQsikf+YVX1mfJaD/nvuxcnl6AdpNqWYCU QFv92mL9dwXIda4N4UgIbHySz4ncUojv2h3bS7IIDNf++q3ZZ0X46IyvzmWG QFWL24by40Xoc65McDaTQG37PFj7sgijIuo7JL8QGLxhq6tbeB3JyKf1iWkE Fi/+2WTQX44avy57zVmab1LtUS+VHENGVIKAVPo/H6dUN6sSlE/qLw46Q+Dc bn6R2WgJFipdEwZPETBzXBrbGKFArVF7FCfR/tRl/3g0KzA6bMbJ9iTN61DX Bc/SG1hZvSt++icCHK59d5VFKfIqjN+85xNYuWdmrDS9FDkBD5PfJBAI18/z mxovRfN+SfhIPIEgsA0N+16JIs/oFCPKDmpdbSuNEk0XxI76nCBwrTPA0mDL Tfww2VGdGEdA2bkvo/HuTYw4kDrYEEv7SBGfaHC+hWyBmu9E+VDFp8nynFu4 z6E4JjuGwJ0YCxtt/TI8yHDbl1AWn7ZZ68kvwwlLuaI4muaxebP1tbdlWCQe HgqgPBGq5SdzUeH0CqP8seMEVn91M1onXIUR/d41VZT75r/VOAhVeMnbnJdB ecfU77GLqlW4UC0LOkr5xsTQneYuFTLZhaGRlKOftcp3aVT4HxeSpeE= "]], LineBox[CompressedData[" 1:eJwVlnk8VO0XwMcaioSS3lcL2UrahFTOraSSsrTwthEqyavNEkWyhCKKklQY SkL2NRzMXC2kzfZKqGbGzEiWhIbye35/3M/9fD/nPGd/zr2LnE/ZHRVnMBi/ yPP/t+viPoejZzhQ96bVQ06sAEelcjK9CBeo96T0Ezayz1l2h3Doj4SW+ToF uObeLZlGwu2rjU6W2Bfg/qLZKxXPcmCOq3+9z7UC/NLBSnYl7FY4MFettgCN c4OtXxJe7y9iqo8X4I7oJ2vMznHAwit2j/byQvSy0d3OImzVPmUTe6wQYylh sIMXBxZ3HbSNelCIm+PU234T/t5uc35ZayEKXczWFXpzwDxa5udX+SJMLtOY scuXA/NuTC+NCSjCB6t3Oq0+T/KxczioVVyEYt3P7+j6cSCQ/1pv/FsRbjEp Ctp0gQMXT0roxx0oxvgDr1SPX+SAqGB4jlhcMbaEPTqcFMCBFzsnq4deFuPN z030qiASj+JCUa5xCTb2fH8RcJkDdosuRIa5l6DWE6PtrcEc2JYhI2t8vwTr d1yPyw3jwJJoj9UHxEvRPCnBfEU4ByrkFSdCDUtxrPrdpuoIDgyKy8ysP1aK bhXUiFgUiW96nJ3Wq1KUbnsZXRrNgdiq2RMNE6UYerFxo38M8edw2eS3fhkG h5xkacdxQENuynvsehk6qj6qnJdE6nNNia1kU44tJ/qLjO8Tf/vXuZReKsfe d6sPHknmgOcB/zCN3HJUTHW93JHGAZuLZSJv+Qr0ubkqxTmHA6aSMqd+1Ffg j5WG0V9zib6rs2bLSAW2fhSUny7gQEdUcPhWjWc4YGGTmFvKgRJz5TiXi8+w RU7ra1UdB/TvO+mxl1VipOUZSKZJfw2kru3/pxJT5gWfiHpB4vGp2pUdWolt x5v7I5tIPUO8Dj7sqMRPNj3aih85EH/UIk8tpAp9phke2dXFgaZg87h72VVo 8nBoNOEzqUcompS2VGF2R/eEFZ8DBoyQ0zN1qnEl87/O9aMcUIga+BZbX43y +UGuzb84cOyU1YPM/mq8mf5Xq89vDlhODMSeV0FUwTizTkkuPPJ8vHzfEcS9 epb3dFS4wEjf0+Uzhiix4fGRIkMuiMUePS+8WoPio1diu0y4MJxiZ9CUVIMr 453clDZw4eXSQwPR2TV4VOa/7ttbuLA0eadxzusaTBlXj55lz4WHKcUphgq1 GDVQmxp+gAv+RlsjJtRrcWllqUjaiQuDpu7sjGW1OFqUsm3RCS5YHp/YHmpV iyWb9vyuu8CFZUH3AjMiarHwjETX5SAuZNj6792bUIsHN9akbg/jgvTKoOLu h7UoXbGb+eM6F+Y7yS+Or6tF27Pv1uUxudD8+J6mvagWx9OZ92sbSD5Jcqcv utRhHzffQPYdF8ZSw5YrnK7DkpEzAodWLugFiYL9LtahCvtDruJnLjBlA+2H 4+swR+mpZc8oF2YxbmXYs+swc97zkeOTXKBdBb+63tThjFrNM2NiPKAtM6Ms Ptbhqs8bipfJ86DH7MNI+VAdJtSqmY9q8uBIfEuchjoLn3yu2fdMjweNG/Wd 8nVYmFGyvjd8OQ+iVeWn1Fex8GNYwD/G63ggivb7K8mChUXlM49+t+PBTqfA rOWeLHQQnXUuCuGBmqoMXV/KQoMdH3jnrvIg4ugc91W1LNQJ5watu8EDmSGP V4GvWLjChVP/5QEP3FWmz83rZGG63mar2AoecCTk78ZMEX+Dp1fF1PLgv5h1 1qPT2Ljts8XbWy94oNgTdnaDIhsTVx6XrGjlwTmP3TNOLWTjixUNSod+8MBu 5Z2fh4CNXVOJvndEPDh44t2dJgs2SmyeZvpRrBfGj5WKFuxi411LzWwfxV6w +vC71f0gG4fXvJwjadALM1rnt6T4sjH7qvvrU+69YKK+Z3PdYzbGuwUo/n22 FxZquhqdfMpGjqqe3Bu/Xggu1w7/VcjGWzuMf22L7IW3arybz6vZ6OtUVHzt cS+o5Bl66n9go8rqT3c98nrhuuYCO+l2NnZaDvB3l/XC3etDnPpONr7+efPu mhe9cPZdoPQfLhs9gWFtzu8Fnv6hlG1jbDwXy/S1HyTxzjiU6zjBxh/GkXh6 vBeiakpcHKfYGDnmGFksw4c/pl6aatNoTH8UpBCux4dOlrvwwmwam++2rn21 kg9R+kr9nXNpFO0KM1M25YOn5xpZ3b9p7DC+kV9iyYf6LdUrAjRo1C6YuWeT Bx++N6z9rmtA45C1nEjDi+ib/BTlr6AxZaFfoMxFPlQOTJ3UW03jj7FZsl+u 8cHwaceFr8Y06t8ZF2uN40NPO+hqm9LoutgLm5L4YDIY1WG/nkZf/5OeTVl8 WFzV0RZO0Thip7a7pZAPdWpnyq9sovG41OCXnmd82MUyG/Yyp9HRuEAo1ciH 0VA6c8E2GpdGz/h+5Rsfhk0qMgt30SgfMS+wYIQP0jNv6620oXGr/VT4l0k+ GL19wXpgS2OhntKwtbwAbttmx1ntIfE83GwRPVsAVzR3bovaS6NiNGuySV0A wa5Lnar20Tipc9nP0UAA9f45ccMONHr0KRg+NRKAw4oSp7F/aNQK7F4rBgJ4 ceBpbv9+GguWGIY5bBUAx0JracsBmuz3zYpF1gI4qBTY/PQgjboTd1uUHQQQ f0v2mP8hGo8eTH3j6ySAO6dy+o0P0zhnQfx4t5sA8hxnL+0lLLN2/g6rMwLg KbgsiHSkUaGZXVvpJ4DAlD3/qjuRenOF+1YGC+Aqs5uVRthfylTqyVUBaIze X6N+hMbD4oefa8cR/1eVXCIJu3V0J2QkCeDuBeXvvYQr0o+f0U8n9kL9h9c6 k/xd63cVZwvgj5em8iXCD/hPlmwqFsDCK3X8EsIOvpVT76sE8LTwQcwXwgP+ Ay+O1wugvb84X8yFRpVPcy4z3gjAJMDQQYVwXsMnjfttApARTzOaR3jO032Z G3oEcCxy3Pn/8kGpUzO/8AWQ4rz4tDjhxI8j1leHBFDWpy3GIfZv7vt11Egk AM8ag3UVhJuyoq144kLwWMXLCyVcMcr8kzhdCNf/cMc3EW4c3+ZrqyIE54B6 s1GS34R5Yf4MdSG8D76p9oBw738/HzdoCcEw5oOqKWHlrAUO1w2EYJPi5dxA 6rdOIqxij7EQ/F0TE20J51QdaJhPCcHp56e6RlL/s5lFYd+2CYG/dc+19YTf +ohxq2yF4PDzsyKT9EtS9calky5CmDFHNsaK9FfL0Tt/q4cQ5jD6rW+S/mfF Z3nreAth0utV1msyH2OPTzOHrgghfUSkqkXmZ0gjmEqKFYJpV7+nAZmv5L+D RdvuCmH06qdLS8n8vb0dlpWXI4RO+Q+KkmQ+t2puT3AvFcKTzAWlXWSeo832 R+jWCqGm8EHO093kfm70d81rFoLCjONd+mT+ne3dzf27hFDxTuzTR2sau8Zq lbfxhTDSFqkeRO6P+Xu2+8CEELRTjTY/3kFjbtCUq4dmH4Su99UI2ELjczOJ JXuX9YGKw6L69s003uofKdxo3AeHo6XVlpL7uuTCbnHtHX1QZmytXmBG46Ui X9G8c31wu8rPxJrsA7/KKIkCVh+0jzH+6dAm/QzPrml+3QeGf20MfbiY9C/D ZkTU1gdGumsvuJH9s872ULbttz7w1AtLa1GnMXNLQrfO7G9w54ryLDsVGi2p wePnjn+D9VEPpLlk/ymO6KqfUOiH2yHSa+Xfs/Faktxkzdx+sDjQ90buDRtN Fujl/qXZD/XlUv4SjWyMMPga8p9xP/CLFiVxaDbe7o8M8TnSDzY+zydPlLOx yOze+1XFRD/wWEx0MhsvPb7lff/wdxhhfW1Pd2Oj+pnO8tiyAYiKs2dNDrJw f6addqXeEDzxjJs78bsOA25s2stJHoaiVS30r++16NLmMXuX9AjI+MvpJI7X YKfYxyEnj58Qu8zCMES5Bi1Ch8s5o6MQ659afdm+GgdPezy9eXIc5vaFRLQ/ r0SWdVpJooQIzufMi/Zf+wwPTbebjE6YAJmdh7iBH8j/ZUCE6hul33DHSGpO S0oZSga8PXg+7w/wpbfXm5wqxebFFN9oHoM63XDu2YAb+T82iHHb0s+ganZ4 7zV2Kca2zpJ/N1SJUYr7HiQ0+hTh3kuMOW2XxCmGmbcdPinE1MwnV5x3S1CM Tv6Lkk8F2POlIeaAmiTlNLU8aHhpAe6Upaw+fJSkgqRWrzKPzEftZckd+rlS VM8G0/g8Th4qrNnSWO4lTTk5TS7S2ZuH9q8St2jtmEYFXXLhLgzPxT1sKd0B dRmK0o0OybrwFDtaIvrYX2SomsuxzEU3cnBC92HLuTJZqmdroiWmZqNff/sJ 9SA5ilEoUWf6JguPiT67iJtPp5zWf9L5NT0LSweDNKvnzqAoldW/r25+gmnB jgzH7hlUT/qs+Ms3MzH3xE2NthJ5qqepf2F852MsknCnlgQpUD22yZ7/rnuM rJ3eLx5tmUn1vL2oK/kwA9dF3lD4La9IpdTlMiplMzCd8r4lf1aRYph81S69 9AgbTd8PRHYpUtTksr2Lhh6ig4PHmOr2WRSjjXpZffIh+Z6Z5YdnE/59b0nz SDq+973t6DJXiQoSbXkZ4JeO7J91NvMDlCjG94x8y+npKJfGleR1K1HU2qbe pLQ0rDi5u19thzJFTWjMyjdOQ4+9LmV6ucpUzTfTFrk2Jk71UHH8PCJvMI1w aWFiwuFkz4wCZSoodntE5QcmWqR2aWuVEHnd51On3jKx4bDz/YVV5Pyx+d3t L5n46JojU7VBmWL83bqropKJe4yMp0v3En23nIlSJhM3j/b/ZPP/b9/KZ14q E9+tXvQ5REjsP3enApKZuDZxskzsOzkffpq1+R4T3XVCPH+PELmIfaX5FhPD NPIGR8RVKMbbFGWpSCZ+nDb/a6GkCkVt3BnjEc7EeyukW89Kq1BBG/IONIcx saXKvGpQlvD7Xl56MBPNP/vc+KZIzv8LL7dfZOLfkwXhWUqEl9Q1FvozcesG t0B3FWLvTMKi+X5MlEzf8C9fVYWquRuOP7yZaBt86GiGGtEPfCnj6MVE5/Gf h479RfS/ZaW9OsvE21+k7bXUCbtuijU6w8Tt6rE2nPmE3VKamKeY+D/+ui94 "]], LineBox[{{0.6602543056976656, -0.023108192108078157`}, { 0.6604484023913977, -0.0229533276479309}, { 0.6605514411100654, -0.022840475466111815`}, { 0.6606431879666658, -0.0226772041488586}, { 0.6607184004939266, -0.02253036720020596}, { 0.660774739554811, -0.022451883215135582`}, { 0.6608094449902462, -0.022575229119510154`}}]}, Annotation[#, "Charting`Private`Tag$388161#1"]& ], {}}, {}}, {{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVl3k4VO8bxi1ZoxCKZI0sUZZQ5CFLIrJLixBKC75IhWhB9kSW7NkSKlu2 MXPe7JTKkqQwc2bGUgolW6rf+f011+e65pz3ed/7ue/3PDIefnZebCwsLO9Y WVj+/3su4o7gFDUChCpUxVZ+uyKnv5pyzi43wZ5tpH6jqita1S8lH2i9CZK6 UvWY22kEzXE/WB/cAsUjXVqZ/ScRvrKewFy/Bc5PetwjN59EUTp+u3q8bsPM QoVlge0J9KrO/lSyzh0QMrOvXqIfR74/O5YCC+5A5nDT6IrWcSSgoXvfmScS XF2MJZrjnVGtf7mKXkAkfEhGR/OmnZDTc4lOyU+REAJsxjxHndDqtyQ3NpMo QLs+vnetd0Q5u1l/MyujQIpP9DOboiOCi4FpPSLRwPc8drfLIweEP2HueRoe DcVzvn519g4oatq5N3kqGpzOfDr7dcQeKe7q9QyyuQsGlyvMRtzt0Ssv/X/O TXfByyadWfXdDvkWP3uoJxsD78F+U0WEHRKkS2tJxcdAZsDDpHVhO1Qnk/qG bTEGGqWktT49s0VObhw+k6diwTA873WYlS1azbvK3tsRC366P7J/brRFOWMz uU/V4sDesetKVLUNMpA4pXs/Iw4cHmnN5LrYoMiHhpeP+8QDb87vB+jsMbRr pIZLfyAeujxdJFParVGvqHyhlF4CBGRpal9SsUaXHTP02YsToMXwdG1iphUS eMDzYZIvEcL8X+i8VbFCtQOh//VeSYRMncO7Hz86ipwEv298Np4I5d/FTwtv P4pykgYMr1QlQV/3nRgLMUv0oN3qPatyMqxYG+/5c+IImqRHFwa6JsP7WrKv 13dzpMOO/JgpyRBQeEnSN9IcjRpp8Pb8TgbZvOWEzsbDSAoTheS++0DZkqm9 YmuG/MeP8bGxpQAXv2bWozVT1Pon5mOgdgoksUTGmpaYIk/934HO+SlwSXKQ u5XFFJU3TZRJ/pcKYWktwv2jxmh9ZFtwckkqiF8MH9dLNUZWK7bGbKOpUBl9 kVXVyhjNa7ePMQ89gB5N7bKBjkNIu65M6KlwGsh6SOTv7TdCrYUqajFWafDh rZpNQbIRsr7/7MjZ6DTo1Em3uG5rhLx9626KraTB6NvuoNQPhihDEX2P+pQO +/DYPRk/Ae3caszrLpwBaj2YAmsMoCqOTnl9qwzoiu20r5cE1I2/OvWDkgEr e37UGtsboJWcD72uhZkQltTC7z6mjyLjT0zu/5QJf51kFnNu6yOBkDFWEeGH 0HZFuoqkpI+UnOm6r6IeQi2H+4vTd/TQCcG5Uh2fLNCy0A5rNziASFGcdwT2 5kDSOmfhjX86yDwoNu/r+Ry4yzpsM9iig4Y8+Jo7H+XAzqza9OuhOmgWhBbC tuTCo2y5Wxn/tJHE2o4zM0u50M3+ltueXxuVTReEtO/JA+5hJt/lwX1I64Nc ev75PPB8p9BkmLsPWdUp9TmO5kFt9eOjMmr7ULjvPr1Wcj5MWgQrO57QQhtP NzrlLuWDsheZ2q2khV6X7NjfsrUAxixnjowsa6LjDwocMmwKQLSRJ1AyXRP5 /1cab9VaAIJ125ovjmmgApWa1aaSR+A42qygGaeO/Dh5DpmiR/C3yC/8j6c6 MqCdiXs3+ggonxXYwVAdfUrn3z61uRDqpLua96zsRaJsPvrCIYWw52D52c1+ e1HiiFSEr3URkI37Vtwn1NCp2uCu1fNFcC34V1Z/oRpSTurbHHWnCII55hnL 3mqo2zi0ILuxCPziQ9sCF1TRhufDL7tli0Grg9naJqCKQqISN8gtF8O43eer IpdU0BE3xtFngiXAyx4x+Ge/Ctqmp5e2f3cJrEpvmA3iVkEv5qflbdxLQF6N eWHrY2U0f9Lk8I1XJTBsOf1dYVYJndP4HfshvxTMX9kx0hIUkcPE+c0J5mVQ /fz8ym5pBVRzZHRjikcZkFS2r+7/I48E6yy5M8PKYFbDip43Ko/exKixFleV gZ13Vn5Qujwy11j8Qdr2BJwVogKzhOSRXlTE8NfpJzDGH/srZ9tOlDU3P7DA Vg7+dtr7763JoRUXj7fLEuVwPPELf89nOVSnZtrNblsOCkePLaYXyiG1Ed7m 7U3lcCH11TejvXJIViU91zK2Ah6vnzR77yyLbqZxZdkWVYBm1xjeelAWTfy7 lu5MroChztbAr3KyKGfo5L2zCxXAOiOYb7cgg0TCZW6FulTCFfZ7HCOJMoi7 v9KzQukpsAS631t5J43mgttUNvY+gxuRhuVbFiXRl26Xt6aTz0BBc3FjUrck mhSfD7jJ9hwu/b2X4pMricYpEs2/DjwH6oOrRxrNJdEbzmBzasVzaOI6yXeh cAdysnxQM2pWBWvnBtjVvSWQQ9CZDSsOVcDdtfUVj6EEsstVdhI5WwVO+cd9 08UlkPUcWj0WUQW/uObssLfbkWnqN8OOhioY8LEITzi4HWl9Mnv7XLEaMjMr 1uV3iSONDUIyfdrVID4jhoI4xNFe1bGALybVoJBU/5mVIYZ2RwSKyrtXQ+cg u9/HR2JITq7gdNbDahAwfhwwIC2GhC6ufo3krYGB2Ti/LKVtaGGtgvvEbA3A s2eln86Korr3L3WiV2tgKDhHaMpCFAVXffCu4ayF7tVuZQkNUbTmxd7BK1ML k7/TV3RYRdGG/hO3SI61kG+UNUMtEEGij3nWJLBaCBI5Ux0zJYwO2J/7OnG/ DuzOeltq3tuC1lVviPPl14HCzT1PKCFbEIU79YhuZR1wdP7cesF7CzKmUB4n d9ZBpF+8g4nBFnRUSdTT6HcduEKggNCcEHL91/650PMF3PkeFGruJIRuV8i+ 8dKph9ucbCnfdQXRlrVem0rTetjjGzhwU0EQFZsHDv6wrwdaYBDdQlgQdTLb RiL86+Hmyyq99TkBxCvtRX/4pB4cqiKx4jIBdP/B45W+7Q0QFuAZyiUlgApu 7JbTZmkEDf1fVSH6m5D666GSsE2N8KO/qGJ8xybUKn5DsU2iEcT/XO+7/I8f MRr6VG32N8INxatPNrXxI8UfvroXAhrh7PJg2fWj/Oi5d7VVHqMRRnd86R/0 5kOUY9rXOHuaIP/TDEWnkRdtnfzqwPuhCR5k1A3/zONF/mGP1Dcxm8BJSk1n IIoXyTzh+yrC2gze3PMv+Bx4USQb/bT8/mag3deidy/wIIsX94xNnjRDdNfO IQNNHjQsPrPpdiwJXml5+Bm+5kJ7qvO+RmWQwERFc3tjPReKOezQHVtCArcm Ss+RR1xofxB26/5LEmTe3NRBCuZCOX1piwWrJNDvgbdzslzI4+ahUcynBQb6 tQZXIjjRd2Z2yZ8jZBjf/TZtwJIDbVTLOSPgTIb7YYzmuAMcSDE4R0zOkwxP FwW/OCpxIA/O3ETzcDKYva6/vo+LA31QyLuSWkOGKAnZvKq2DQidKzBV2k4B 8sldoVsMN6CUmWKmwywFzALH3bJM2dFz9ZL8c6sUqHTrehuizY5eXy9xCeHE 4CEs6F7cxY44eUv78qUxUJIqOhTDw45ClR+/+OJAcGnjmusbNuR58UnUTTIG vZNXFWZOsKHspWEhp8MIfjcU8VeEs6Jkh4KHl6wRNNLtog/4s6LoGh/pO8Rn nL+NxORHd1YU4LuuWnUWQWqOyBMbU1ZkMSlzhPcmAp+oac1xPla09v5SBKUR wdFGWefePBZ0/AXbrILySyjREul3zfqHCQepdSzztYL5H+POgfx1bFY5tzlt Syu0PQ0vX4pbx9ppG6s0xVuhgyo2qRq8jgUdm8ny29UKazsWmPjRdWxIudh/ yqgVrr1h4RT8/RtLo4lJfAhuhdUXHdYzJ35josc4AuupraBA4d3QtGsNE1P+ LH2lrg0qZhyehy4sY0ORtm0LzW2gxXgat522jCVPdHr5vmwDya3SAujdMsad Vl1+7k0bBIQ//7S3ahlb+RetdWK6DRQvBbyq8VvGRt6rm4NEO8wOdSxoLSxh mbfu+vFEtkP06v7vZX9+Yds+alBy7TtgWevClRv7FzHS5f/iHp/ogEU22eov youYK1uVU7V7B3xj75o8K7GIlaiozrX7dYDknOClkH8/MY3wXdKz8R1QxJVb ZdD5E7OSk7h9oL0DPg+OsPxy/Indvsxh9kGrEzhws8TRGz+wb6wjfQKiXZCi YWC/MjuPBcyRuAslukBPO7mMRpvHVj7nG2vKdcG5jKamN8PzGHvjuSbHvV1w 4NyzbITmMTHf5eIsiy5Q527g35A2j5mOiobtjOgCNi95J26Yx3JrHJV1p7uA xQrXClefw6zODkafae6G/1ruife1zmLNcTe/3njZDQeU2TcWPZvFFGpUbXK6 u8Gj1/nd3axZjIU1RuzjcDeoCIvwhAfMYnV5+pV2P7th/3hOm5zcLCY+WtJv ursHnnX2PZa5+xWbtrkmsTuPMNvHmfAily/YHYMdNSu3eqF5MWRyTn4aqxUS kDpo9BoqNm/ru3ycgflJuew7jfcBe9BgQqctDWMpnSd3lb4FF5ck54//PmP3 NOaWo0vfATGz3JoOHMG4j/FbHIvvB33haw0Fu4ewv1P/9L9dHICCQb0tC1Hv sAO5uRuuHxwEi+mDqSYCrzD3ex4c5dJDkPcjLeXn8Q7sTe7AaPfiEPj/Gtmp WYiwRsWttuT293DBwnUigqcJS5y/zeJcOgydysva+8SqsbKhh5Hj1z6Av3eo xTn2Euzprw9GG0+PQNURmrpkejK2J/VLPv/Bj2Cob/w+2yIYlo+WDfzhH4VG vSOvE/9mQLlxokHq/CgI4KH712jFUOS0I0K0/RO8m1MZTtCvBLHJW25+qZ+h YGud7Uvbagip4Q+9HDQGhoWWWgZudSCTbXLBxWwcAl3aO0XG6qEWFaZ8UZqA dc54v517m6CZmZ6krzoBCXnv1CR1m6CVNz4uae8EzPrsGRIybIJ3DoG3NXQm gLym8Hr2WBN8nzYOCDGZAGVjjXEPvyZQEmTa8p6ZgHj14aGTT4kcd98lqPxg AqS+hfhHyjdDPFvlPZ+/ExBtOHponJMErS2C/71noUJ2gvTUFX4SwDUr8WA2 KvSTFh25hUmgO9d+qYGDCoJCElukZUigMlYreICPCtZ8mwW26pFAoOn+SRCj gpdpz29ZXxJ88reaO6JJBYlq16uN70jgT20XPXOOCg9EFI6u3W0B7y8BvHI+ VFAoypoZS2yB04vSfycvUKGb8lK6JbUFLLhvMH19qbCrZMnpfH4L7Ny7ry78 ChXMntRXRtS3wEhEiW3eHSokv6lyrqS3gKFUdMJYPhX+aQk//rufDNpKWjcf PaLCnzef7bWBDKqaeKBXERW2x8RWnDchg/hhg5PfSqkw8+WeE9maDIu+S0p/ nlKhXe7KboWzZCijeHdJtFBhKegh70ocGQRcD7OdGqHCQPvySM4wGYCS1886 SoUdp+Qvfh4lg6/kUsHjT1QoZ9npsnWCDK/Hi+HnOBXmH9I5I6bIEHOG7UYc k9gft9iVrStkYHUnLzf+oMKBvm8ffLZR4MdZzW8i/DSYG/58IN2RAjLtcS2k TTQ48niCZORCAZudeLy7AA0a3vLkT5+iwDNGsvLTLTT4OrV+V9GTAhe8vp8z EadB04baFP8ACuDeT/CAXTRYSq4Yk02iwKCP1MhbIxocfrGheFMrBcK2zSxk GtPAcftdzvMdFNjZVbPRw5QG3/55LpG6KRC80wwWzWkgF89iYf+WAuITl0q3 2dAgg/l3yfAzBdwdmoPcXWkQ5+BxQvQXhfjuj0xSdqOBYs6lkG0rFKiptir7 6U4D5bR7q8K/KbBhM+1TlBcNim68mf3DgkFZD5dx+SUanNVj4U/iw2DOwFHw ZwgNqJcbnj+WxSDzm6RKSxgNonu+GdjJY2CYM20SFU4D2dhV2+VdGKSshl7b epsGK3fG/u5VxUC7rnBCL5YGTKa/qYcOBjeU5p9GZtDgqszUxxYLDDYKx1uI 1tGg9MJiqNVlDCovpm/+8IIGa7qXDQ38MLBuezSU0UCDOkmecqX/iPcHNLqK kWjw/bvp+fkgDMT7mQESrTSwafrP42AYBopJhtmy74jnmcG73scS9zbT0o3e T4M7zvJjfvEYXDroLF88SIOUkyYqHIkYVM1efi7/gQb3OrrDpZIx0LHMblMc p8GtvyGHt6RjYMa99FVtlgYt+LEdSwUYTJ9hrZ77Rujj4ra8vxCDuAa+4Ko5 GnAwPR2uFWHwxluOReMnDfj9b5AYJRg4dtgI71ujgZfPnc+h5RgsSZz6+Os3 DZISbX6kVhDnGXQur/4PDRT22MWXVmLwWS5cUZcVBxX39EOkZxh43q7Q1+PG ATaZlRbWYMA5Ws+6zoPDUndpQ1ItoZd6a2fLRhyy9EnGV+ow+EodsTHYjMPK fGGXej0GCboMkX8COHxkMydzNWCgljw3ignh0J1XqTxCcABwehmJ4uBncdPt fBMGwhmCymzbcKjbcUhRsRmD+u8Sc61iOChe7nXHCV7L1bxusgOHxBMRymYt GNxad0s8vBMHo4qx/l4KBqfKRdS+yONgkvL1mANG6H+8903CLhzcrlrOjxD8 pVZTYEAZh8b3B7MHEQbt7tNVQbtx4Mt3zD7yEoP8zbm2W9Vw4BQ2bmom2OEi Z+opdRzKH26xTGol6hcjaf7TIHhpL3meYJ4uv6FHWjiYL1Q4WLdhwAjaecVE GwcZKY3VUoIpsh9FpnRwuC/FrFsjOPNdYn3sfhy2fKJFH2nHIDD8kPNuPeL/ B0x9UwlWHK3I/M8Ah77I2uvbOjBgi3HbL2yIQ843t3J7gsf2iYzWG+HgqLf0 OZbgRnpPiIsxDsMpbZIkglPuh29fN8EhJoHpO0XwJdBsyTPDYQRde72pk+in b1OnjMxx0Op+qK1OsHR2zh/6ERz+HfCqtCb4t7ltXrQlDrXFfQbnCB5e4gAl KxyeZYV3hRBcVdw88coah43FHM6xBMfZ+d30tcFBfyl8NoVgT5adMoJ2OFR2 ct7NINjg2cjLWnsc+i2a5P/PYqcSPZwccdjWWNN1n+BFnkPsq044TJadunWX 4DcNS0XZx3EQQwfkrxFc5lVhYnACBw7JHV1nCb6zxY1JPYnDwi0pbwuCXV8K R985jcP2itOsuwnW9etRUDiDQ+vxnxncBAvtCO/qdsNByWJdkUqcx2yvxvmL HjiE5px7XUNw57Up7k2eOIyS/7O6SfAjhZwnVV44FCnqtZkTHDZkY2F/Doej QhO7+Qh2us3x9dd5Qu+qa7G9hF579zbHZ17AgVtXbuQOwbzjvrv1LhH1Tqxu 1SWYES/XN3YZh+8+MZ5ThP7Y/pHLN/1wsFtKvHWf4KA0o+cdATisWpNCh4l+ sjZeOnY+CAdBi23O/xGstFA+zxuMAzWzS5yL4PGjwho213E4sZRzVY7oz8a1 7oEfIcT5y4nPPiH6OaXsRmBaGOGvNA8jFYIPb5iqG40g6p1oiZMk+l+2Jtvx xi0cZiPYbiQTflk/Y7MkdQeHwtWQo3+IOaOK1KTjFY2DxsltBV2Ev8QDE5rn EnAYsplmlyT85+tXW/IiifCTAO+6E+HX1oujyaHJxPrqM+xxjRhc9FQ8x/UA B4HN7T5jhP9bHNu3SGXjYPHjv8IDRF4I2H39y8jBIUH7GeUQkSee1kJfyvNw OHPC8rZJNQb8h92QdiHhh/Ms4fueE/rqrl+yfoJDMKha9xH5VaMld1y4Aocd RkfKip4QeaRuYTxaSfT/lFJHYBkGz5UyxbyrcNDVun+ItRQDlu1anTcaCH3e SOzvJ/Kz8M9FqacdOJDx+zSjNCIPV1N4A7twSJfXd65NxcBiqemXbg9Rf05M mWQKBj+/c71uf03oJe2aTkvCwIRadO3zIA49ubQH4jEYTLZ+6t+I4yAikhTr eB2DAxgbuZ+OwxuOI3fOXMUgiaRUlsHEQXtkxzePK0S+110Nl5sh8s3Eks+J uE9iSrao6M0TflPxPPPtPKF3jGXkhb84lIZna3x2IvJvdLulEAsdilMN/IuJ ufCQ6qxgMysdDM/ryJyzI/JuICGfh4MOw7fCpEatMEiWeNNctpEOpzft8r5u QuyvymZhchsdmnl/LWXuJfzDLtOYJE6HW9bRbaxqhB5OC+HaEnQgO5lHeKoQ 6/++zxctRQe6hR3aqkC833Rwl7wCHbJQcfi+7YTeHx1dz2rSQehg9Jr5BgyO 7VaQ37iPDifFOM8fYyXuj/ClrzXadCgyfZB57C8FfsllXGc7QIfWguy8g8T9 r+g78uCRIR24ig8L9X2lQBLbyVcTVnRILw1NJPVT4KSKm+6p83SIYXlv1JhJ AapCQPlvHzp0Bhf3sqVRwFs2UiL7Ih1OvSLTzO5TIECsjGXUlw5qqnTjllgK xHLNdztfIfY/lPnEOYQCDfQIF/vbdIiiXhGyP0GBLTn5IRY5dBBQFTiuL0KB zIzq2ZlcOpBE7HSqBCggmdrmGptPh+7wUpEdfBRQjps61F1IhzDlna9obBQw urZno9kTOhyTLtq8dZ4Mfg5YtlE9HW4G7BxT7CHDK76JFt13dOgV09LrukKG Xqez13/30+EyZKV+9CO4YGofZZAOnhVvR3AfgrXmnxl/oEPB5TS50dNk6D7F +sh6nFi/MyvopCkZ2ivlojxn6ZARpiqUK0QGytHzVsncDIhHPk3UkhagpM/y 2PMy4A3iHMfyWoBM9e8U4WOAylTn77SMFmgJug7ZmxmgoeLAlI5tAVJOnHqp KMH/ai1JF1ugcbZSpGUnA06UuLD+UGuB6oSFsSlDBqSHzvaKPiXBl91SwQmH GCBVPbGoWEIC2b6jm9RNGOBuKfh+by4JUvjLDEIOM0CirElHLpEEAUmu+XzW DNi/+Jr17iUSaCW/clM/yYDrq+JcNkokqE8toYdcYcCXX8aegVnN8F1zMFTq KgO8D17vlrnfDApDLMLt1xgwXtaxtfNuM6QLnzLhD2MAMwvRmEHNcDVNqCT/ NgOOSjzzTrVuBt2MCO/2ewx470C9HfePmI+yXGb4yxmQbb2i7e3cBKyn3l2k VzAgc0J0SdayCcx3HP7e+JQBqmXHPfoMmmA4X+vn2WoGtJyMTf4m3wQ/ijf/ aWpkwHBXRc3hn42g/LxDwLuLAVxJwU4WcY2Q1aauS2Ew4N2GkI+nyhqAFlnW nDrJAPFKM9vwhw2gaCZ10GeaqO+a3ek7cQ1Q3813SHiWAQPH/uYbX2qAgb4p yws/GXCe+5h2lloD8I7knhFlY8L0kpem7bN6sH0ojH9lZ0LOx+NYT249ZJ6I 93zJwYSU7zYt8on1oDB2zecSDxOCzsaLxF+sh0O4fWCrABOo5i5nphTqIbao 91eGEBN4PUaC/ETq4Z2n0bXLwkyYz6xq/cBeD65Taje2bWOC6C7vfdbUF1BS VvLvmxgTDDmXVh3evCDmSInbbduZkKy3Inmg5QVoqqRueLiDWN9yNO/PkxcQ Mstz11eKCS09vv4lGS/gf/DfgxE= "]]}, Annotation[#, "Charting`Private`Tag$388196#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVlHs4VHsXx1G5VRO5puNaOqVCKkVpbUoqJVGOjKJ0QUWXkTiSRIokFUUX GowiiiQV1jB7IxVyhHKpMFeTRFKEd79/7Gc/n2et79q/31rftQ33Brrsl5OR kSmln/+/lbVVywP0+ZAYVqZYYsbFdZG7Yv1M+HBcmrrgPy8uhksfuO1bzoer xjrmBfFcHOTafdvpyIfrT6riTnRz0XRhwsvtbnxYn6hre21qBfomtcVs3cOH kJBQ6TSLCmz3YxnYB/PBNbJl+/nQCtRs4kohkg8W6uMj2bcr0HnN9OfW8XyQ LE79E1lWgeRMzjbzDD4097vEFY1WYN7LlsjZ9XxYnBnADDlUiSLjuVs1P/Lh mu+hOX9FV6LRlaOzVfl8uLmx6HTHnUpM3qdUJD/Kh9SWj6WT3lZiQ92OCFl5 AfRp2XOOdVeishV78x8VAXwPHgw3/12J4dNX8b/PE4BjXEdfmhEPS4JjCqRL BLAnoS1mtyUPB778d1q4WgALVkY9PruRhweLD2t2uAjg92zBT5UAHjp73XWo CReAhvGYS+1jHsa+kqjxLgrA8kJTLsHlIbl0xeey6wKIcHQzXl3PQyvFhlNP cgQw+nzeakEvD1nH/7LPfyoAHT3G9Bu/eZjf7qv6gCuAA2+/3O2RJ9GoQDbn brMAsnZafHI2INFzttPJlC8CaB26wwpaRGJydKrddakA/H9q+9itJFHZY2nb RTkhNHVdyKxzInFQbv+0IFMh1DwheiefItH0SEFroJUQGmIsL10+S6Jvy1im /zohcOaNMhpjSWzPTbbx9hCCOS8oJOI2iZqa3UrM/ULwH27cNZBJonOEWfOO o0LQjBt+qpdHIrm9JsDxvBCKD7VufVFK4ni5+qr1iUKIaIitWESSuHLBHgXb 20KQuu+WeL0mMW/sd5ploRA+N9fsmP2BPj9n4TvDTjrfqdp04juJTkzXqUoS Icx7LvEw/0XiFJV/7fuHhGDnurlh7jiJrJDa5+XTRVCeNr/QT4nCRaYDg1mz RKAopytfwqCwu2uWabyxCO6qJcg1qVHostmPzbQRgXfbZc+juhQqyya2220U Qex5pb8GDSmseFqiabJDBAf8S9w3zKPQXF8x7tdhEZDlB8b3mVIo+s+M+nRK BPlveq6bWlCYduGfiaooEbwZN6qvW04hY4BzIum2CMw1+A3xqyms4tTlhd0X geaU1dn5QOFp5k+hT5EIXHJcbzywo1BK2ntavBHB5JOGmxdsoDAz5EjyrFYR FAZPKynYRCHTNKlBpkcEfy1hF6ttobD2Rs+6+lERiKzz7AK3URi5edqZYgUx OCXpbfV3pdBKdtnzO2piqLTokrfbQWH/U+ZglD4dbwmsHnGj8L7/ucWHF4oh bIt3baI7hd76uQddV4ihyP7IL2UPCrWbGu9ZrxVD5F7hyf1MChsujLQZbhWD erT3qnRPCmNsjDSVmGJ4YbphGe6icM3ARuf+A2KQaodycDeFPznHYluOi2G9 949/s7wozGemkOXhYohylFMN8KbwgErFeFasGPrf2yvo7qFQjxKtjE8WQ7EG x6eA5vchKidYbDF4LjztZrKXwkumK/OY+fR9uK8gjuZ13V5CuxdiMBibV/SO 5j83YgxNqsRQfuLFfFkfCp9sfsRUbRSDXoLNSi2a/WVbkn51iKH2PKX3fzYq Hq//JBZDu1/m4ASt/+g/T7l6SAyhQQo/GmhO1Hdaly8rgc9LyTnxNG9oCgpP mi6BdWN/nCxolrl4pyRslgSM3n6I4dHnLbGhBnyMJdD1QfhwDc2BA9JFjksk 4KFqH8uh7zsvW/2ghY0EUp/17R+h+9HJXH1v1kYJdCqcC7SiOVllX5vMDgmM lHEOH6D7t4WK0xB5S6A13MT9DN3fUtO2i8WnJLDI4JNVGD0PVrcceSdKApU6 iqW76XktvGkyHnVFAhZd79rNd1KYKht63PW+BK4mRA6l0/N2Kb730LpIAmt0 dfKB9oPSoVcCQ64EvIeH59fTfjnVpM3sb5FAeX2kTLkzhQUvJ7Kmd0vgZFtT l/VWCiVsQb9JnwT6Js6m59D+8zxWdH7/5F5QjK7R8aH9STCcCz+a98IpVpOt 7VoKQ4Ysx4ZX9ULhC6sBpi2Fhe26GzQceiE9KO+MP+3/ubm9HVt39UJr4Pcp vqsoVNwQo0Rd7IXalJ3uXfQ+2ZoFbO+63gv98WPSbHMKQzV3pE2k9UKOR2uW D71/0h6j5dbFvcBwmVNctoD259ly70ddvRCeJhc/yYDCmy+HnqWskgJhPHPi tzKF79jtcs/WS4Gleat2uSK977G8LU3bpNC8zJrwn0JhmHtiN8NXCgIwHSqd INF7aNGMqOtS8G/6Yqbyg8T5ZvsOBHyVgtGGlqzoNhKfsRvV16Z9hfUaJm6H OCRWzYpMmJ/zFSIGqL2TM0hsurJEmfH0KxQnZOmnpJHYH35lorX2KyzLXdLz 7CaJJkwnScDPr1Bi+r6lhv6/3lWrxdQtfaDCuWPkGEBiVFSF/8BoH3ysG6i2 Wkp/f6n7Z+dF/bDa1Fo77BkP0/c9/h7P+Q6cQOX5l9iV6CDo04lXGIQLSnU9 szkVmPIseWLW+R9AJipzXmdy8eY5546HY0PQoHzzxbZgxKq0/kZZz2G4Pz5D +ZywDNOmjpzrafkFrSPcVMKjFDnV4s0XrUeAy+oTV8i/RGZ4L2NZ8ii49+2c m9H0HF9GuV06PGMMnPstJScySnBjW7bhwcBxUOxVVjt65xmeO7v3+DfpBFwo MTNPv1GMyxO1OssLZIiGxidJxTlPEZW+Mw56yxJcdcONcp1FqG9yRrdZV46Q WfiWlTCjCJOPy6zk1NHs/An8PZ9g915Lc5vLk+i4R39wdiGedx6a+8+myYTB Fd3BLtlCtD2Qbdz4ezJxJd2xw+JYAb6bw5isXjKF8F6R4Dap8zGGKPn2FfvJ E+nrOohPno8xWLrpfbuWAkFEpKQJax+hY3BXyqsmBeKz0fyNQc35aGlyxF8r WpEw+Dtmu2Q8D4ejHmovWqdEpE9eFs00ykNGB4vHm1AiDATX5fx2PESbXeah pfnKBBEwJFeQlou20emMsMNTiQjQL+/oycFd7yc9uq07jZBRSW9WgxysN+p3 JF5PIwjer+6pmQ9QSzuxKidmOsGty9W8NekBnlxuvOXkCgZhsNuggGLdx9yR IwWKPxkE99PH052fs3FY+MDwT/YMIl335/Juz2zc4rfCwWqhCuFd8FCv/TMH Yy1Y0paLKoRM+7mJt14cbEzI0fq7i2aPkFPh0iycYvuy4IOtKsFdkMm6y8rC 7qMqtW/TaA5VO1s1KQvfLvPyPT5Ms5dyx427mcjefCEo1G0mEXFj+x3G8kyM /JWjuPTRTELm3+d+RHMGMubM1Fksr0bI4AO/1LAMjL7nmhq7T40g1mgeadTL QIWiy+k3S2l+cz7HvZaNohrLesNymgeNQFDDxpqOzrEcpNnhHxVWNRsvKJgx yyrpejpc3yskGxWZ9RpdNTT3aA2+LmejspxK3ML3agT3w9RQpydsZDgnBpV/ pfmVT+HZ22zs22eV6fCNzm//9UPzFhvrQr40NvTT9a26gx6msDEhY4l59yCd f/KbRWsyG1WG30kURtSIiNBDtywS2ah6d6b3Nnl1ggjStRiMZuNA4YvLHxXU Ce6eS96XotjYWL23zEdJnYj426zO+Bwbr34v1Dk5jc7vdji4M4KNM+1d36fO pDnJ8SovlNbvHJ00V53Or+58uTuE1gdkWORp0PV0NIxHgtl47eZgAmrTXM0u XhLERlberfINOrR+UOPT2xNs3F659uu72bS+28fB/zgbl7X0zmbq0vGzqd/k j7FRXXptU48erX9a3ZIRyMb/AdihHfU= "]]}, Annotation[#, "Charting`Private`Tag$388250#1"]& ]}, {}}}, {{}, {{{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{0.6600868966165301, 0.08434517136532813}, { 0.6600868966165301, -0.1264561644934682}}]}}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[7, 360]], AbsoluteThickness[1.6], GrayLevel[0]]}], TraditionalForm], {0., 0.}, Automatic, Offset[6]], {{{ 0.6600868966165301, 0.08434517136532813}}, {{ 0.6600868966165301, -0.1264561644934682}}}]}}, {{}, {}}}}, AspectRatio->NCache[ Rational[1, 3], 0.3333333333333333], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{36, 15}, {15, 5}}, ImageSize->600, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->NCache[{{0, 3}, {-1, Rational[1, 5]}}, {{0, 3}, {-1, 0.2}}], PlotRangeClipping->True, PlotRangePadding->0, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.9678668721564903`*^9, 3.9678669200123234`*^9, 3.967866979946004*^9, 3.9678671156709642`*^9, {3.967868460664352*^9, 3.967868474702817*^9}}, CellLabel-> "Out[160]=",ExpressionUUID->"90fd41c7-a4e6-45af-801e-d40dd55d8dd4"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"CLM1\[Zeta]UV", "[", RowBox[{"A_", ",", "\[Epsilon]UV_"}], "]"}], "=", RowBox[{ RowBox[{"CLM1", "[", "A", "]"}], "-", FractionBox[ RowBox[{"Log", "[", "\[Epsilon]UV", "]"}], RowBox[{"4", " ", "A"}]]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"CLM2\[Zeta]UV", "[", RowBox[{"A_", ",", "\[Epsilon]UV_"}], "]"}], "=", RowBox[{ RowBox[{"CLM2", "[", "A", "]"}], "-", FractionBox[ RowBox[{"Log", "[", "\[Epsilon]UV", "]"}], RowBox[{"4", " ", "A"}]]}]}], ";"}]}], "Input", CellLabel-> "In[161]:=",ExpressionUUID->"8c1037eb-ddca-445a-b294-b732b7d3a377"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Block", "[", RowBox[{ RowBox[{"{", RowBox[{"\[Epsilon]UV", "=", RowBox[{"1", "/", "100"}]}], "}"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Show", "@", RowBox[{"Table", "[", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{ "Show", "[", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"CLM1\[Zeta]UV", "[", RowBox[{"A", ",", "\[Epsilon]UV"}], "]"}], "-", RowBox[{ FractionBox["As", "A"], RowBox[{"(", RowBox[{"CLM1\[Zeta]UV", "[", RowBox[{"As", ",", "\[Epsilon]UV"}], "]"}], ")"}]}]}], ",", RowBox[{"{", RowBox[{"A", ",", RowBox[{"EEofA1", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "]"}], ",", "Acritial"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"CLM2\[Zeta]UV", "[", RowBox[{"A", ",", "\[Epsilon]UV"}], "]"}], "-", RowBox[{ FractionBox["As", "A"], RowBox[{"(", RowBox[{"CLM1\[Zeta]UV", "[", RowBox[{"As", ",", "\[Epsilon]UV"}], "]"}], ")"}]}]}], ",", RowBox[{"{", RowBox[{"A", ",", "Acritial", ",", RowBox[{"EEofA2", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}], "}"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Acritial", ",", RowBox[{ RowBox[{"CLM1\[Zeta]UV", "[", RowBox[{"Acritial", ",", "\[Epsilon]UV"}], "]"}], "-", RowBox[{ FractionBox["As", "Acritial"], RowBox[{"(", RowBox[{"CLM1\[Zeta]UV", "[", RowBox[{"As", ",", "\[Epsilon]UV"}], "]"}], ")"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"Acritial", ",", RowBox[{ RowBox[{"CLM2\[Zeta]UV", "[", RowBox[{"Acritial", ",", "\[Epsilon]UV"}], "]"}], "-", RowBox[{ FractionBox["As", "Acritial"], RowBox[{"(", RowBox[{"CLM1\[Zeta]UV", "[", RowBox[{"As", ",", "\[Epsilon]UV"}], "]"}], ")"}]}]}]}], "}"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", "Black", "}"}]}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"Automatic", ",", " ", "6"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "2.2"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"45", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{"As", ",", RowBox[{"{", RowBox[{ RowBox[{"1", "/", "100"}], ",", RowBox[{"1", "/", "20"}], ",", RowBox[{"1", "/", "4"}]}], "}"}]}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.967867217219764*^9, 3.967867229512508*^9}, { 3.967867291234914*^9, 3.967867313481533*^9}}, CellLabel-> "In[163]:=",ExpressionUUID->"2a3cef21-efcd-450d-b1a1-f871bedc8f2b"], Cell[BoxData[ GraphicsBox[{{{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[ 1.], LineBox[CompressedData[" 1:eJwVlHk41QsTx49DIkuHZOc4vzbblaROpGaUS7cUIltCoSxZypKrxS77vnOQ hLKGm+VmuaJQVCpEIs4hhVTq2NLr/WOeeT7Pd2ae5zvzPEM7537SgUwikZ6t xf/zBf9goclRfwh5Yt5HeSvRYrq6e4uZRQCIfKmM/F0p3rKoVdio2RoAVm/u JkVRxVqyr4qbyyoFQpuWKDVgz+YWaIj8xpEcCMon1b1LyZtaxhZWolkrgaBq MlhMSqW0hNLdd3Q6BIHH9ySm/jJfy9MaY6t4ejDkWdYFW6ySWty+t//0zAuG SiPDH/0dP5spavsSzHhDAN/VnuS1nWyu9rintP9yCJDOSylZ/ShpNq2Qfiw7 FAJ5R3d5Ny+MweJMrC1ZJxQCkk6y6jW+Q7YyxzKrdI2zMiONd64AuHimdG4O g4W/SVgkScaxu6ydZTfCIM9I94TK1CqEfjTrip8Mg48Mg+W9TDLK7+iy9zK8 CeKWu1b0jnDjUwet32b1a/zMtzsomRfdCsoz9hPhIH+0mEFq5EehcTl1alQ4 LDTKi+1+sBFraEk95PlwcKQfj3XTFEJT23VOE1YRYIXV0txXhHEx5wpnV3sE yPe+/fnfsBBmD08xylQioaPQMdp5QRgPSlvtS0iLBK2Pir0RgiL4wbKn14sU BSHzbcth0psxJANdzZ2iQNmIpDUmK4o7BqrWa/VGAf6VPqMmLIZdotvyqfuj If6BIGvbdzF0PZWmxVkQDXmirpNXm8SRkszbP8EfAx6C01MaXuJY3Xv1Upd3 DBgac0/e3CmBpkKzfOXvY+DZ4R0vLSclcNHAtjBBLxa8OCq6vDIkMTu2F70r Y6Hja+OXO4elELp1hswl4oAZFOb8dFwKx/hqvbWC4uCEDjmz54o0hh5VoMh9 jgMuNl1fwkwak9uOv+FQjIetGnG6tX3SODEelu9pHQ8FAf1PlE7JIJ2zxZ2V GA/ShXYuP1/IYDixqGX2JB5ErA3zc4/I4qC22obO5XgIypVUqmuQRaWzLv2a qglwwpSdOLCNitcCCgpK7RMg9ZpsS144FXtyhy/JZiSAvZBDQacnFanNohDf nQDbIeXCZBcVPd4b8JPJiTDdRxbyp8hh66/wt557E2Gql2UYoimHm2RaC1nO iWDvoJ7OaSeH9lrLnma5iUBvepbvHyGHD06ra3e+SoSOytTc62VyuP6qq+B+ niQ45NUmGNojh+aZhUOlWklgdH178d3HcnivfqRY9lISPPN/X2nKlMOVAXGf +DtJ4Btd6JHMQcPjC0aHyYNJULPdUHm9LA1zxKIoXoLJYD6TMmuiQcO5vW3D rEPJwC2icGmbMQ0Pmf66Z3YlGaCMup5woWGS917fzpJkMDxWEv4jgIbMZPc/ 948mw4n+bF9JPxrurSkWLhNJAY7+gxk8sTRszVdSCT+eAuf9T4Rr3KbhiYTy v+zCUqDWN7Dsbi0NB/13ORxsTgGttHFD7qc0PO9WEyCxkALX7ar1Vt/R8JsV PXteNRUEewNHtWdoeONYQ+1zp1QYHy8TlfpIww2aB17dy0+FJVUxKc2fNEyT b5kNHUqFU6fMuMW5CNwqdnjDWZE0kLjMy+kjRGDlusfbtI6nwdTRz2dFZQnU mj+iLRaWBlG1S1EPFQjsGHtq9a0pDaZjLX8oqxNo8vKEbzc7DeY470TnqhA4 2vwyqVg1HcLbRyx16QReLDepCHZKhy3C0ekdQOBCdn+XdX46bEp+FfFTj8CQ KMsJjaF0MPMJ171lQCDFb5hjs0gGXJd9XJlpSmC2o63MnH4GOOhQLv5jRaCC 2fi+p6EZ8L1hjKhY0x/8ed6ksCkDtl6gux47TeAh9Sn3QHYGRJzasaPPhsAe 4mKUlWomUN2DLyraE2gp9KWQ7pQJX3Si57c4Ejjx+1KrcH4mUL778OW6EHh5 dn54ZjATrM10on3dCFx9d2WxY1MWKH9gDcZ4EBj5dEmkQD8LaOqrN9OdCBRt uK7qH5oFxzIuRiqv9ecXk/Qtm7Kgo4zannORQJW04At72FmgZDBY3+tK4L+h 3MEU1WzQeke2LF2bf8QrIuezYzbkSemSKe4Evj7H3/D4VjbclXPzGVvTbY3i 3twazAaBZbvayAsEToPw12ubGPCgxF6ReZ5AX5UUfnN9BghcdzymuMZcMuLy u0MZIJ8IrroOBMbzZR0WbGJAul09nVjzL70kYzP1kwE7rW4UFJ0jsPhjnl/b zhzwFxRYabElUL1/S2quYw5EZulsoVoQ2NJeeN/vVg4Qc6nPO9f2fbxGofvU YA7UJzNNXUwIHMwv/ai6KRdeODt7fzUi8HzCTi5+/VwIMV+vcHTtnt/8q6iT IblQe3K63E6fwBtue/a3NuaCibZDoPJfBPKdqTNl/MyFDXYaiqbaBD67I6Px UCwPqHrX5f89QKCwzMhjBfU82H67e6esJoHmyXkmaYZ5EOatf9ZjL4Eelwqj jrfmgekXg74rBIF5SlWL9XdugSNY+iwt0NCdm/fQny23wEptfz9lnoYHP9hE vhi8BTxSNs1bv9BwKFVAanJjPvjwGKVtZdFQlOykJeKXD6WuYy3h3TSMGaD6 u524DacuB275mkNDv9AYri3sAuibNeUb309DkxHHjdFHiiF2u/+rR65y+MXn kRJfVzksGZeo176TwU8dFs//nCiHQ9ZFkWVr/3RCcu5yALkC/rZxGy9qk8H3 TdINPzQrwM9MVUK1VAZ7uH2OjJZUAI9F8cN/r8mg6bHkqkHdSuCGZ/ovZGVQ fUj3eYX8fSiIaDV47SiNX5dKeCynqyCV8c+555ulsObNf/SwxSq4OZuyz4Vf Cn0q+89XcVcD6azNV35OKVxy4GzfQKsG13/mp5TmJJHrpWXgv6eqgeG7PYl4 KomiRbxL0s3V0Cc5f1ooSBI1jS98HkmogYBERaGseQkMKiF6HOgPIGzu+g79 z+LYZLDXl7uzHsx8t3jOfxPFWVbWnV9/NcKoWpbCHqPNmPWzT9hUrwVMs/kV jMgiKOKl0s7mbwXjOmVxrifCKKH4Ts675hHMsz+NQrsQir9Va2IYt4OKRI1P F5OCMxwD3RTRJ5AVaHSvgI+Cx+1ehdk0dIBeuhqpvUQQgw/KVC0EdkHDq5Tf cEQAq4Up1APaz+DxwSr+cH5+dKda7Dkz1g1yPSGDlb83IKlwrvFJ4XNwmaRK WM7zYpzaF3ZY4QvQXJfD9UiQF3kMBI4aRL2Ey+62dAEFHlyd/K0149ILt40e WkSbr0dNBoPr7wOvwKiC7RtymxvPxp1bd0/uNdxw/CfFfHod9jB6BzvmX0PY TFyBpf46rJMXM2psewOeNlHk7joujJkLIpkV9sG5yaM+sgQXFr/OCHnv2w8q xY35fgxOLPvRr813ZgC693ywT97MiTuTPuUKHHgLnxLvxlulkZGtX9z7S2AQ rE/PmVzZQcZ7h2MOJs0NAs81Cz5WNQfeNpXxF20bgorhMwJf9TlQYiLQ1j3p HcToTS7Rp0noVyVw1dVrGDZNcepF3iQhLUvH2UL3PYhVjhkf/IOE1S35iZ8U RmCA3Fk8xPgNUeTSOKfVEdiwuk+v6fsqeIy2idpcGAVD8/HCX0arQLHWI1sN jEJR7GL2jaJf8MqJOvBc+wPEbs1768D/C/hEoo6K1nwAD47aTpLjCgSu2Mbo bR2DKc2YmMTOZZD0jG74Ej0GxYmzYTX0ZVAIPxbivDoG5ZuWTR5mLsFpJdt9 Vo7jUF53wMCQZwme8o883PdiHJ78Mah6/8oi3I/+OjyJTMh9eYNe3b8ADZkW UwL3mPDhqnDiQ60F4LB64TJewoT0LKP+HxoLcERGb7aubK3+btFJFfoC9OWq f7e7z4SLD6QojF0L8K1g46/6ujW9yc3ZY/sCKFa0U84/YcJiD31leuMCZD7a ta+JyYSMM7YKimNs+BBS3JA0wQSrhDPzOiNskNelHnD6yAQN8mdD63dseNDB f0hkmgmZ2+neMX1s6O2ePOb8nQk6qT4Hh7vYsGGAYSNKZoFalNrAgWo2GGWI jH3mZIGKnEPs4Uo2pFtG2f+3jgW23iG9emVs2D7s63SRd42Vv6nrF7Hh0Jix ZyuFBT+cqmiHstgQcbvrR5owC8yTJkL2p7Phhb22r6sIC5y7nmjvTmGD9aTK dXFxFjRIiknJxrHhTvGd3zMSLLC6YfwfJZoN007SQY+kWDD32P42RwQbdisl cWXIsED50lDLXCgb/KZ5b7pRWeB1UvDv90Fs+B9CQNTJ "]]}, Annotation[#, "Charting`Private`Tag$388362#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVkXk81PkDh+XIPWFmc63VUGqVIhKV3h8lKcSmSKNfbdQ2Cikd/Lx0OEKl /MTSVopSZCpSKld9USjjyNFWrDAzDDNmxlE5t98fz+v56/nrYe4N2bpPXk5O LvwH/7eannZ5sDEP+g+sBYdMR+B0dlci25wH+75XoULtEUQN5noHrOBBR6Ej rkRuBMMv1w35uvIQuXanF/lnGJ/ZYfM2nOAhoof84585DE5J+1nDBh7Gspxe HP51GH0L5nvM/cgDxbwZfNRwGCaXDxtq83hINqxlXtccRlqAatHsCR7EQ7ab /GQyRGmu5knN+FATn8oPKZPBc/eNjTVRfATZLOaa+cqQWCukVybwsftlcS3D XYYq65VdZVf46G4ZnTR0lMFepfHk4zw+Spumd4T+KoNJway8G2185Gb/bmwx IcWw/D6NY0sFyFvj4HwhS4q0nMVNzE4BTOLnrr0/LcEWlpe6qlCA08sDZMwR CZS0/rtBMiqAzmSGJLdfgrDwuuflmn2w63jmPtAiwVY3dhbLoQ+nheF+lvkS 0GQ5R1Ov9cE7lm1xZZcE5xxM5qqy+rHaVnCcmTqEtbJNnpL9/Zh+3DicEj2E sZzQxPYj/Vg8E7nR6MgQ9mu9mr6T2I+eiG/mxzyG4NSzW7DuRT9oT5oGrdSH IJdw/VmkvhAfvmS0PowT42SLHkvSLoTL01cjIRdEKCiZuaPZI0RUy7yP+6JE EGbxJeZiIbZxLIcCD4vgF1oUt09xAMaeh7ZmbROB0DwLP1oOYELrtj5lJIKK yznV6oQBuGxnu3AKB5FeMlqcsXoQ/sGm6tH8ARRnNTPWZ4pQdEX14KlQIV7r n720KE+EnbrFpmX7hWi5bKVGeyLCIv2kMEU/ISRRl2c+1InA9Wg3f+gshDlr izB4TATVW14+YT8LcYNeV3HVXQyV9426BbX9iIl5FSibEOP2ZK//dfN+LLLe 0eW5RAKPOoPnzQp9EKdcb7FfLkG4z7VP28YFKBrprjGxk+CXb2rjnRIByNOg gpH1Eow9EXHVfnz1sY8+m86S4O7xOdovnwkQhwfzuxIlsH3Xl/1niAC9rors kB9ff9eINSzu5uNmwCPpxRwp7LxO13I/85Dzn+1i7XwpDG0ObE5o5YGzY1yY WiCFrtzo3y5cHl64OfVeL5WCkS+Sa6/godXmQxunWYpZ5nskS7N5UFOSK62f loKfMJ5UE8hD2B2POE0fGeqmHHRPTfViI19scFF5GF0XmY2yZb3IKE6b0Y8b gf66c1bUnW6kR3t25E+Nwvlk/ZszO7/gdaakeZbfV3iXpeuuce9Cpvp4dG/7 N8TnOrsMpHci502/W8KqcbgJjUwdJJ/Bihqg2aRNIC9lGUsY8QklMd4XDs2Z QtZ0914O7SM2fbrL/CNkGt3zeGnpnz4g+szeI0ODMwhZ4ucZxGnHimTdzvIC ORJrJT/ByWxDhaqU9seeWURWmLlJ4XkrjM1PGbUZyZMqZ7gNNbcg7YicXQ5X njyI4B99p9GCnr22lg5JCoR2USloqfN7xHmOzvfZrEiKogXc3ORmOO6/u6D5 uyLJDY40ahlpQpMpTZHxTImEaVIHmd5NCFc9IH7Knk0ETVvr/3zbiBODm1s/ 6yqTBc7fO6SujXA90Z1R26JMRvRU4q6mNMDWPChQN1aF/KzUFajwkIuvMfl6 S5xUiebyUJF/dT1oHWGVlTOqxE/I460XvYPDLsuI0gdqZLLRIj1p6Ts4xt6k RR5SJ/HMyguRgW+xq1Xh4TUjDWJ6pt/1U2kdGkwkruStBrGd0mZxDeqgq5f8 Ou+cJnnLPskOO1qL4ysWuB9fSSPq/IXrn3bW4P54UIHKGI1oRB2L/+5Ug6+C XObk3Tlk7VrjLZMlb+DOXrnRfrEWWWU2sCpk9RskLg8bbE/QImxrM6c5T1+j +VKe7sJuLSJfHZXdtvY1lBxLCv521CY6y1LbNCur0XNYq64+U5tE+7hS97ZU o95m94EjX7XJ+RgzK39+FbLc4o9FeOuQ+jbF1IrwKpz9lqdi/VCHxMefWLNG rwo0Ux0Di9l0Un1P39egtBKxt7yuJgbQSUOQq3EjqxLKRUk300vpxGRDc/0a pUr01dg2MMvpJDTVl/ZKoRI1HZ1TeRV0cp9YJ2yQr0S88jJWGUUnF+zOW3jM UFBhNfzUXUMn87gXl+77TkFNXuv84lY6EYiGZv4SUaB5Jh8rF9EJAfc3mzYK 4gD72xuH6MQrY+6TihYK3PAvzY0SOnFuXejp+p7CpWwry55hOvlgtN3Cv5GC 1tcmofI4ndy145xJraOgfUNnz2+zGeQga+y0YgUFWeGLpI/KDCLnFumTUkah +c3eMn9VBlmlkxRgUkrhf9JCg+MaDMI+P9vE8TkFnQ1erVd1GKTUzmzRmcc/ et8JhfkMBrlVwnukXfijD85ezvmJQbwOXQnJekQhJX34UoUegyTvCU2q4lAI 4/xV7mLAIOZPToq351PYRq0XNRkyyDVfZowgj4JN+4Ahy4hBErt9PMJzKTAG Uzb3/sIg8f0qnur3KPwL0+64og== "]]}, Annotation[#, "Charting`Private`Tag$388416#1"]& ]}, {}}}, {{}, {{{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{0.6600868966165301, 1.4694504032553282`}, { 0.6600868966165301, 1.2586490673965318`}}]}}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[7, 360]], AbsoluteThickness[1.6], GrayLevel[0]]}], TraditionalForm], {0., 0.}, Automatic, Offset[6]], {{{ 0.6600868966165301, 1.4694504032553282`}}, {{0.6600868966165301, 1.2586490673965318`}}}]}}, {{}, {}}}}, {{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV1nk8Vd/XB3ApvhIlU5RCUoYokhT1UUkKUQlJpVKhkpD6aUCGZCiiQqbM QsbM3H1NiUiSMZUxXHMy3pvnPH+d1/u19jn77LP3WutIXrx54jI7Gxvb3SVs bP9/verivvr3Lxe8XL/1jOk6fWL8b4eUyWlXmOYaZ5w01CNzGgkle8pcofE+ s0DTVZeg0GdySbAb2PL5Pow3HyHds0y/PqYbFJJdlHzYjhDPXTe3fLz8CAbX vTsq5XRIbc5J84Bd7jhYa+mz10ub2P6pnHaIdsdgXOsAo+AQ4VNWCzRZ7oE2 P1FLqT9aJNvurby6vQcU5HJM/9uhRYzTxao2dHhAKfzraLbzQTI38tSCXcsT Vr9Ga/fVHiDhW5cs9KV6IuuWQUae9AGCaw4vPgp5gX/1qqWyvvtJd3LftrSH XrhzMGLi9rn9xHPApCbgtxdck8asPb9qEpktNZaOho9xvGNYd7+eJqm9rLFo UvAYxe1vv/g/B7GNexeqvtEbm9nsLlm83EdW90ioiPt6Y1P75sUt8XtJjmRQ PfuUNzLMi5J4iAYxtuCw7jd/AnYXZ3mlAXUyF3lnaU3lE1S1D5lL+6iT8M7B iDRFH9iczew5UL6H7BMzVwt85YPqiAt7nZbsIV1m9Y2ObL5wmnkceOfQbuIR qnnD1NoXb6uTvReeqZEtrVn/aTT6QnCHwtPsrl2kRlg6RlzdD/Np7jzH1HeR G6deaSyN84Ojt1ycU4Qq4Qte3tLP4w9XHrGp5TqqJLvx3q2a2/5oTlMh63N2 EuPVoyve/fBHxi/Fk81SO8mcgUVC4OGn2Bn973jCKxUS/rRR83bGU3Be2Xbj 3yoVgjqtDlPRZ1AYanfT999Bulfk3dZ49AyrHvDms/HtIJ5HZfkkGM/wjbn+ 3OYyZRJcof9tiVwAFi22218+pkz6e7xiHM4F4FX5V0WuTiWyaym52fc8APPx dGJmq0S8N85pmHwIgKeamUgSuxJp36/M/XEhADP5+czdYduJ/IVrLXu2B4L9 sc360zu3k/uucXGploEwdao9FJa0jdRHdd7aEBqI+djEaxnS24g4TRgBdYEQ a3Zv5LFTJHY/DHjY2Z/DuJp76epSBVLG8m5zUH0Oboa5/SY+BWKpseBgEvUc Rz0D9FaVyZPcMyr7P359Dq2REt13G+XJf/durFTnCoJHx7k2hrccMQ1L6EjV CMI+OVGPyLVy5G3Bz6QNt4LQ7fN2l/YTWcJsFXEKiA+CaplVUdW8DNGfPX6Q vT0IlnG6qVY3Zci4akVn34FgVHDctVC8tIWo5iTxpwm+wJ4s7TGZIGlSFiOv 6K3/Aub922q8haTJscB3Ry55vcBwhq3Ul7BN5Iptjqvo7AuMMzrfS6ZLkVcy ZNSz4yXExu7P2/NvJJvWHOS+IPgKk/ackoqpkiSDo0paQ58yxItNdSRJdXet +WTpK1Rfoo8Ve0uQ2fCWmnMxIbAYDu53sdpAPHzN+nd3hFDza8TM09YTPufO JUKCodiUXhXydN16ImvSo1brGYqKgI8ex6bXEbPVYwm7rMOgk9b4/WOCKOlf vFXGHxOGir8ias5rRYn96FTnSHsYcm5fuhgTKEJ8aucF4/RewzI0wtfl9RpS 5Mnpzrc9HAHRPmXlyUJEx/FJJMMqHBY3hiQ7dgiRpos8hVVvwtG6ZqdIPxEk w+CfuC8Qge1x64x9xwSI2Pz684PTERA7q+JjcYSfJA1EO1dsi0Rr2Uylc99q otIi9TLKKhIqaUOyz56uJvo5snWn2iPhV5z3b0kDH3lou1O9rCQKs49qdEj9 SrLibL5xxHQUxje/iVTauZJ8il+/u3hNNOykO/oO+PMS0+Boo1eG0UjybGPK HeIhdrcSfPXLojHguf/YWP9yEi2fNVcQ/wYNVy9pHw7hIDc5lx84RN4gpPZj 3kYJDrKv67xPQ/sbjDdzZicmLyMdL3nX/V4Vg+KYK50CZUuJMLu1hqBzDEI0 3TfHCbAT/1ZxF9tjschIHXzdMsaimWc7fZizigVpN3gvrcKiyT2tW+XpHouA SWm/JfeYtOqD96Jf58fCKjWeNca3QFuW3kyv3hgHkn4nuvnaLM3Z03+Z1Ewc vIM9ulUe/aEdsejVe7c6HtVxPEbaI5M0EXX1F7u3xkPTxlHP2GyS9n58QNrw Qjx0JJuPtOyZoI2f0Tr8oDYerq5+Wfs0RmlXlReetEQlwHV/p81J836aKu+J xouFCQjoT1Rrv95HWzaQtHa0KQF8DB9JH9deWkyEccoy7kSwMe+dms/spv3g yvqk5JgI1xNm/VFPf9CMflqt8tNJQnRCtnRm9Rda1pH2Fc8vJsGCzW3l6NEG 2uocXa6Q+0kgzd8nBePqaPXeikviMpKguc5f3frnB5qO8tRkkUgyXMXjhKsa Cmjqni7NjIFksF07PtaZ9A5hY+ONE+xvwVbwO/7evhzMnr74eUaMclNbwm+R AuQoHqpeevwtXEtOEUFFOhRbuQvXFVDxMqc7dhdqsFH+ZYTukxT80qYFquZ/ g+uL/8KOx6bAVWXy/PmSZvxcvPvSpCQFFsyXLHNaC8Kbzjy7NEHFR0Zk2dPa IPRQ0u3e6VS4Fn3tbHHrBNeXVMsU2TSw9cp7eRl244r6hguZB9OgeYplkF7S jcr4Z2fzzqZhO4pKfWV78MjZ3rg8MA3jPsqK12Z7wJRS0+mYSwPf3/DPdkF9 GHMql19R8w4N5eY75AIHMFR9+vOh/ncYT77mnjI1gP614/au7OnQNHKxGTAe xI9SscK/e9LBV7Nl5qfAEOo5nXR+paTDziaR9+UTBox1g7PatTNAzKLY32EU Ro7nl80aZcC179Qjm+ejOBEhZyx0KQMWe05f/a9rFMfGqJbikoFxTc1M5Udj OBQ0olmZl4GA0a7QRfNxqHRof06XyQThCEvqfjAB5WX8knWqmbC4k+j8JHoC 2xU67Ye0MpGvqRLQXjaBrS4OwtIXMhFd8l7wOuckpKSiz4aFZiJJM0ag4fEk +K/NMTy4szDLfssx4t4fTMyncJkNZ0Hnb1hsgsxf5Hyj7/Kay4K35p7p1/gL p4yWK1mc2Ug6oMl5yvgv5i8vreSWzAabl6SfxqO/WPbFzK3oVDY0l4Rv2dD2 F8KJy+fFaNkIEfKwVbk/jVY3cdkjn6jx7kKqn59NI8x8p+nttmzYBdc27Yyd hjj/hdy6P9Tzq3v631dPQ+ZBvv1DmRxYnWhKm+OfwZ6TVxk/A3OQoesfZhk5 A6bCg7U8UTkwUtyTtDl9BqVcQUfUUnNg4d5lXkSbwcHS0sSAqhw03akOqvs5 Az1ZYcv9CzkIV/NWOSU+i3OLFd9jLN+Dbauy6quXs3iUsrH+8q5c3P8b8LLP Zg4C8zWGqYdyYcnzQUvu7hzidBy+Tp7Mhalj28J3jzlU9ZW3utjlIvy90abs yDlwS1zuCU3OxfiZnNj6hjkEBifO1q3Lg2vZrk/nFOexscfgnqBcHkIEOm9u 3z2PLKVZlplaHtjepAzt15pHU73O0gGjPGR0V4rymc1DZPkQL/vTPJiKtN0Y cJ9H9IOtUqps+fB+1FOX2TgPpU9N8fdX5mPrO4a72Pd5lK19IFMuRjlo9QHb vnn05tUpGO7OB8+HfT/LZuYhM2mrZmOfD7bYMfnfaxeQfiVTP7I3H65XG0aX nl2A5vvTDb2T+WiQOZo4aLmAhqXsJ+WXFCDY4bto/vUFTEafMM1fXwBzifHI T/cWoNrx52KjcQFUdsQo/S90AaUGqnc5PxZg2C+H9q5hAWv6GUbcLQVgno50 2tSyALv7b5RW9hVA5HmCoWfnAiSTeRhCSwrRS+OwbxtcgAd7z1np3YUwvXI8 bSM7E0ffPzuolVwIrQZPjl3bmIjVPSShk1eInJgc0YsqTDC75pm6lYXw26EU 9243E2krr+Se7CrEVOJ1BTEtJvisNGQviRbBO8h49QpTJprXDq589KQIKnrj kVoPmNiWGcnwfFUEDYXGzHQ3JrwPG1U/iS/CdiGhUV4vJnY70twC6UUYmND8 +OYpE+F1L6ai56j7vw7Y/Y1k4qLrgXaadTHVXxojTpcwUSQ8m1t+pxg5GyqW /CFMCKalBX3wLEZAkcQV1womKttE9D+/KUb4vpBTt2uZkNkxRvvRVoxfdgqf klqZGO17Hc86UoLwAZHnwhNMrFAMP89nUoLrrb5RVX+o8U7holKWJQhejPhz fZqanzPCX+dhCTRpNVn3Fpho2Rx5OyirBMzgNUxbDhambCO3JdBKMGAle6b5 Pxb48yIH8z+VwNQ20l2FmwW9w1Fnf/SXQGLVjG3uShbI1ehDsutKMVWjyxG8 hoXO9OhFdZlSsHHHCuaJsjA/E11wbGcpJB4aWX1Zx4KK9xsFR4NSOJa58n4W ZyE5KUaI5l6KjANdXolbWHg+GNdnNFwKrpEXGz7uZCFdKT7q6lwp7kpnet/c xcKn/8WfduakQUaqfM3K3SxwcifURUnQ0BssHrZWg4V7convh4xoUFktayZ8 gIUQ+8SbrAs0qOmbM9wPspBbmCjLd5MGDd6NXENaLIwfTYrY+YSGHLbyZO/D LFheS/Z0LaEh9fD4j7d6LLhlJyOohoZlHPKj3fosRC4kz8W30GCqkD4oYMBC q+/bG7UTNAgGFijoHmdhc/M3uRUCBFZ9T/yjT1Hrnf/2OFiUQEbkkXqCMQsH NzT3rpcgqJCY3x5vwoLFlebI7QoEYuUB2+6dZuH1dDO/8WGChmcrYledZSHA KDr0+jECDbWshBnKXlnWEu6nCKrP8ku1nmPB3papkHGJgGtH47VbFixYfarM qbIhSF23uBMXWDgn90y98xbBrN1CIedFFo72Sx7hdiXYOvJ2wO0SC5pajM8S jwm0vnqu2GnJgmpMjvGupwTjK+tP1lPeeO6wpWU4gaG9/AXhKyyIFPMxnGMJ MrxkijIpr1zbfivwLUGSsMWM9lVqv79ddynNJ2gdKVpzzor6vjtUOb/RCIYd jiTXUe4PXPRjVBGIdAf/O2LNwvexagH2eoL7cWUCdMqN+s/DRL4RNOnUpyjb sFCdckZy23fq/XO7n0RSLl0unXSoh5qv7vStZddYyLk6qmg+RCDBVixtSTm5 Mu+9/QRBsfUXk1TKkVJuGk9mCcgdv4ds11kIdjtaHrVIMPC1otiAss9PgaO5 nHR8Mr/UGkrZdW9nwydeyokPXv2g7PQ6waRHkA6tuFNk/Q0Wrs/d/DG3jo5o nBY1oXzRZPdlPik6VN4oiztTNn3PPrxZjg6ui5PaSZSPCXyy36tEPe+jeusX ylq3XsydVKNjXKLg9TTlPZ/PudqAjoaxfWbCtiyqH8v856ZNh1hS7fftlDf7 Tvi/0qfixx4PH6IsNlgo+M6IDrUt5SdOUeY/7PG64gwd4YeD+Awp/xevv7Hj Ih1GUg8X/z/OZF+TPGFNR0WKkJ0J5UmLX9u4btGp/88KBSPKA6XJuRvu0uHh sH6ZHuUfYg57d7rQIVHfVrqPcpOzRoWuFx2G19tlt1KuaeXQvehPR4B5fwkH ZaL6+cvdYDryY31mBqn15AaHmD57Td1veZ71kXLq5IWf8TF03E9DRDzlGEP5 K8XJdJCVW+PvUw55NzXcmEFHztGjPccoP+UpdRjMo+K8fdJilD1sHs8vltKh 6Thn1Uzth3O1oZtwFbW+uI7SMMqXPXqeHmyio7hyxa01lM26U4XMOuiIU6i7 8Znaf0NNp3C7bjpmTR6PPKKsHQmpx4N0bBqpJUqUNZhcbyPG6eDjVrKrp86X slnj9pwZKq7MCnWkLJP/Oq/mH/U+fP9bs4ayoKNi5QxPGTTFJ4wNqfM6LBdR +EKAMrd77wh1viu6VmTsWFsGnY6kmMeUHQ0Gw25uKYP3+QNDMVR+NMnF2f3e X4Zgo9TGT5ep79PFf8VTpwwSToyuY5Q9QtzOSBmU4VN+jV4dlX8qnOe1z5uX Qex4zNVsKl9fdImKtTiVQU9IXNyRym/bEO/Vtx9Q42+81PxO5b+2wQyngEcZ ol+l9mtSni5umjgWWAbX+ow/U1S9MA559qEqpQy/0q3sT5izIGzA4ZD7qwxJ D28fc6Dq0yiHo5XR7zJw7SWMFKp+VRV3n50cKcPAh6bGZiMqH+SIjuJCGbRO TA7vPslCC8e9DQlC5bCKXvTrouphSPH4xxdHy/HrA5dNog4LonLfJW7nlKNX eOsaCzVq/R7HyycKy9HQ0xV1iKrnAT+rLtvSy1H9ZNmckioLXC8y316tL8d9 UUEFDhUWZhe9VMwGysHT1sAbtI2qt9+UdCBWAUHJrWram6n53B7fXO5RgVbR E9VH+Kn61KZcGnGyEg+z+zwd+qj+euOWT6JZJXgSAyO+9TBxjj3DOPNCJSpG /lxS7WYiXl5hrOJmJYyuxyb8+cGE8sMtEsO+lbAtqlx5iuqv+lJij/ZUVGL0 gVxUWw0Tj25waLeoVCHhefGenndMjCxpreMT/oDm+a1TPg7U+Etfvc4XVkOj frdp08IC3Petz5p1qwF3eX6WpP0Csvn5xPfu/wT2wbQHur/ncVP89M6z3XXw iZPTFLs8D7aE8ZIPCZ9h2O5Lm2udwzPlsRmvhAa06/yK1jKdA5cB71ED3y+4 eCXGsPPzLP79XtQYudYITcPyOlf9WeyJiFj2v71f0WgVZ67TMoMLzy5yvJVo wqTX26HfZjOoj2hsr55qwgjjnpnx0DTyZdYcL6n4BgE9krfPZRr+44/YTBKa ceiNMFfoymkkNYV6/LjbgoEiEZn4pL9I+9uyf8XZVnhOdVlZ7/2LbUFDUbx7 23Dy7praPS1TmNFLamTxtkPqm2/BfecpvD3ovy9ovB1bKix07otMIdZ4vYtw RQfKlqmdVaH9gWi/m8XNoO8w+Dnp4mP9B85ZvPduOHZC9zzrq+3KP5B8rWVz WvsHtA5m2YwWTiKbxDwfkv2JcsNjr6svTMKXPfWZ9b+f6N0WJfp81STsflUI n7/6Cxem19Wn0SbAd+4wu3nrL+w51HzNzXoCX63FWz/v78JQ/U2nXaITWCHo e1Q4pwu/ry3T+0sfhxvTwv/wpm5MVdllBlwbx1oHv8Ixv25MPFi7oUl0HLLe uh42/7rRuO74U/+HYzgjb6FmbtWD9tA6NjSMopbnZ7FaQw++n/kpf3XDKDL9 Jjp/a/bC2ERmQv3ECArDTg/yvu3F9ywxxxH3YSwxb7jWk9ILEu91Utp1GDrr D4/mp/XiVHDOsTP3h9EcpfLnUmYv4lTzu+iOw5iMW8UqyO/FIOMIx53Lw5BL r+S78qEXJ0SEBB9qDyOsXEmttLcXbZMneds4h9HlkVQY1N+LX5GdAjXsw5DR Ft9rPdALhZ6isbx/DORW8xwQHO7FP4mPwb7TDDTW/da1+dMLjgnpffz9DHC3 RpwXZu8DR9qwTFAFA8dDBbsZS/uw82CK8inCQIiZryWdow/bXxStECxmYHPn Xevry/swL/jHzzubgQPdJx3K+PpwMGWvnk4MA09ia/6+4u/DhUvj+mMRDDRY 7r97Q7APJ34I5j0PZeDcb8UHIiJ9cKLzXv4cwEB8UvziiGgfHLUTSq76MTBs LfaofF0ffusZHGA+ZmCHfNCy0PV9WOW2d9LPnQHn4eWPbcX7ULxb2W+tCwP/ B3uZ7OQ= "]]}, Annotation[#, "Charting`Private`Tag$388522#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVi3k0FHoDhqfJvoxlJrS4IqqjTSWi8v6KSlnSvkxJSOmgiPZUiEz75khS ucWXi2ZsU8ieRJJpMEmuZsNgGsZSWnzuH+95/3iex9z38Kb9VAqFEjO+/17L xKAkxEyCu+bM+/ZlYrhE7WEFWkvweq5D4eZ0MSJ7n23zXyLBsofMUJ3rYijL Vn3b6SaBesIt+QwfMdoCw6evPi6BS5MvV1tDjKyilqipDRJ8P9czFhcoQpeV 5QajVglCh3J/6W4XweLGkakGEglU2rYdFriIkOCvmaf2U4L/OeWemG0uQqTu Mkn/TCm+GR59HdUmhNfelLU1kVL8y3X3eLJbCNZbGb0yXorYniF+iIcQVYvt O17dkaK5xn+an5MQDhofTuRmSJHqNKGwdLoQFpwJGSnNUviKrv6y7fwKJXW/ TsT8TsSvwKDPqa9ISJvTaN7eicQXv5xu53fAk7lZW1PWictX5t+a8qwDqvqn VyuGOlEbHdZXlNyB8JO1L0t0uyBcIx1cG9OBTe6BqcwVXdhzNsf1/JYO0AbS jt5N7oKrvn2d48C/iFthYaTJ7AYrreBHz+N2OA2s81IEdEPhb3ZF71o7htNC WS1h3bhz0jV+06l2BOiX/3nK6oaOzcbopZvb4SLa27mqsBve76Zyjqm1gxL/ 4MWZyTIkfE1ODQ77ghN8E6aiRYaUru2O1t5t4BSNPdUVyeDexJO/9WyDLFWq sJbL4Oh3NvYs2rA7NC92v0oP0nLtO83M20BoXjmtNj0w2n9Xx03yGRqucZqv 43ugYxWnPSn0MxKLhrj3lvVCa9BSFnS3FY2pbVTuml4cXG630eFSK7RYlR78 jb2oqJI1MU634syOmyLawV7skFVO++HTCp+huXoxd3rx16trLaHzWjF7gX9A SF8v2rJ21ui8/QRuKo/h/LAPKvazfRZpfUL15KjrszP6UH0/b3fXHwH4NxZq 0fL7QPueppGhFEAReWNMUNuHCn73rA1fBLBmespChvvA865bNZ0jQAq9tjTJ Qw7Xn3dz6nYJEBNTfmjgpxxB5z56NuS3YPbiHR1ecxUYYNSn28U1Q377Ad9h kQJUlx+W8WebkTcorLFYqkDtD3mj+GgzSEEwZ9BZAc9fLuZcn2Zsd4iOSmQq YLPsHa/asRmxyLbsYCnQlhb8V6yiCWI3lcDD3Qpk2ktuzPVtwiN/dv/VtH6k 1u8ZfsbkI817q9wgsx9PuMbfA7fwkbVjVHaX04+CYbPLCzz4KHR3ET8o7kdH qnJenRMfTbaC5ixeP2Yae3U4W/ChpUoprv8zzrme6ktkHxH+dEOs7vYBCFbW 8mRnP2KtVD7lqroSdxpK6Adyebhy8YJnnK4Sl/R0wz5l8sCzZERdoCtxIpGZ 7ZXGw24/h+4IMyV0Xk3K9LjHQ1hHNNfbXgkaxW3yhXM8JLeabLE5oATltYG4 xp0HxftVVz9WK+G+2s2TK2vEPW7C2OTYQbh92jWRurgRidFeXzJ/D0E+kGQX 1NmA6ocK3oTdIzgUkWQnFtfjofZotLjlO9oLFdSq33VIe9PtHu84ivk73GYy g2vBjOyh2Sb8RMqAqo+e3lsUxWy7EqT3G6eWC5xfFr7Bus/p5gcO/0FY+r6t TcnViL7gG/atdwzr46K09se8xpKbxu0lHAqpkp2vLWVVoVSzn3bAZwLRSY7o LM6vhJn1OdNmUyoJyegfq/pagYQwytK091SiNbxvUdycCoh87WxWXJtIyoIe TLeKKEes15Dl9vUqZNqYdNbjhjKsDEi34v1QIdk5gdRxC40zaCqMF6pkS8WT Qe6eUpzUPCgvCFQjJ7KnZt3xKcHx3vVNbcbq5Hzr+Utxx1/B7bjw3lu+OtGY R7zMWcWwsw4+ZHxRg1ifyQ7gvyzCSEymyVwXTRLyIP8ZRVII2pfwysoxTRKQ ESj2ml6IFXtsThVnaxHb8o8SZdhLrLz4iHYmSJvQgv0EBWUvsKdp4vNkUx3i vkT4QGnxAg0WCjdSp0My7NXSq69zYWxyszojTpfE9i3f0jZSgGNLrDyO2dMI dWT1ZdGRAvwzGszRGKaRY/dEP0Il+RjpfGb+K12PyDYd1VkemA+PQPu1DnP0 iZadxfOCwTywFoX3tsTrE2sXim7n6TzwrmcYzxKOc+Otz6R6eVBdWcT5tNKA sJ5QL797mAvREf3a+ocGJOXxtCeH7HJRb7v3YNiIAVkTdeWduiAHqe6XIk5t MyQhpPQoNyIHUd8zNBY/NyThRsFaZ01zQJthOGWeGp0cey81tarl4OLjzUks fzqJdNLdoHeUA/W8a48Si+kk4NGHiDpLDrpq7BrMS+hEOuf4jPAZHNR8af+d UUonB0fVVE0tOLikvoD5qoJOMr6e9DtsxoEGs2GSsIZOqDk8ltEUDrSo+pfn NNFJzOVbQSF6HNC8bkaU9NGJZcWNN86jbMj9HZ6s/UYnxW8Wlg18Z+P9ya+8 Dwo6OeQR3f14hI3rfy+0ESnpxNGFV08ZYkN/pFGmPkond9R3tZZ9Y8MgxdBn oxqD7Moc7F0nYWMgp/BaqzqDeHaVi3+K2OC98X3lp8kg3l/+0c4WsnGrP2fK MR0GqagKlRp2sGG4enNTkiGDyE9r1re3jvc7f060ZDDIbg/KslufxvuQvxdl TWKQGG33ltUCNm4nKq+XmjAI+RCZlNXERnjW/RLXKQxSa2Vbvo/PxpYK577G qQwiVP08yegjG7YtPVOZpuP9012JtY1sMHpvrxf/xSBLkeR67gMb/wfm8xBT "]]}, Annotation[#, "Charting`Private`Tag$388576#1"]& ]}, {}}}, {{}, {{{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{0.6600868966165301, 0.8592655562338457}, { 0.6600868966165301, 0.6484642203750494}}]}}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[7, 360]], AbsoluteThickness[1.6], GrayLevel[0]]}], TraditionalForm], {0., 0.}, Automatic, Offset[6]], {{{ 0.6600868966165301, 0.8592655562338457}}, {{0.6600868966165301, 0.6484642203750494}}}]}}, {{}, {}}}}, {{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[ 1.], LineBox[CompressedData[" 1:eJwV13c8lW8bAHAkW9lJipBZftJSqYuSqAhZCSHJKkISQkJkb9kJycqq7Oc2 iqwOjsg8ziEjZWSl0nu/f53P93Pv67nucfZaOendZKCjo/tNT0f3/99bvo+5 pyi+sEoh2Lc+uIYMNw+JG131g8BvIX8zkAn6pZxbd6LRD+Sttuk0sJogqH66 RB/3CBR5pK/cyzJG1PU/YZN/HkGSYu+LpSUjFHjMSerjTX+Q+NHzu13dCLVX XDGNOvYY0pn9zhtvGKA7P9+vumY+hqwHRrLfTAwQl6JStBFrAAieYpVPRvqo 3Dlf7qRLAFh13F3pkdNHhq+FP+wZCoChBCNzhrQr6Nf3CAsGtUBIc78VF8d3 BaXup/89WRgIspOsYisxeggcXOM/8geBQ6DxvwhBPUR9NflfkU8Q/Dk/5Fzz WRcFThu1RU0FQeH3EWOjW7pIWqrN2k3nCVhto3t15rcOar+p/M+o6gmcSO/x qYzRQXeyi5+dFAsGKltEys8DOoibJnpYJDQYIlcj+k2TL6OKvbFdDMvBkKbb Iqw+ro0MLbbafTUNAcmU6jcCB7XRr/T7W9reh0B7/MHqDUILpY7MpBXJP4XT eZbTAcJa6LSwqVJ04lOoqfHaGvvwEgp4pnLb2C4U7OYLmS5rX0RSA2XMyj2h 4BBJ/hdYfwG1CezLEjkZBm8WfUWuHL6AbhskKm/JDgMHunv7Nl5rIq441v6v HOGw1zHVwFhXE5X3eN1tuxcOwV+3P5gmayBD7h/sxaPhoP3jrk/RNQ2UGtGj cq8kAmLjassfuZ5H0Kk2ZLwzEo5yDYp/ZTyPqOzv7in7R0LrCt9fmWR1FHhB hkv0WyQYqre3a2ioo7hmrT562SgQqx9mC504h77SgrJczaNg9Ei4Bfvjc+jY FuQ0GRMFOZH5C5Pi59CgqiLbx99RUD15K2/nbTUkQghAVGc02LxZSRU9cBY5 j17mYGCIgSCv7SuLo2dQ49/gL65HY2A0qGl3SMwZZK3829UoIwaU3ILJ+v9U UX7VWN6eu7HgczGPrueXCvozIOgelRMLfJaJwnNVKkhrXfcsw2AsdOuzrd3w UkELR5tHJs/EgWTibtksBhV0tCKPp4gvHhLPyPza0DuNGrPk5IO14mG4ycOP iXIKaUcXa94IiocjtZU1z5xOIZs7FX471+OBzPibvypBGSVKox+BQwlQ9OXR jyHOk0hix1k2S75EEKpcdzQsPoFKtn7Yp6yVCCOHtVTHdU6gVmq76VJ9IhSb kr85pR5H66n9beZZSSD582EFj54SCgg1+Xp8KAkUNBqDyumVEJfnCD0/3zOY ZDHjZCk/hmSMaErtgc+gImPmv3DRY8iEez73mF0yHHZ67FpJfxTVBDI95lJI hQqTaY3PTIeRhltI+jfbVPi2hSlmT8chRLbiqP7wPBXyqc3jiTGH0BzwLHrz pgH5hiEvneQhJLyx+/rMahrk5n7dsqyjiPKmMz2b/0sHMa0ywx17FNHhfvGE DNt0kMhqoB/8cRBpVch0Ggymg4s588zF8IPI586Rk411GbDZsKXDp1cBsZtV GqatZgC6f95d6ZUC6sjZfbx2RyYw5ce8uv9QARnHZeon6mQCQ3lL5bCUAnK+ mxuq1ZgJlKAWSSrHfyhTruxXVc5zWHpWZB9Yux85MbGeOYeew/AlzusJXvvR 6fHrT0mDz4Eu1+rBg5P70VAC566p7VkwfyfremudHBJgsFPm88wCK/oHixKf ZFH4gIjvHe0XoJSV487OK4NMy91bftm+gGzGhr+2o9JINqJze+DjF7D5RCX5 Vr40aj3rlZlS+QIsi9ca9dWkEePrzw2tYtngn1PHGftICnkGhjOKr2VDdVT0 yCF+SaRpMXGpmDsHfBkctT7P7EOCJ0/GH9+fA8uVKqmr9fvQm4XpfTqWOeB3 TG+myn4fWrimdv5hew4sfeHYf/GjBLql+DukPyMXLBxP2sw/E0f6Y7bbwzTy 4NvW18nbA/aiMs1B9hirPBh2s2BgsdmLuCsusiR554HNvdJRLY29qCtYnj67 JA/2LI9kf+DcizQUl5dqBF+BS3tfVnWqKDoZ6Pv52/QrEOR2NZAOF0HJ8ws9 iwz50OPLtlh6VQStX7X6tCacD/Lt9a5VkiKoQv5c6xbdfMiMa9x2oWkPkh9g q95VlQ9C69YeTf92IzG5hLSLIQVge1nTXTVCGPnFMyfrvigAbdJ1v2ZLYTT2 zyPBqK4AfDZ3Cbw+IoxSydcibywWQFJd40jg2C7E77P3kdfVQigZ7lr+fWQX YukutC6QKQL79fjItOWdaN69SY69rRhICfIL0cU70Gzr1U/nvhbDGerAUknI DvRVaMHFj+E17J+UZth3cwcarReuXjnxGiqOUhkf7d6BupjcNSgFr0EppvN9 Q5QAMrwYVzaoXgLuJpudMYH8SN/tOuO6fgm0OoTLmN3kR3ppsob8N0rg0vef 4t3n+JH2PPp12bcEjJWDbfOZ+NG52O8q79+VgL+vwJRlKB86PKT+6bV0KXgf ob5kf86LFBl59nYeLQVKlm5XeQAvUjgw4jKrVgp0bh6R0ba8aL+vq8A+y1Iw DC8MWFDgReLimWbJz0qBo3BtI6aZB/E4/PoWwFYGbVs7p2RWuNHiRgGLyVwZ 8Jn/abz/gAtV9DUcC/pVBquPL/mlW3Mh95J+mzKmcpBP231i5jIX2ri55T3b 3nJw6Vu3F5HiQozdJo9qDMrBj1nqw72i7UjgJeuGMFEOorpOn6I8tqETV259 G4uuAH0nkje3Mgf6c+ChEEdGBawXe+wQFuJA9SyxmkqFFcDV1bdmts6OztbX v4z6UAG2367s63rDji7JCFir/q6ACYffEQ8U2ZH5v+bhLOs3oPPhgJn7ETbk XyDWdfPYW5j+c+IpmzkL4t1o0yk89xYmIgwTs4EFZWu49i5deQtu12W35O5l QR8mmwZ8nd+Cs4gI0TbJjNhEb9KevXoLw76k2+DMjKLjXq537noHFnd5vfvD mVDmw/3iR+kqwYNf0N99mhEd7CDneG+rhNqJgsgbnxhRo9BD6SbhSnCe9Tx6 7y0jmnjXeUDneCVMPNnMZA5kRNJLd5TsXSqh9a7aNlYJRvTaplQrfaIS4o6d X7Gx3YLqLx/1YPpYBXwod+QeKwPa8fWbPlt/FQhb3gqZWqZHzt7PD26brILC V/3W7hR6tPcVxzd++mrwzn30mqGSHgUw0Mz2Ha8G65HbryVt6dGFN5Fn1V5V w/Sbp1wBnXTos9DMNv+QGlBR5RroMvhH/Fea/i0wsQaCHeyT6A79I4LP67eG 5NSARYfXphnXP+K4G/EouqEGShxjhdLaN4nUzvjlzF81sE6N2XdVbZOw8jsz SNjVQiYE34w79Zf4MZmS81ezDpx/JmbPa/0m2OVTr3MZ1cHCis+H/xR/E9Lu qTvFrevg0pja90iB34QVU1q4hk8dtFIKIkljG0S/ZPq92LI6WDe3DPJ33SDQ rcxzMrvqQakzm/5V5i8iZiZ7Un+uHhzDJG/rcq0Trw/mZNz6VQ8d2vf65dfX iI4HOVc9mQgo8WzaLkVZI5jYcjszRAm41BgS71eyRnjJvnwzq0+AIBF4TEFv jbB2eBXoV0eAhtFY+rXkVSJl9TOPIX6WOAoLzD9SXiGi9DOfOWojYFGgXUrZ t0IEldmJPjZAEKxUoPFp2wrhcufPgZIbCFCyRnfi+DJx4eteTTY/BBoexz/J BS8TG32OvvWVCAIC3gszD/4kjN8wzEnKNkCeasTF85FLhDZvh8upgw2goE9b 0PdaItTuxv+6otQAjHzeRfdvLREKB6SZH6k3AOLrWP8DSwRzjpbYkFUDcNmG rggsLRJv45KMI1MaQCn4ti2XySLB5yb/fo2jEab1BvMzlRaIOdm06njeRhjw vzasLb1ANI+zlxwSagRv2wBeTsEFwu3yTLKTVCNYPM46HzY/T5Bls52nVBvB T9fMLN9pnogf3ync794ItvZs2wvu/SAELm91fUtphHWvve8uJs4RO2WHRe9V NEFUVpJgucwMQQ7QbVqsbgL0p87agWuGiBr7cPNOQxMEi/Hsll6bJljiS/Nv dTXBwqiWPbV5mlj/F3TYZLoJPDbT8swsp4mBvoMaINwMtix18Y7pU0TSoydO rAHNULLLbGZd6ish+EWxPu3Ke7DdsRTE7UYjam7fffrS5D0oUV+E95vRCHOG EsNSy/eQ5EP9VXKeRuTIHZhvdnoPrb8dbqfvohGKPlKic6HvgevgIuVuM5XQ Ehf2P9H8Hkh2XsGZO6mE/+2t6v2HP4AHWv5c100hvtMPdHIJtICoWZS85cww 4TJfw5Il3AIWGyaXOFqHifXhjLOHxFvAj/vlDpQ7TGypvFVloNACFLf7f1yt h4mdd9ayky+0AEmMosM1PkScGxTwlvDF5ZTrZkJjg0RamYGs0nQLcLkb5D/4 PkBo3egNul7dCgpJRsvO2n1E9VO/bw8bWsH5h1RvkEIfIVl2QCe1tRW4EhUt Knj6CDr64J1fPrcCGrJfN+wnExXpyoV6P1uBTjm9u8WSTAgN5nSf2/8RnKsm RNY8e4lpHQ/h/ekfwS86r0myvpt4fHp32fqjNsjU+aF1hamTILN2N60Et4FF Npc15+cOQqIvoG8psg3o6tR/z+Z0EB8c5tbn0toAOcVrcat3EKzPamC8qg0o fP77RIPbicifVzs/LraByujQq1qeNiIlL2E62bId6EYnB26othDlPFwip1Q7 QGWmYJHyt4FwErl6xIzaCUjS2GNvSRlBl7tQ15L7Ceg+1DiZxAcRkYrza0G5 JKCrIu9awe8klsucFy6HdoMFh4KCGT73N6f+KX936AE6ti+JumIEnEhLY3xw qhd02HjO6Hk1gWWk1dZ8UTJEhTcZqu5rga60nsHWZTKouOhw5+xsg0rpHbp1 zX0Q5dPcMpTeAeEL/nRGuZ/BIpL3zOm/XZBHfhYw6tEPUXtqnOVdSVC00q/K bjYAzuYf1aOMuuG/2NkMzlNfgCXFeuaPQA+sXcrr+cs5CCrnmx3uve6BHoqR dDD3IAhyCvZ+Lu2BQjdmHx7+QfBjF/p3tKIHrFJtZKSEcX3f8FtLlT3Q9U3C T0d2EGw5eVb0G3sg++nzAy/UB0HDhIncTu4BndbkYA3fQVCI0CMer/dA/tnw 07ELg5CUPXpR5WQvvqcjL47/xP07UUeFcBzONEcb/7c2CBaNKT7Lp3thUC3B pf3vIHjEsw29ONMLrOoZuVvYh6DSROrnkmYv2GqUbnPbNwRcGmEmesa9IKnV N6pvMgQDiR71wm698MJwt69A8xBEcQ5fXHnZC5TpLOqVFlw+tars8aoX9nhJ q0e3DUGrxhLTRn4vJGcc4uToHoLgQ7ziG0W9EDOtmUI/isdrMj05V94Lfp7u 7+bWhsBipX3uGdEL5umf5hvlhmHgE8Va+HMv7Pz6yMIpdhhEWe9bkv71wgX+ OeOfCcMg/VZyVZKeDN5qhrr3k4fBY05E3ZuBjN9Bsmd8n2M7EQNiW8mQe71X PPL1MHCdSHhoyUYGxS8SU8Xtw2D8bDogi48MFzpabv/YMgIqUUN0x6Rxf78P 2rgwj4D0x6zZmzJkKJJNNV9lGwHkPpseK0sGrhDny5vcIxB1/5r1t/1k+Hxu 58Ftorj9i6DdYQfJYEXYLx9QHoF1T8nV2BNk8Czj9LrtNgIeLLMO9RfJIBzR Jvvm/ggkPVg2eXOJDITdk8E/niNACvA4U6BFBsa99CfCHo2AQllfc+xlMkRG Lq/nR+DxZQsZrl4hQ7bjkPt0Hi7/7eJWZkKGLslXLjdG8HiDFuiFLRmcGWzE Cii4PuMeY087MvCOivUs0UaAkipSd9meDMbxqQf9Z7GXjy2vOZCBtiVqIXNt BFr/bnuo7ESGdYr7nVHuUVjnL/0Sf48Me1PU7K+qj0LSFIyHPiJDJe/X4inN UfArdzXS8yeDdtiTn/e0sOstC3Y8xut92OYdoz8KdHdFZ9MDyEC+rhPZbjUK Sm2fQzKekCFIwrTilO8oVD4+G2sfTobZItfNvZV4vD+tT6STyOAnyX+2pGYU 8rTcZtuwBTLePjlNjALaHSvv+IwMZ6N+cV37MAoso+2HCpLJkOriKx5Hxv0N W6sLp+H5HAvVYFochZInnJwfn5OhHGXFzMqMgaBFLePlfDJUTyZEKB8Yg3Vd +er32I1soU8jFMYg6Ua498kCMpD0Xf0Vj42BKJu1pEQhGX5Mn3XxVBsD58Yv X2eKyCDDPanLdn0MoszMBDRKyaBw9IuWqdUYaPjezXyNrXStU7P45hiUHOhS Eigjg3rOG1U9xzGwnauJoWBbHw86mPwA9899t9uuggwZllLcsnFj4BEcqXf5 Hc7XoF2c3om4/cOcrpfYxQXbWbuS8fhbD5r8w65dWaNzeT4GyNnMu6CSDIMh rQtVxWPQOpNDWq8iA3+ZHUnz4xjQqav62tTifOs360jpGAOde8eZS7Al/ui2 fv80BgOtORnr2IrqJ1D0Z1zOmDoRVEcGnUG2ki+0MVhgYI9IqidDKENhpN3m GFAU/WUiEY5XLffdPjoKOCu8eN2KDR5aQu4MFFBx91Gkb8Drn292fLeVAmhk s9MJW26knPsEBwU0mIdMzjSSIS9pvnqQkwK2TBI5btgS+nLWXtspwOW2IJuL vac9620tDwWmFe9HMjXh/VYVfQ12UsBi9FRZLXa4WycjRQi3lzGdmMJmU2At 9hOmAKXosB5PMxm2vPSjaxShgM6WrCfW2KtxTjlqkhQYmJ1X3MR20SnQnpSi AItcz22x92SYZ59aC5ShQGu1dss57Gl/8wst+3H9YyXkEOwhZ615zUMU8Lss fJj5A94/+0OSZg/j9bzNNpPAJk81q4YepQAd/3KOCnaXuXJcx3EKSGcFRLtj XxDyOHX7JC434Tschd3SV/6V8xQFKoVZlvOw0SW545dVcPzKMkv7sU+x3KLO q1JgISOj4zt2dVNWaNRZHI/0IKYtLTifTwiNdqvj+sJFfbLYCqsGT1w0cH99 yvansAtLoxV4L1DAQ8BA+DJ2rjTrY30tbE3TBidssQm1/SvaFCC9OEbywc7I 8OuL16GAoC/XZhi28LVan6N6FCghIi8kYycJrEv1X6FAnp75m1xs/p5D3fcN KCB6YN/pMuyYcCdPQSMKGKOBtlrsbZoF4lXGOD7Eg6gP2KGMUx1XTSiwPtJ1 7xM2CxJz37iG2xOPPPuxA7zMRVLMcP+cyumj2PTHkltPXsfx935JmcD2Weq7 O2yB49FyW3UWe6OIe9dDKwpklimhH9j37bSad1vjfAQDtSXsZYmQ2/U38Xo3 b9CvYDtTmgWu38L9nxIfXcW2mXVhE7fD81E+O7mGbbYsuvnVngJJD3Np/7f+ ZtdiviP+3qNjA/+vf4Hl4eSdO3h8Tf/mZWwVHrkvis7YLCYRi9jHhL90rN7F +VNDs/2OLS/5BFW74njeen5yGltC4UiFzz0cnzZJJiq20AnayzP3cT6UMLcO YnOrRacwPcDtv/f79fw/PtoQ2eZJASVrOYWP2JtG3/0jvLHfl9TX/399linu ej74ewdcMyvH/uagaS/gh331zPL/v8+Ab45u+mOcH1w7WEOxu0KunLMKxPnj Ih/khf0+lv645BO8vu/kX/bYZS/NRIuf4vht+1Oijp1Xys7nEobXt+THcej/ +VFTxXw0ggLBp0jX92CHfeKfr4vG882RmFvE+en/pYn6KBb3J28gMYj9gHb3 87l4HH/F3FMN2DZrnXWdSbi8mRoYhq0iEhQ2koH3XzhXsgD2UZnDfs+f4++d ciBiFe+3A4eorjdf4Pp2RZ592ELnT1/7nov3e5LiySjs5TurMn+LKMC449vJ X3g/z3pk7254TQFHCfE5Eva4vx53YCkFKo7sjXuJ3ZVQvM7xhgL66qSPuth5 9TYtwrU4f2btyp/h8yO9la+GUofHX6vcbYcd39NYnE3g+b0X9z2G7f91T8L+ Jrwffpbs68bnk+m2fmvlNnwenaMtruHzjcv8PIPpAAXcrDNovP8/D+vTu+kH 8fe1eyLUT5Dhzp7VzJdDeD6tDnbPsDtGs+HnKAXi9t89vQs7+DrDw6eTuD31 3FE+fN7SW9atVS7h+N9xSxmswfu7ga/FfBnnK1eQQSS2xV7HBMZVXL88R+As dv240BGdX/i8nTu8Ja8a379WHi5T//D8Th9as8H3wdKNQ9/5OcdhWExAqOot vs+bn9bWbBsHjpuGmtexdSSooZZc40DXSo5kxC6eiJIt4h0HSqCW5aU3ZLC/ +eOWmtA4mNp8/EcqJwPV5hXVRWocyKcIp+ISMvTaiQx8Uh2HS8+yj1S9wu8n wZnFpLPj8Gc5eJsStkRLGbvVuXGY9mvrfpNHBncJdVjWGAc1Zzq24pf4+445 5grqjANyuBEWnUMGS/1qN0vzcai4+viMBL6/508bcP/0HAcV77j79xPxefR9 j1yt9zgcXnLV603A+ZQ6rRbog9dXmcEjjx3zy8tjh/84kF5dU6XE4fyqyBo7 GTIOlZOPLxyLIcNDmYWigMRx4Lv6cFtJGBnY+UIvCFSMQ8Cn2uw2P3x+OiRs 738zDkoPTlgxYWs3PScnvhsH4w/2LKq+uH+XSvOdNePguOnDWf4Qz7970kW4 Ebe/RZoL8SSDdIRKihhpHDLvqHxlcMP3P8vqN/k5HM+15E4RG3y/XKcvnf8+ DqJ1vTuVbpLh6TsO95L5cRC8M3X2sjXOVxtxOsWf41CIrE94WpHB4L0O35GN cbDgt0toNMfvB/8C5ZMsVIjTkmkTNiLDoz8W4eclqMChsdm0rI7zM59ffnYf FWpJy/c3zuH1G7d1hUlRQdm8VeqfGt4v5Ye4emSp4K2Z7rX1LD7vHJhiTQ9S Qfhmx+hWwPMfLEi6e5oKyxXrFn1H8Xzerb5IMaaCBYV5o3AfXq9rWPV8GBWi 0kVnZOhwfjuV57yJoEKF0X9LpM1eaHQYjPKKooJETvQ797+94GAtfYs5jgoq gR9V6jd6odagmVckhQo6rDejTq3g977SH0ftV1QoXJt+92emF7L+OogUvacC 3ecfWh49vSATfDHAfpMKzQ23VU9n9MLbwV0XeehokL3UYv8qDf+/OTDHXU1P A2dSozlvai+Y9oRlsG6lwaWL/47SknohSrirOo+dBhN0nmauMfj/UYnO4ldB Guxv6rmjH4jn+8XA/MYhGlikUwL57HvhmpyFkqktDeft3x+m/+H/N5Iu+b/t aGC7S/GNx4FesBELEE5xoIFx8QmWWLlecNmZRzd4hwa1vhPuTVK9EMK80Gp0 jwYeMlQ7HtFeeEfzvXrFnwYLsg/F7bh6gTc1w/NCKg2ky5PTFud7oJ1jrFaJ RAMdjci90vk90GZ448Hvbhq4uY4RBS+xM6eO1PfSIGma6fyBHOzDC8Vn+2mg ZCa5TTazB1pN6Z9rj9JgoLLfkS2hB5oLxQOt52jgd5NifeNRD9RfstWKYpmA 1JpA9luGPVAatjgypTIBJUdMZ3b/6obZ/SLuYWcmgEUkYV15tRvEOi9tO6g2 AR5ZcclXf3ZDDGfeac/zE7D8MW019Hs3uESYZ3BoT0BY0Kf9PePdcDiq3eLg tQmoZDAbn/zYDW9jc2ie9ybA9to1Ls6kbvhxqNdL5P4EMJ6639Qf1w2SZDq+ Zo8J4GB24c+M7oYEPlM1Tm88fqPtgiT+X38/nicnw38CVFjVerh9ukEp0dem ORKPb9+sa3CjG6qTr85w5k8AZccbHRe5bqA3JTnQCiaAS5Pm4CDVDRq7z/+o LMLz66fbYyHeDZ8zDv+8UToBAT6Og8q7umEpe/vfqsoJUP4X0FXP1g2yr99z 2bRMgBp7q8PoNAmSmw4q1U9MQKuVpJDqcxKMB+RVx36dgIXtYo1JqSSQVhc5 ZTc9AYXWtg9mEknwtpXjDN8cLr+0Z9EjggQ9nVMX7X9OgBL9C7PLXiRgG0i7 LsAwCc0yUQEfrpBA9xkf9duWSWDJFYh6q02CJJNQ64atkyBsZvc8Q5MEkiMe do6sk1BYZphkBiQ4Q73i2sg1CWohRcO+siQIedG2ksgzCRKMBP+RfSQgWat6 3OabBJLsriCqCAnMp+QfCgpOQsc8k7EUPwly8nL+fd+J+6u+PV67nQRzdsL+ TbsmITVuQ+4CGwkOycUyPts9CToHTh/9xEgCzznWJ3dEJoFuvfl38uYn+B9W 9C4Y "]]}, Annotation[#, "Charting`Private`Tag$388682#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwdl3k4lOsbx4fsocFkSR1L2qTolEoHz2utbGlRQlGpaGGILKckW5YzjEQo zdjmPZGibNnuUbIdCSUqnIlkyTJjaD34Pdfvr7k+1/d7f5/nuZ/lekfrpO+B 06IUCkVGhEL5/6+qQp2PxjDykHaRJ2TzkGXEsXhv3WHE/rz4661GLgqbuH/Y 0xDz6n0DScY5SMg1nz5qO4y4oz+nfRPZaPPGpOpDh4cRpfP82gPRLOSV+uHG vhNYX6WRb/8rC/V5B2haBWF9buHBStk7SPkNdwJFYN2ve+Df/AzkaCr3dBcD c622iL5NOmpQ5Ow3yMX++gwT4aNUVFTdE6H+ahiFaxju8P7ERKNrdPYpv8e6 DW82LS4JaTPp6grDWLfQHVQ5ykBpntKlEr8w/znY/VIjDoXJ/TEsWPsZUTJX d79F11Fl0I2SiS2Ys6Kb/m0KQzMfX18dMcasu3a0WudPdLb8gnL/AcwZqetF 1QKQo/u93c1hmB+0bn3j74riW8aVnsdh7t2oOVxjjxq27uDV3sJMnBWvPaGD jKQ6gp8UYJ51ojeecgLtEpGCe28xd8V9+JRPBzd1h8sZHzHPp6vFHLkEadGZ 5rcmMFNSlRXnA0HGZeuHONERRNFeNa6++k8Qip6WDdyM2ba9941/BGy+WNLr azSCwqPjJ+OzIsGrZz7vnCXWY58aOT2Pgr7CNBMPF8wEN/TFYgw0HGr2sY3B vD2KrkkkQBpnY6fWwAgiehqpd0KTwcH14FLpcZwn+/JW79dkEKf+acWfw35K zYbP9JsQENL6tE5uFHH7ZFaIuafAATvvHFeTUbw/Dy1hdSrIiCT3me8dReFf dlyzYKZCfVmlsq7TKCLctRppv1LBQEMq4fsFXO+5sjbwnzSQn+FcSr2Ldcvi dZec06GR01505W9c//7JsZqKdLjq+nXkVCnOP7mh6ObyDJhosHL7vQ3r87ZH G9oyoPX2J8tXvzCr+/9B6N6BGybaytKuY4gSpey1i8wC05m9jvwzY4hL9fb1 E2TBV45ffI//GAq3X5WbuusenKHWL+THY3/sb/eiWu6B5ZD7iHnVGCL2aA6U v2cBJS6r8oraOApXJleuHmFDpcmLmVNrxpGm87l8e7Fs8J2Z0LPdMo48huQL 5LWyYcDVOFtt7zgiwnOa9hzNhprNH+LKg8cRxXTbm8GGbAh+o+rK7xlHvDmF s9NxOVBSvZgvN4TrkfXbIFYOjOd85utO4fynJVOlpTng5lcac1rsCyJS5k33 DeQAIe/4+L3BF6Q5Z2emtzkXpPbckH4R9wVxjy8Jca/PBTN9n0ODt7D/ToJx YVcuhCo7sRZZmBWUQ6uGcmHik7bhrnLs7wtg6ojnQcf1Oo9HgzjvwKsea6s8 SK+eq8j4YwIRp46OeVXnQWdOn2iF9QQKnygq2t2SBzLxz+3f7J9AmqZlN+be 5sEV5+Qhea8JxF2XJFEnyAOPOb1lUbewP6XygMaafFiv73nGZxLnxRVGpkbm wwll25KE77iehy5xEvMhc37Lf38vmUTczy9WJGfkg2zbYvKQ2iTyOE19Pvkw H/hed2qdrScRxddi2YeefKjI6aJZsDAfUm76V5sDjWoRSesLsD/FPSdkIwfe MLfIyJdNIqK/TSjYygF+GHOxtxXzjzvrb1hyQNfVYdznK/bT9zSaenJgZ9e8 5yGRKcS9vFg1eJ4Du/cW/Wski1mMneR9iQOeO2S7xbSnEMW7IFojggP3lFoh 0x4zteC98T0OPIgP2RXuPIXYR45KL+ZxoFpkQ9npU1OI0BttIQs50Dt9o8Ag BPtXOFndr+SAQptVamMe1qM3yYd2ciAqqv7czC9c/+3ZX/ELHLj5iz7cIzGN KHosZsMSErL9NT1qFaYRkSRhOipFQp3HNafYdZizUrwmFEn4ZmxC/HZwGoVP tjQJ15AgUTpRteT4NOKeWJ4QrksCbeNdwzEvrDs+yf+xmQQDtV+6pWHTiBe1 +8zDHSScm6tcblOA/bSnExv3kBB8wYupX4bHX3f7orodCTFDKkuXc6cR++Kt fd/2kZDbeZnC68b+lb7vgo+QMHU4c66KwkfEmZNV2adJCFScebxJgo86LN6j RS8S/nu5l85einmbzia7CyQstfoxHq3MRx6SGsqP/UlYv9WZ56jHR5r1x1vL w3BeStYbo9/5iL8y5nrbdRJKZwebtXdif5vgc3sUCUT5xZJZCz5irhSwsuJJ OGIUGZHuiv3fibCTqSSszGy+fP0EH3HNfG1Gb5Mw+FPu/LmzfEQ3ofq7ZZLg U5N+0PgSzjsIlkosvD70UIcXj3W4ulBFkmDHFqq2MPmIIpKztfY+CYoiRnKP 0/B4TOvmR4Uk3Hv2fC4yh48Mrq0wP/OIBM/V0uMX/uaj8FvyX3VLSNCNchhw eshHxYXjlrzHJJRZvWtcV4X9mbNMjXISQjm/VVO5fMR7fVL8fgVej6Tnox8v sN+hIF3nKQltzVO3/+nE65E4LCOoJuHmhm1/lfbg/Auvc81rSXCODwnP6ucj dgM/JqaOhE+2Yt6+Y1hPdoke5pJQ8GDvMedpvH7JRBORZyTQ5ZL2m81hfYyR sOw53o92tV1KIgJE3C9/Jf6ChGf67pv/kxAguoSqyBTmWGae9rCsAGmu033c 0kiC0gH9pRWq2H89udi1mYTexwGLrN8EiD/1JUOxBfdDqUoYqyNAvP2yO2sx ewYsjvjpCpBB2gkzt1bcj27LPhcDAQpH1SnTmPmG8R0W2wXI8ct+0aB/SChP e9WgZyxA1DDjP4SYr3yjPV1uLkAdgZKrPNtIMHd2KVrYLUBMtsm1FsxST1nZ I/YCxC4+LqnzkoR2teHUjoMCxF3US72E+VaobvzTo3j+LDexSswuH3zDctyx Hl4tEGDWNC7zTziN9QSWqVY7CZ/v/jwTcB7nXy5rtcL8YB65HvPD86taqeuB 2e949D7rIAHyuCFO0DFvh1YL/at4vWK86UDM/2lQd6pG4vyq7S/8MD8Ld9IT iROgYv09+acwx37M1BxPxPlq1CBbzA7mPNrrWzhf7lHtBsy03DXSNZm4P8fS PBbw/N4vOT+fx8b+CppNC2a2Z7GAwcG8VXUuHjPnuNOUwgNc31R5bA/mIuef 46klePz8E4nzuD+lB1gjahV4fyTdZgswV9lZfsqqwf31CQ9xxFxvPcbTeob1 /U8kp3C/m4nE/vwmXP++cEkU5u5tvW+LunD+GaWFdLxffZuvvt7Si9frWWih inlwvXZHWT8+L3Z1Wky83/yVF1pqR/F+KSc2eOPz8VVZodFsCutHTN7800TC PLX82Qshzvc7/HwtZhlxSs3LBTy+w1rfJnzeqIt5lfvFZpDBZK+PHGaVH3vL uqVnELVxJtSugQSdyZSH/bQZxJWySCrH5xl1r8ue1J1BzP1hAX8ACdav2rL8 DGZQsd6vbDt8H+xa/DLnDGcQZTg48gi+Ly611SnzxAyiP/kQ44LvU0D+vhi5 IzMofHY5VwXfv1DWbESyG85fHWz6vYyE6xkZ15afxPrhj31dpSQkMoaCV12c QR1iD8SD8H2+Hxh0flPkDPLQt1C5UkTCgBXL0f4Rrrdx+Bydg+8jsrTvLJ1B bDmDddRsEr4Yje11qsJcYX4pFb833zdttTj2As8HokOT7+L3RbnJ8OIHPN+X 1n86ppGw+/PUCoakEPEUjUTnYkn4K/q6ww05IWLu3BFMvUFClw4t4rqSEFHr U6TWRZPgdspoLFAD6+d6WFb4vfTnRVYc3yFExTKye21CSLj7XvWQwVkhovuF Kl7F7zG/3ZzxulGICCebAwMWJBj6dHNftuH6ukKvQDPcDzmv2aYuPP7OXklp RIK4HcO1ZkCIuGHv7NbuImFFS8+G/K9C1DEX9tDIgATL5xcaL6+dRbzdHclt 6iRkVKQtqsXMouKtDwZ4fA4035Oz/Z4wi9jC0OENUxz4Hh2V9jZ5FtEVnpTR v3DA+ZD/ppQsrLM39H0b5oCqwN5VtmwWOUo43Jl4z4F0XfGKhSHM7XLalxsw Z13yGTKbQ7xFu03b0jBHOvY/mJ9D4WXVhfGG+HuAxe8ScfuGNFMOHC4MzgfW 0p+Rn3q+Y3+wgcffecBpGrOL2/UT0UUTA1pHc8E17Iv8trRfiP8EEt79ngvV UYf/urBsHhXLl1T1B+bA3g+k1lnfBUQdtW8xas+GyOsn/acnFhF3+mOQqXY2 GCarDNSVUAiiW41QjWQDSAvkz3qIEHx9lkPiFAs0dK+tertKlNBsOYfIV/cg zZ+yk9MuSvBN17i3vc6CoZPbDUwSlxAd34YsorvuQozjnM4RGzGCWiNtXvXp DpidIdd0/RAjmGeJz4ZKd6BztbwYrVKcYDubaV82zoQQaa+pcm8JwhGtP1IS lgFBEzbdfSqSBL0nr/9gezrYBg1mtLyRJDwoacw+1XTYrnvxnEq0FOFY80X/ R9Bt+Bb1QFXPUprgqwSGKbzG3+P9Ac+fL0oTVP4IZXxnGpgcMwiteShDaIbG 5Bx9lApm0Wz5KxeWEkRMlNeEVioc617y6O4qWYK+ymOJUt4teKXNtyX+kSWo cZIRKptvgYpqcmPBDTmCf3skhHySApcN19hf3iFPGNSH3j9vnQKFPy+WSH2V J5iDR29Ld9+EbyP3tf4jlxHFlxrjCn1vgr33jt1GG6mExwajYmPqTYj/PWCi Jw6zaMIz5oNk6EoqUFk3SCWo6h8bEg/i/ytm1SXvzBQIx1lnFu8rE4bo1NaX LAUiPeMtGcFiwstt7l7+3xSI2AzrDtp+JuTYxQaGHlYkeLPXQg8uJEHE9wKp rY8UCcq79S0L55JAfrXiik0SSgS9TO9g7L+JEJ19MDPeU4lg7gujBtsngmRp Iju9Bus/6utvtzBgtHn7K606JaJD60KlUxMDmvsH5gtAifBwGKPRXjAgVlLf tfYZ9rvVUW5yGSDl+mr5YLMSEZ55pehmBQNkRKkJG7tx/oz/32Q+A+QdkwPr JjELIxK0Ixgw5WmUt3sa82v1kclrDGgP+djVwVciDFquP3l6lQFJuVsMhoR4 vCwF9oEQBlC/dY5L/sT+qKbOODoDFO4peuyXoBHEqewhOXcGzDyuSnwvSSMo 3NcBPDcGdDWdrD0lTSPYkWZXnrgw4Kbg8YrLsjRCM2bDtMthBihaHezOVKQR zEPZPo/scf3RX0t0aJgl1lRH2+J6n9zfi5bTCIPy2+FuexmQki5MAlUa4bE+ N2ipFQMCiu7U7VlBIxzdR+8PmTPg0DOLyU517L8aeLiGYMC2ni/qrqtoBJXD vppqygDaRIrNp99oRIcQNHyNGfA/OFqgcw== "]]}, Annotation[#, "Charting`Private`Tag$388736#1"]& ]}, {}}}, {{}, {{{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{0.6600868966165301, 0.24995742024632617`}, { 0.6600868966165301, 0.03915608438752982}}]}}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[7, 360]], AbsoluteThickness[1.6], GrayLevel[0]]}], TraditionalForm], {0., 0.}, Automatic, Offset[6]], {{{ 0.6600868966165301, 0.24995742024632617`}}, {{0.6600868966165301, 0.03915608438752982}}}]}}, {{}, {}}}}}, PlotStyle -> {{ RGBColor[0, 0, Rational[2, 3]], Thickness[Large]}, { RGBColor[1, 0.5, 0], Thickness[Large]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{45, 15}, {15, 5}}, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 2.2}, {-1, 4}}, PlotRangeClipping->True, PlotRangePadding->0, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.967867208431438*^9, 3.967867230322567*^9}, { 3.9678672921955957`*^9, 3.967867313980338*^9}, 3.9678684804267645`*^9}, CellLabel-> "Out[163]=",ExpressionUUID->"a71f539b-b320-43b0-bf37-c104f06f900d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["c- function (4D)", "Subsection", CellChangeTimes->{{3.922105409351158*^9, 3.922105424020042*^9}, { 3.922106125437221*^9, 3.922106130015802*^9}, {3.922106457179372*^9, 3.922106463976871*^9}, {3.9352193859556723`*^9, 3.9352193869157057`*^9}, { 3.950671865924531*^9, 3.950671898412299*^9}, 3.9678671458198595`*^9},ExpressionUUID->"0f024fa7-92b2-4dc3-be19-\ 9e00c1d5fc71"], Cell["Similarly,", "Text", CellChangeTimes->{{3.967867161063616*^9, 3.9678671664853344`*^9}},ExpressionUUID->"a3deca98-5df4-415c-97a4-\ 036621b48787"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"EEofA1", "=", RowBox[{"Interpolation", "[", RowBox[{"tableEE", "[", RowBox[{"[", RowBox[{ RowBox[{"1", ";;", "poscusp1"}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEofA2", "=", RowBox[{"Interpolation", "[", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{ RowBox[{"poscusp2", ";;", RowBox[{"-", "1"}]}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Acritial", "=", RowBox[{"A", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"EEofA1", "[", "A", "]"}], "-", RowBox[{"EEofA2", "[", "A", "]"}]}], ",", RowBox[{"{", RowBox[{"A", ",", RowBox[{"EEofA1", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}], ",", RowBox[{"EEofA2", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "1"}], "]"}], "]"}]}], "}"}]}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.9221084751939383`*^9, 3.9221085309962587`*^9}, { 3.922108577431677*^9, 3.922108583393474*^9}, {3.922108720910157*^9, 3.922108727706665*^9}, {3.9221092796946077`*^9, 3.92210927984973*^9}}, CellLabel-> "In[164]:=",ExpressionUUID->"c4e466ec-615a-44ad-9193-c6abb01dbffc"], Cell[BoxData["0.6600868966165301`"], "Output", CellChangeTimes->{3.967867168748519*^9, 3.9678673318793764`*^9, 3.9678684831915054`*^9}, CellLabel-> "Out[166]=",ExpressionUUID->"9f5d22c1-c860-41ab-984f-07221026360e"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Ccyl1", "[", "A_", "]"}], "=", " ", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"A", " ", RowBox[{"D", "[", RowBox[{"#", ",", "A"}], "]"}]}], "+", "#"}], "&"}], ")"}], "@", RowBox[{"(", RowBox[{ RowBox[{"A", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"EEofA1", "[", "A", "]"}], ",", "A"}], "]"}]}], "-", RowBox[{"EEofA1", "[", "A", "]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Ccyl2", "[", "A_", "]"}], "=", " ", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"A", " ", RowBox[{"D", "[", RowBox[{"#", ",", "A"}], "]"}]}], "+", "#"}], "&"}], ")"}], "@", RowBox[{"(", RowBox[{ RowBox[{"A", " ", RowBox[{"D", "[", RowBox[{ RowBox[{"EEofA2", "[", "A", "]"}], ",", "A"}], "]"}]}], "-", RowBox[{"EEofA2", "[", "A", "]"}]}], ")"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.9221086177529907`*^9, 3.922108648686262*^9}, { 3.922108691731715*^9, 3.922108700168927*^9}, {3.922108906287305*^9, 3.922108928558299*^9}, {3.922198151331313*^9, 3.922198173356778*^9}, { 3.9221982236700974`*^9, 3.9221982242378597`*^9}, {3.9506719162551394`*^9, 3.950671967732452*^9}, {3.950677255721148*^9, 3.950677257147484*^9}}, CellLabel-> "In[167]:=",ExpressionUUID->"15b8ef53-6f5c-4599-be80-5a1739fc5df2"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Ccyl1", "[", "A", "]"}], ",", RowBox[{"{", RowBox[{"A", ",", "0.01", ",", "Acritial"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Ccyl2", "[", "A", "]"}], ",", RowBox[{"{", RowBox[{"A", ",", "Acritial", ",", RowBox[{"EEofA2", "[", RowBox[{"[", RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "}"}]}], "}"}]}], ",", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", RowBox[{"1", "/", "2"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"36", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "->", "400"}], ",", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.950671977342945*^9, 3.950672064075803*^9}, { 3.9506772801873913`*^9, 3.950677310141684*^9}, {3.950677341554225*^9, 3.9506774248872766`*^9}, {3.950677533720902*^9, 3.9506775338186693`*^9}}, CellLabel-> "In[169]:=",ExpressionUUID->"ff21337e-89fa-40d6-9446-89aae63b0c46"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwVlnc41Y8Xx60kkXWzQvaoUJFQOsdoL0qSUSEiM/WVpMhKInvvkZC4tqyP ETKKuEaRda9RSVaRxM/vr/O8n/f7nOf1POePc8TMHS9YMtDR0V2kp6P7f817 5s9BdfMBFwVnHStfRJfXBpa2VB94/muL9sBpxCMdkpULp32hXNjcr8cLkHlu ntO92Bf83wYZrjZq4HvuOismYT/wz7/U9s/oEEYoB1cF+vqBTlMPPy1BDU0M TLm3z2z4WllDb86qo6TrbutEgydwpuvNxTvp6jgd+6daingCsy6yJlVx6lhc 2cyTJ+MPtfu4B3GvOj74EmmjEuIPskyRZbnX1VBr3YKoWfaHkJ8ful7JqiKr 2P7tx82eguqvL1zffFSwS4vOtqPlKewtqzxZ9vUAxt34UHt5fwBEGDNkh5xU QXO/BN6RuACYKr9vvt1OBeWybtlZMz6D3C/XBi6eV8HZFtX6Wdtn4NM/72o0 dwDLvzPz36c8g6kyp5SDugfQk73Hnl4jEJwC+Mr+2CjjCcX0hqcvAiHzqpR4 /mEl5NS7LcC9LQh0t6sVn5dRwj5ncIxzCQLZGUOPICMlTIpgbxQfDgKWzMbg bHMltCodEHx1/DmYZGdMOhxRQoX+bCcl8nNIu7Hjadb0fvz9515TJX8wnNE5 7yJmtx9rdhwT0nkcDO+KLQsyKvehrwbJuf1rMNB+kPnJbXsxU3HOYpdcCMSw 1RWMMe7DAOx/7mAaAkyQKucivA8d9Ig3haEhYJgbSUrl24cXzDNpvxtDoP3B GHPc3F5UuRPEcWglBCIobRHROXtR0OeuuodCKIx9ibzQqbkX1yKMLRvMQ2Hk 4ZbsX3aKOPpCK2RzdCg4TWyR1zdWwLelcpWn20Khf5NKKFuSAmY1c04Er4fC mVrVi02FChjYv8RJUQoDu5muU04xCuj0degQv3UYjFg3nv9zVgH1VxqtTBLC wJDlo5pulzyqbn0dmtK5kX9ROmIhKY9CQhFVNKZwaOc/KCShvQfp5B9MyqqF Ax0Tn1ZR3m6kaZhz29uHw43edi5bym58d+6kRkFqONQ2/d71rnc35l7ba/2r Jxysl7oUtpbsxmAnvnA11ghoD0iuueuwG50fr1U/PBIBJ9LjHhxl2I0GYeNT dc4RoGzBsLnGcReqp7fzML+MgNlpEsPOUjkUKS46cmpgQwtkbfZ3lEOGxjib 5xyRwB8Q9PU/Lzmc6Hkc0aUdCW//WCXm3pfD1glrgtc1Et7phV5M05fDvKXz 34xyI4Hpgc3h99xyGMZycHvySCToXj3jn14kiy4CIkglRYEnLepmvIosGu3a ZCtzMgrsfr9g3R0vgxqHpiNtH0ZB/4r9cLWvDIqe6a7NL4iCqZ7JO5cCZZDJ tOL7wngULEdy76S4y+CUfSqvqmA0iLiPHKMYyGD7I39N93PR4NOirTcrIINv t3LTpJ5EA9nu12JctTRWxsT7dRDREBX09JzlUWkslJKSu78cDcxlsn/+65HC nMK8NvF9MUBKaZ3VGJXCNFB1aLeJAcE5R7Mj/VIY117H6ZIWAwoeB2nbK6Qw 7Mrpop0DMXBsJ3Jb+Enh0wnKpRaeWPDMzPJ5e1gKPe9cXXY+EwudX4Mp/YOS 6Eo3FSfkGwt0lTeNM60k0SnotkZTdSy8LZrXD3SSRGvBv8OOv2NhulltwttG Eq+/9PESUIwD/dttLlp6knhZeZtUw804GJRTcXgoI4nn6qKb7VLiQNeWRfnb dwk8dk7sFu+nOIjL71Q8kiSBRwZy2Gq54iHESbhF4YgEqlgr59ucioec6l3c LIoSqPCrWo/HOx5OSHm/dJCTQCmv44tVlfGwyrGjLGO7BApxfIyyWoyH2hVf NacFcSQlGKlxyidAgvllmeh6cWSTow28sUyAkLfi94e9xJGp1P6RRdKGn/hA hkNZHFe1lkTZ+xLAM1/t7F8ecVzo8Gwo5UgEIcc9b25ziOM3E1ar6ycSwT9p 8hvvuhiOfQ1nYX2cCE6JhULVY2L42UX4VdGbRHBvo/irVIhhF+PLs6bziXDG P9Lmkq8YtobsnWXenQSBSof/fNcWwzrhijCyRRLMoE5qFb8YludoHzBKSAJP vnTldZIYkg++72PsSYLDh/0W9TaLYdZbA7fX7Mkwwdh/IeSnKKbojQhdPpYM yg1edZHvRTFmyIag80gG2genQo1UUQy2XTDLKUuG8geB0Ra3RNFv2Z1JfzYZ 7o5S3YVURZHQ8u5+REqBEGcW/RVlUUxyyTaVWkqB2fLjj2fqRdB46Ndt56o0 YJp0F7zXuQNDyHdTJ3rTQHriwgH5jB341muh02guDTJKxo14HHbgsr4zXcfW dPA3ItdsU9iBe2TmFLWl00G6sb+SblYQr/9xvFaG6TBSNs3zZEIQI9pmnu82 Tod59wvaXRRBfJdoX5P8Xzosj5UNtVUI4qrj9A+ekHSIKW91M40RxAR6qk2J RQb4Kch/POomgJ3dZrFyjzLAynl4e6+uADJljrxLjMmAXuezkgM7BVDV9doy V1EGVB2UEdCa5Ee7U0Myfu83tH70cc2P/JgiZHp5ZTIDRLouzlk28CNlZsDP geEFtDLSU0Tz+ZGlzqh0TOgFzP5n+N0sgh81wj+NGxx8AR+KeZQE7vDjkGSn 2TJrJuT+seRT9eRD7qVzoXZSmaB6OK998gofHmt5XzsCmXDMY5wlT54P3eLP zOobZYJ+5uWm2i18mGfftrPlbibMhPHwZa7x4hicOq8RnAm196xyH8/wIi93 y6OC7EzgP3f7/fFPvHiKdjxP6m0mIMeluukaXvQobfoSO5QJ7sX7O24k86Lo ieorhwpfwvSEvGPhh+1obpuj9+hKNpzxdUjXvExCkhFm29/JBsN1bbHUgyRs OtFLZxqUDXHuGfqToiR0PWhneOZlNpBoW6WceUm4W5qBfKguG6RtRpx7WEi4 OHJl2x/ZHPAKCP1xpZAH/Qy2tN1ZzoH9zZMJuXw8mKNprWMTnQsJ+4JUb/zj QpO9a/GGBbnQ27GSzEfjwm07IxaOt+VCqcRmn6YBLqxl33X64HguTDxscDr/ kQvvrBJp0uu5YP6nOCrvLRdKf7+0sl3gNYgWXJceKeHC/k/f9TYpvQah2tO6 IxlcGPDucfbimdegq/lX51UoFx4u46OnWb0G8vlFZQ13Lvywp7n6qkoe/Neq fGIfAxfO80kf1O/Jh0ydhZfyYpyYrxN0ymUuHx6axolf4uHEUtUVhXZmMqD1 ORZ+Vk4kdbxW/UIig6R86j3BNQ50tjTTmhEnQ/1EqI4FjQM7/5LOrO8lgxYP ocnUzIEKYe8ucQIZXN65qi294MBAWfdrYmfJcEKI4/eBxxz4rUbRZr8xGc6M z3DTmXHg59vtpRVtZCDZ2bsPRmzDqr5NF9pyC2CZ+PojjcSOgg5vjAcrCuCu OW3LnnU2dGWyt/zxrgD43dzvsUyyYW+cqONabwEs7vtDUm5nQ+V9FFeO8QIQ LEmtzcljw7DmJ16iCwUQUW1Rcz2CDWdNDwXuoy+E579dmK/4smFuQFryReFC MHxONvh+jQ0TNeDHQFAhRFglJ14r3IqP0l39px2KIGFK9VqALSuWw0lNdvci 6PdJjV7RZ8X5AYEV+adFUMHb4cgBrLjH9VvhuagiUKaPyprdz4o3SZW2jukb /Z4+a8pSrKjr++/cfF8RlGfPSf79sgXFb3ptX8ZioIWxoJLBFmzcFZjGyFMC aavi5GQDFqRrNjGWFC2BEWWuEW9tFlS3kCcdlS8B5flixQ5VFry7/q/dUr0E VqUciwb2sGBe/Adfv+MlcINSNPVyJwtGsXHZbHEvAelccDs4tBmtZyIVOcZL oPPaRwuTW5uRrTC5SrCsFAIe8GjbBTPj6R+G3fqNpRCmtvMzly8zBshyf3ve XQr6Fvz/Qu4zY6tFG13LaClIMkXpTNkx45ZkHz7G2VI4J6N4kvcaM574rKGg sVYK0v1u6QK6zOi/fUnnHlsZLItxTs8CMzIH2jh/ly0DK6TLNpJgxnVLJdmq uDLwYtp4vCo24bxAc7jpo3JoP+6s5TvHhPsueeZEB5ZDJotGmMQ4EzqFqNV9 jCuHAXnjA919TJjfNt+3NbscnKdad4a3MOEMc+7M0bJyoLnqHPKsZEJ5LctN no3loEKabT9VyIR2D0WEKrrLgdNrt7lKFhN+Xwg5qTBbDr0Nh8h2oUxIe2+0 vmb2Bij3ZTyFlJmw7/HMrZSjFSBNUU59+JgRDU4XbY+5WAFrr1Q/T7swIoXk WhtsVgHcr4TVgx0Y8cLQYdsnjhXQFWRA8bJkxM6X9LweDysAthYvNhkz4rnb TbUuzyrA4DPzpJEeI7arP7N1iK0AvsKdSxrHGPEUky6v1csKeHSyw8lRnRFb 3pPqTEsq4BZD2XCnAiNWChzi2yFVCZRdHrEyowyYXPCkIZKpCo7UVPCunGbA m6OiQs8aqmHYsmqXiyo91pMZXMI6q+FZvIUz5156FPKkdcR+qYYBvcazmjL0 6HK+SS71WzWcp9iVL++kx06RLO+spWrIZB8zLhCgR3UTxe+Nu2vg1oEpCnmV Dtn6NCroImqgx35M2LueDgvbjQxdbhAQfeTZsfwLdLhufKqV7FULe4Vv75Df vA4K4YrSdU9rYWL+lkPj0hpcbSV5fQypBTpPSXny9BrUqA6rzSfVQvkMVTmC sgbu2+9mK1XWQojReYcnCWuw8iHRv3ShFmQTO4t2HlyDRc25Y1U36kBBn13t yd1/8E0mpqH5WD3k6Rm34+ZVYBnbunTtbD1MF6/eEFv9C9IJHruWL9ZDVaRL bNTsX9AxWDANMaoHbxdN1cLJv2DGeTNU1qwedD6tFr0Z+gv9yweuPX1QDwzh Naf6Sv9CU0v3yilyPST11/EqWv+FNFuO/R8EGuAZb3zW144VuJLvl0KZboCi d1EP9xb+gZy1ibXwgEZg5tjDovl2CeIUjAU9TjcDdbC3x2P5F2wTdBK4PvMO up6PTL3xXQSxiZgeu+JW8Bd4eJJFegF43ZR49ji3g0jkvjCjpTkIaXFQHuX6 AC6a3HbCf2ch6081dz2lAy5PTZyiY56FtHmDW+1VnTD7pXyLp/0M1Pb3Z79P +Qh6x4aKNHumoSONZ1eWZxfk5EHKrpvfIaVVJOGhXjdcWR+Q6N71DWrHiqan lCigrDsqKTw9BWmGAornN/eAKlcI656eSfiv8GDh894eyFKTWrfrmoCY1WGe G2W9IKfDe46ueRweZhjeVH7aB4Jfx0619NGg4LBxbJxdPzg5CQaNDFKht5yX 7fPpT/A2ZNdA8vQY1ISlOZGEPoPo5KeZFY4x+GVSXkT79xle8tDfYRMfhRmf pKn8zgHwMyScxLRHoD9E46p+8iD8dr9Q3t42BFxBVoXPPb6Am1VH+5+RQWCf vLbcoDsEB0yGt1xiGQDDfVShYKVhUPj05mXJXD8U2sXH5jCOgP7m63aR1F4o KBQ76mY7AhHEySuLBAX6ZqeHSYMjYPAiP19DswuGTFMW9hwdBXL6B21h5w5g b4j5zVE2CqmHBxbmLVvgQNyP2GHpMbBrC/wZUV0PR1J2le4JHoObT++IH7Us A4ek3DodOioYOohksvZFgfjxGr7v9FQgS/SfmC6NhN6fHfahjFTgPGm2IhoV AaC5IDDETIXi2HBvhYthwElTc77HToWs5XivhoBnUCjXLJ4jSIUUg1r3MBZn +F086s1xgApOrf2cAppBhEcb77HPNlSQDBCi2XS9IlbHs8+52lLB5KvCFMOD XMKVTuMyrz0VxoYflX+WeE04HbCwvuBEhQjqc79u1zzienJ+QKsLFZYnxOp+ h5MJrTsnOiq8N/jtufzyzxcRTDvcDOMTqeCjvM1hfL2c8DzAbqaWTIUXYxOR VqZviNXzKTZ9KVQod9/bsqXyDbHo0+TGk0EF56jJKtF7FcTGmU98lkOFhqOn nswtVhJN9a9GH5RRYe693qeQtRri6a0vt0w+UiGjjrU271U9MREjnyzcvcFX 9rDcj1ZPaDU/7B6iUOF5nkTJXeEGYlVC5LBZPxXq2FxeNgU3EE5frrJbDVPB e/aJSIjrW8JAdyTf8QcV3ulXXizWbyLEVaiLXltosOh63YaGrYTHDSU5na00 OPN6nT7qcSsxGOZtuomdBp0kl89+Da1E5E+JpiecNFjJz7UhjrcRLNk3ogP5 aFAvbHVt9EI7MbNjQi1KigZxF6yVPe5/ICrpvz7K1qRBNLn1v82+HwlKp1D2 GW0aGGpZTcRkfSSmk3W7f+pszDNIalNp/0gIHSmXUTlBg9vH/j3lInURj9ye dNaf2+B50KAZntlF4IKU+KAxDbyXHpnIU7qJtzTzxm0uNPhe06WjYdhLDBZF /Sy4R4Oq/Zvo2Lx6iUWvVoFL92lgZe9742duLyEltt8h3p0GI+kd38cY+gg/ U3o+WW8adPealPwi9xEne5OtNUNokBCcblAh+In40Dy49W4ODa5YLFgGygwS mpEtv47n0iCsy71lh9kgUWxeOrwjjwZ8z6vN6+IGidh/wUUNBTTgcrvTG8X5 hbihpG3M84YGTnVzm0rohoi/Sdk5hc008KLotDn8HSYc7KIi/Fo28m/8ZNVF RogRNe9HRm0b/Cck2A1ghGiimFxg6KBBiUltz7TXCBHGyrmi10sDBlUb4Sa2 UULWxeXkHG1jf74J2SWKY0S8toVS4wQNzLGLTc9gjNjGpSscO0UDUbsX1/+6 jxGLr+TmcJoGUWnqY+6tYwQxOhgTskCDSdID5gJbKmFwVntKkWEcRIbq5pfq aUSL4N4uRqZx2NbxgdT7k0YcnhLaeEHHoXvoYmSj0Dgh5v072GPLOBTHzLkd cRsnpsuzD3ZwjkNb3D4RFfUJ4ppflFg69ziQm6PoWOwmiK6L3lvvkcbBVNvg 8I/ECaJ8xmRYhH8cGLCXpYBxkthddbJlXmAc/nEdqTdQnSSSnqoUNe0YB/XH akuc9pME52WJxDjhceh8FpAznDpJeEtyPnHYOQ7SKQuPk/smif8B8Kcw/w== "]]}, Annotation[#, "Charting`Private`Tag$388849#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwUl3k4lV0UxZGEkCJJpiRDSZKM8b6Zrtk1z1NmkTkqJKRCKEOoTCERpRQK WylJkXxUQkSGUMgY4dv91fN71tpr733Oubdr93FfY1c6GhoaPgYamn//MnNv rT8pMExUWbB0lLdMgHqUXZznvmFCvpw9Luv5OERM3jV3OTJMtMj5tvm2/oBq 8wUhB3KYqBR5y5U+MQazDapTVrrDRKBndddegTGQ3J/0zNR8mJhb2eKe5zAK Hmk9Fw2dhomfbiXr4aUj0OsZJKgRMkz0+fKrmLsNA1dnwyQRNUwUSN93Le/4 DlQV1hrFK8PE3yGlj5Ua3+HltiIjqdvDhHfG0jKhOQRrYb/59pcPEwKbspPu tA2C/KjK+N6aYWLs4FGZYPtBKHv2KWrX+2HikKozg3PCNxjbK2zI9WWYWJCM ce3a/w2Ekv12bR0eJjbFFRaltQ1AugtTJcPKMPHiz+uAfoEBaG8zi6RlGCHc 7aj31zP7gVkhX+8v+wjBM98pzbX6FSJYlYZnREaIS5k2PGRHH1SHXKyYPDRC uNHwqxlS+uD3t//CR4+OEC+Dx0Kb63rB/Yk3V5/xCCE7Jfv0Sl0PUB2yKc0R I4TfiKie1M9uiHszztF4eYSofi5wrCGyG14elhuoSx0h5q7xuW/n6QYFxvbQ RyUjhD+9XKS5yWcQqqAtyf44QnTIMzx+MPIRbHcZnMr8NkLUy9SY3E3+COkX slRTJ0eIW2/eUudVPgKz9eGey3SjBKfLdp/hnC6YpXNlCZYcJa5J9gTuON0J kj4Vn30VRglWN5XHr6U7wePTaoGX+igRFPF4fv/0f9Bbmq7saD1KfEnN57ni 8x+8NG0+qRs7SnCFFFWfPN0B6UX7P+z+OkoI7CiLcX/bDgY2JpuZxkcJdR4f Sanr7bCR/azG9Pwo0ew/YhV/vB2CTrfU1LOOEZdrXwft/fsejPU8822Ux4go QkyvMaoNmGmv9qpqjxH2BkqPa8Tb4Pnjaq59ZmNEhtD0eaYPrSAlwBi/5D1G lBoe0GQSaQW230WBaTfHCO3kHYrFg2+hqaitLKx4jNhGX6iZkPoWwm0WRp0r x4gPL/m/p2i/hcmXGrbS78YIqe78e+2PW6Dl+nf19ytjxKed5214b72Bi8pC XEw2P4hnlVaLH/Neg8pvbeq02w/idvXRwjm317BQ5B/3KeAH4ZNYbHL4wGtw Y3++Vhj3g6j5SbVnqm0C9SGHUdWnP4hFMdrlc0OvgObyreqwnePEIKz391m8 hGrlV7+d944TlUa61DWxl+D7e1JC99A48SRi/M7wSiN8tTmat1N7nGjbw9Fi lN8ItZI9l5+EjhPdFfBWZOEFhHZy20x/GifejbF0Z9c8h4pn64WsQ+NE8+UY tYH05zCePzK979c4sadS+ei3wOdg618Z60o/QYRN5U5lSj0Hko368IvUBNG+ sHu9v6wBGLUuMr26jLpbn8S5QIBjB0+aDqZOEIMrvQcaFQDOcJnlrOdMEImb nOSL1+th8rvQEcUnE8TV1FnnoKR6aD9f73h/cIJwqz499KyyDjKezVdlKk0S DdtmkzN4auFDfi9dleYkEexKY6U1/gyY4xr1O40mCY/SfXsf1TyDMMurQ2we k0TQB9LljvUzcJyX2BKTOknc3P/M0CDvKYgddHE7+XOSeDLQ026oUQNV+R2c ajk/idzHf8sUPj+Bpp1RSWIlPwl1aXE+hsdPoDP5EDPb459E6XmmkxNXn8B0 RPL655afBL9MT1Cg/hPYZ2MwfnLhJ0Gf31ri9PoxZHO0QJb+L+K6WeoGizeV cC/utGKk5S9iH/OlidKSSnhGK/7Y1fkXIUmp40pLqITPUxdLpE7/Ip7cGt0e Ta2Ere800poKfhE6mSo7FnseQUzMc6/fK78IQ39TwejVh3BtxW/4E8MUMXCz a21i8CHkBQg61m2dIpiKrCY0mh9CveM5s0uiU0ToxbGivpSHsHhUmeQ3mSL8 Ehj79A48BK/56u06JVNEllyvZZNnBYgdthygSkwTlX/SLProH8CvlFudCtLT hKo0/Rp3732onBtsFpKfJjh5d8Wq378P5BOfijm1aSLCvJaF2/w+WChER2XY TBOWv53sS4rLIZYoFx6ImyZcXtWvL9mWwXddek/fH9OEFOuOzXXrJVByT9vO cmqakFEVC2PpLQE/1iSjY/PTxJNdPCJ0NSXwt22nIgftDDEidzxwT2AJcBgf 3FzFPUNsY9H/PT9+F1QtrcvWKDPEwqH6rpzhYsh1eTBzpWiGUNwHrV4b70CR vdmvrfdmiJuWH/bNjxdBmeXyeFrFDBGwtzHqUXsRPNVT/36rdoZo7zV8XXez CLpkPn8s65ghvogd8yiULQLmjTS1rWszBDNH+Mq+gEIIKjSMZbX4TahvLd/W SV8AZ3Lmoq7a/iYU+TiJ3VO34Xxm5rntx38TGTWhhcndtyHxylAon89vQuJY bGRP+W24Gxxy4kD0byKryrp/yPo2fNXIoerf/01wXXoV2VGdD5SRXzxXNs0S n3ftfETG5UHChfMGF1lnid+eZQx1p/KgQ5gz6jzHLDGixEu1cs4DW2eFH8EC swR3IovpyNE8CBiIrrKXmyX0bA93ec7kws0v3KZS7rME3fyodI1DLky3qV75 r2mWEG7aIBqamw1HTnY1tL6bJQR/VHwSjsyGM6wec687ZokGMeoonWM2bNS7 YlP7dZaINKIzcxTMBp43n8QLF2aJZkbjUonbt0C90bvplMgcoX7Sl5aouAmZ VenrO2PniNxD1vbek1nQnM2quxQ/R3hDqOnEhyxYuhCT/vHqHPHXmT/jXlUW WJoGHEi5NUfczBs0PhqdBdwz+jYsj+cIvUd22ta8WZCxb2PV2tAcwe6XJFBj mgkZtwJPDh2bJ+4dGE2p6LsOzTHjNc8p88RNh+I2s9fXYemE08Zc/XkiQbas i7HiOlgqGt60tZonCtLiZitirgP3p30tXX7zhKD9j6uXDlyHDPbBvc0580RY nbDzhph0yIim9t1bxXpXb/pX6mnARC96SGTDAsFZvKGR4XAanIlZjclhXCCa v5oFK+xOA5sLJRLXOBaIoNXxrqHVVOC/SB8WIr5A3Pz2R9CkOhUK4qp5VM0W CN5jQtfSpVLh/lVBy0/3FoiGvqAKj4MpILhtsZT6EPN7nKFTIAWSr7Wuv6la IKaVWU9ZsKdAQMqZO7UvFgi/iyufu2augUxa50Le5wXClp5rQPnxNXiacSnN m36RuOeRL69GXIOmnOkOWttFwntPdaOIw1U49arSbsZpkbA03m/nQ70KeydC xwbcFwmyoiJo+thViJGlXYPARcLW11yuV/gqHGvdKh4Rv0hwf1CtqJ5Ihtpl 6XPLTxcJP5OYeI+wZHhoFrx/ducS0Ty667O/cRIcP6vwZFBgiRB882xqSD4J tuatkh17l4gG/l8KbwSSwG/ygnnFoSWCZtuD3Wo/E+FAdPp5X+0lQiuy3mtT XCIUP6j6NBG6RAwkOJ8613wFcjYvR3//hPmXC3quWiZAcgvfDt++JaKYM9yt Qi0BIi8fK/kzuERIXQrmlzqYAI6bLrez/VoiHijRbudgSADBDdx8CvR/iLGL jonTlfGQu3zkyRWpPwS5PBhbyBUP+T/8x2Qv/yEGtly4UjV6GYpe/9C7rLhM WGq/nD5SfxHOt80sLhLLxIMrpj+Syi+CbdeffDeNZSLSOY7DN/sibB1i+qNG XSYYV7da9UVchLA18cI112WiOWd7eCh5EUyOeK0GXl0mpJq4r/a8igWa2+Nl 9mPLhLyfvsb4lwtgEzHBJpO+QlQf2nrv5L4YCNr3bZr75goRaadzeZA3BhI/ fuxYzVsh5LUN49rYYuC55Iv012UrxIBY53TkbDSI9mfw27xaIULjlzgO10XD LKEpGTW3gu8xO6DQOBriafP0243/EtXJYeyrsVHwLMY8wXvLKuHH79bbyH4e uFpKT01yruL3y839CgznwW8LrZM3zyox8G2id2YlEoSzSo94710lBMt/PM0Y jYSE+zT9J5RWifYoivl6fSTYfyk5dMId6++f0Qj1jQQ6qfWPnrBKsH/vYThc dg60e+7sdvddI9hFNu+6ERQOg6/GVe2C1wgpk2u3+p3C4cyDAy4mZ9eISFYt wYeG4XDvwqMi4uIa8eCnXZXb/nBgl4L93DlrhODuRi63oTD4HPPxyJu2NcLx p+LAhHkYuElu1NkvuU4km+mlWFHOQvT54wFTk+sEzVD3GSr1NBy5uuNrfQUN 6egirOn+Khi4F79EnK5EVmd6va86GJZtswVkqmhIwf/uZ+uWBkO92F6nu7Wo 72V8X3gtGHITx2hdgIakWeB1648Nhqi50nz+FzTkg7Sa9lNng0GzQfp7ymsa st2Regtcg0FMZCHGoIWGpN4sU/a3CQbmhJq9TK3ILywlzxsFw3sL0j2iA/Pm 7cNrVYLhYd0GRoUuGnKalY9n7EgwpO55XTz7iYaMPDwVHXAgGCyn9Mc9+rC+ Ok2pgC8YFM22xu8ZwP7ira91uYKB91nn/q+DNKTUy6+3jLcEw5pgxruMYZyf 9W9vNWMwDMTa+JiM0ZADieYFEXTB8GKSn41tAv3vBTgK/gZBgfFgefNP1I0v a4kvBoEnv+e08iwNyW64IcbkZxDoxUhcXZrHfp2nmpfGgkByfOrQoyWcv5ZK XfseBOzURx0+K6hffaHo8i0Ifj8+FSi2RkOSn1eL9n0Ngs5dipxDNLSk306Z SqOeIHhyfrXy1gZa8kFf+vnuz0GQMdpgZslASyYXW0i++BgEZ/RjFrYx0ZIN G4u7N3cFge0jyvXWzeg/U5P/5L8gUNm5Wf4SGy0pmFxX/KIjCATPtX1W3Yr1 b4eZpZDphq+eXuWgJXMrncfWPgTBdx0znmouWrK908PxIOpND7ifBexEfihy 7TlyMVevzQFezOtqu/kY8+PDcv6O8tOSkY3Xcv71Pzl4/Fb+blqSpC+oacT5 qFoiKnbC6BeSYf6K80uX//i6QxT75QY9sMb9ODnLznWI05KOTNffKuD+C6f9 BK9I0JI039+dOYvn87n/8HPKQax/QukTGA6CpxqLTnTSyMwK20R/BMHN0qd0 dTK4r2uH/FU8/4itEbdD5HA/Iw0/+99B4BhyTF1akZZkN278lIj3pdpHPzx5 FHk6PFFoNQj2qjVfuEPQktOPix7t3BAMjHfjRY6r0pJUMV+3IKZgGGczfM2r gfnvGJuk2YOh/EsX4zUdrO8KZuzhD4ZkMvOunj7uq3FP/JVIMAQU2epsouJ9 MJwJ4jgYDKYsghPPjXG/2+yMTXLBIBswFB9mhvebk7ehj8TP1+ciCTlL9MfY x1rq4OdL2at1xhrPuzv0vrxpMPTePnDynh3miwplh9sHAzDNsLk7It8Wa0j+ EgCk6v63ts5YX+k4l94aAC/OuF40dkNWO9a43hAArya615W90c+q+PRPcQBo CnPWHvbF87OdEYm/FQDNtgah4gE4j0lS1blrAfC29cU0Zyieh3Nd67XwANBj WL3HfBbvN2XyekVgALSpyHnSRKA/hdwi4xUAH+6XfpuIxn4yaYkulgFgPDZ8 61ss+sdkerZRA6BTUND602XcP1POfq9WAHy6mtrxIomWlOIsSA5RCADLlrbE 6muYN3Mvpko6AL7QMemWp+F5z5vL20oEgK2S2qaCDMwrmml1FQmAvsDwxswb qF97594pGAD296rOJWVjf2U5seJdATDwfUbpQh6ywvlD37gC4DifxNKZArwv luXCc9sCYMjMrdLvDr4PcuZONFsAuCTm+rmV0JIDjk+sfjIHwEjTFwnbMjz/ xYy+2k0B4LHO+cPoAZ5X0pjZb/oA+CFnWEh5hO/j4dz3K3QB4OV32Un5CZ7v BEtZEk0ATBY38h2uwfzGyPbFNX84+W21W6wW61/m+Det+sPUTvl0fsB9z9Q8 XPnrD37GAcacL/C97w7Q0kL+HXePjfkV7ttGE3L6pz8ENY60rL/GfcZszDb2 +8P8iuDF+RY8P/fLdJPt/nBKxkZtohX7qSfdOtDoD0veaesD7f8+/4EaLY/9 YaWPKfTdR5yv5Zfc9pv+EMalLvOiG8/jy9WGxiR/WDOImK7qxfn27O9ojfYH 2obfHrcH8b60LVnmvf1hU36P1ZlfeB486sdS1Pzh0pftXH4zuL8ceWq3oj8w c1A7XOeQTY5LsBzyB9aYlzpGy/h+gqQyFgX8IbF2jYGyivVeY/FLO/yBfV6+ 8SgNHdmu+TXMnN0fONzKlMQY6Ej2qzc6xOn8ITV7dJGPiY5smD4ZnLPiB1yf dldysKDOnXE1YN4PMrbY+jFtoSMjafk0b0/5wU6tdIn1rei/veHhoXE/yIps H5vjpCP9/hjN8Q37AW8Nc+H4DuQVVgmPAT/InlF3GuDBvDzlUPZePxDYd47v Ix8dKTUyssj12Q/Igz/sMgWRDx6zfdLpB8dlTLJt99CRA+0bGYo/+EGMQt1X ARHsnzdjnf3WD4pURAWGxOhIwf603sF6P2hWu+pQtB/1gjaugId+MK61kuMp SUdStX4K6hX5gaTJe8Hpw3Rkctpuum+JfkC1VHB6JEtHOv7q3nQz2g8C7G7n nVJAPb5OMT/UDx67hwitquA887oXkp394GiYgDCzDh1JQ55QXDzqB/bnL7u0 6uF5+jvLssn4QWTsbEGyIR05fX8rj/9+P3iZ/HrvDjPc92HXPM8uPxhJO+T2 xQLnE0vkPc7hB4w3bhTdsqYjyS2ql+Y3+4Fuoa+osCMdmcvTuGPDX1/wLul2 Hz2O+r3+grlfvpB4X624xBXnHQs/dW7QFzpqdogfOoH+nS15Tm99Ya7+vOec D3JwnWVNgy9wvZy4W+WH8yrWsZU+8QX5N2bjZwKRxbx/y5b5gnUb7FM5hflD 3tJ2Bb6QHkAjX9SG9dFDk6JvfMBC51tKwQfkH7w+L+t9gFvoxVR+J543y97x zY994MuffN28T1hv8T1rrdQHbnyIvpPzBVlN7cnN2z5ge9dlQ3Yf+lX2BY7c 8AH+8xoONwdQrz3P2JvqA/2WIs+yhjD/kHRZeKIP5Ept2pE5gvo24Yy3l3zA iXEs4PoPfF9tBE1TtA8IDTS3pU3iezhzvHtzmA8MVd3dlzqF/rjcxAMuPlCQ FBd77TfqrPp+k3o+4Op+YjB5Hs8riVKhJesDIoSeStISnn+Gb4yqoA+McR3I urKC+qMC3i/MPnD3F+tC/BqyT9O9LQveUOu1q9JfcgNJk8Z/ZWH1BAwdl5VS TtxAkkGnVVosvCDLninjwNUNpOPri7kz+l5Ate5d50vdQEZaJivdU/eCTeb3 3dmubyAFnyodXVbygnqjqPdrmRvIhovS73sOe0GQvpnc1E30m/DtNpLwgv3a Yjn9ORvI3LoCe+u9XjCovsLQno9+C//KRX4vyCDbTjYU4jy1+w3Fd3qBwdG8 jw+KcZ6oMJspDi/YKB+kkleKfi0WBp0tXlB7mFJ0tRz1G9FnFTZ7QcBBHrao CtR3xI/VbfICsf0/gwMqUf8UH3VxzRP6RRr6jldhf5WfD9XHPSFdKEXD5Cn2 M1iji8Nfynr8bmVqdRvIgR65mxaNnkDHo7BdpgG5ZVtx2QNPqNnOEi7ciHnz m6gJ2Z4gwvpQb+Mb7HdGmOf7WU/oZbxQOf8W85OVk+xOeEIKvSXvSBvm25pq Otp4As3f1YmmTvTH2QvSKXvCk8V2k6pPqJeqpedJeoLP7O1nd75gvzmmuRZB T/gyrh1/aQD1BD7WWgZPqOxO26czifpyhgpvtwfEUueFLXToScEz6xnNoe7Q x73Evl0fub+d/YivO8h8W/7bYUhPkv8JiHO6ucOgP02XgRnqfCer95m5g4Li hucslvQkjT7TyeP67pBMx1DWYo16g9UxVk13UEnZfEHTEfUDxvW18u6QZsPm T+9MTzb8TSt6Lu0Ok3u22r1wRf1dk7jiAXdQm+TQjvSgJwcipd1FxNwhq5Lr iMoJevz9JRoRu8cdZsJ27v7rQ0/mmv2+Yi3gDloavKxP/ejJSKPBx/m73CGb VeBPSCDO+0N9uwO3O8x37R4+cgrz2DzeJm13B71s4Q+zoZhXnLkow+EO+W6i dRVn/+17TNmFzR3+SO676xuB8z13dmhZdQPqokTagfOYR39T+sZPN7gDB89P RKNfh7XzY58brF2U9rkbi/NTvziGt7nBPW55jb0JqJPbKjZXuMGGb4qHhhJx vtgX5bP5bmB9V5kv7yrq6lYslDQ3YFRUm+e9jvN0v7SROusGDnSa375kon9r /8Wmk27wpEWrNeMm9g/xutR83A1YU3RrzHNQr798RtbCDVxsDAo583G/qw5n 2fXc4Jjbnb0df/B8tkp/2KXkCh/2sNFzVm/E92lUHsfnDKeZPH498WQgI+e9 fdY9nIA+bUOsrzcDKTUz2z/j7gTJgjl8Yr4MZDv710PKyLz3FB8P+DOQ7L0q K4SDExTLfdTLDGIgp3sVtzmaOIFMo/93oxAGkjx2j6eD4gQNBqxhzGfQv/G1 WPpRJ/jsql569hzyreYiTlEncJnpV5WJQn/IDuI9rxNMh539MhnDQNI86j/Q u80JGFMfMtnHMZAPjt5z+LnuCPIvBD3INAZ8T8PaU32O8FK/dn3pOnLC/bcq Hx2B2m1xvSKLgWyouKbxrc0RPKYTm4RyMZ8vOEDguSPMnd1n35PPQDo69Oo/ e+oIkZua5lMKGcgBmgMBJZWOkMG/KryxFHVH65Gou44gXJJRW1fGQPrx5th7 FzjCgyMypqce4L6Hb/ndzXGEo8/fT0g+wn1KL0kp3nCEZr0T0aOPGfD/g7SH /NcdwfQzw67cajzfx4vMFimOMOCc/9DyGc6rPaQ/lOQI3lPKOlvr8bzlE5Ia Exxh6Uz3tzcNeN5RIt8XLztCyKROV++OTaTgSSce/UgHyNexu9TOs4mk2cV3 9WCoA7QV+yq95NtERrI187T5OcAfhqhfVYKbyIYfFaNiXg4g7JqaV7pnE5mr s0+MdHEAamORaY4I6m2RLJwODnB2d82mFPFN5IDIxlcF1g5QdO7t01gJ5O8M Ub/NHaCjr8/nzMFNpOOTrsBVEwdYVZoWPCmN/Y8+b3ll5ABiWXSdTkfQz7Gz SpfqAKZLnBfN5LHfkIRnkqEDnDMXVdRWwn6aOidrlB2gpFLh51EVZP2kzGUR B/i4TS9X6hjWH207PMHuABLv/Ri4KchZtl49I/ZgcSC6ZrMO7u+i7NTTYQ9R 8Wne63o4T59iWDzYQzflaceIMeZdL//vb5Y90Be9u/DFDP1KT7zqL9uDFH2/ fJslno/O6hep0/YQ27Ah57E91id4/xWztoeH/FzGd52Q+UQY7+vaQ1+Y2MZb Llg/cix/RNkeGHsUq5PdMT+Fcem9lD3IKOifiPFC/dML2RPC9uBw3YE/1Afr PWviq7ntIW7e/8MJP+y3KCNczWoP3yrS5UxO4T5NfZ1tf+xAN2Qw800nno/y /dDaRFuQ3efjteMCIxnZTGvILmwNeaIidRyXkMs4WraLWAPL3v4t7PGMZIMG f/oLMWsIEco4zpLISA50v+nhkrCGQQGjx4xXUb9b37hNyhr0+ZgZN6Yyko4L BaeeyFhDNU+jNe11RpJcEuajU7SGPdxhZauZ6F8f6Z8nrCFx+xGa5ZuMpKBC yuhVTWv4s+2X8UIO8p8Pth/1rcGF/U7h73ysD9L1aDSzhvesjku/CnG+X3ek reytQXHzTt2JYkaSpizp+3V3ayhk7Lg1WspI5k6UFJ3ztwZ2hvjpoXLk0bw8 9jBrGKFZTeutxHqBl98lU6zBaO3x2Ocq3Oc7EVGbYw21KyeVup5iXrD87Ow9 a7i2MDDQ2oD9G8ltTm+sYXU283BLI87Pk8d6/bM1eMwYxzY1Yb6iwMWQMWtQ mXy5H95h/ovt1+WZbeDuj/CIZ+9Rf/Y1YievDXCOyn6o6sB8X7eLhZI2MP6t +NSDz+hXM7kFZjaQ/inhed531F2ZDGnu2QBtlwZn9ijOV3rwvkqjDXh3rLll jaP+3DxYvMcGVFv9WFKmMd9S6yM9qy38emFqEfMXz09b0O5TqC1YNbCWRK7j /IyVDuFptvCyrulvGB0TmZsXx/rhoS1kVcvnBzMykQPUPNaoKVvQLOf96cbJ RNKU9Gzd4m8HFaVdhPMOJrJh188BkRQ74L2beM2BB9k9OvfnYzv4fZtG3lIQ /Wf7Uy6t2oFdXk2c6R7Mfz/PbSdkD83ZAX1UESZScO7QoW8Uezh8c7+Uvjj2 O3p04/aT9pCd+T1KW4KJJL/W1i2l2gPT9VtdGgfRv9s2OqHWHoJSzcVUpZHX zDfveGoB/Ve3nFU5gv2ZvoR9ybEAnaTmVkV51DdVfBWNtYDHCecF5ZRQl1Mz Xve2AME4xcDDKpg/v7jkaGoBizH3uCXUcV5pN9dGYQuwLLII4aEghwQVS7JZ QPVruo+MOjg//7dsgSVzCGW2Shk2RL6hJpzSag7LSRvZcmwwT0iS4WWEOVhX PPC+Yo/930tZOXqbw9MOm7dnnXC/Qh/baGtzOLv94SVLd8y/u+G3nbw54HfE hm2BTGTkaF6bx7IZ2NYyHac5hfzpFLfKpBnU9VU2/ArF/FynLTe+mkGE4OaI txG4z4ORqMmXZvD12JPemvOYP1il8q3aDFScnZSKY/7Vs4jYl5nBemHVUkwc 6o3356evm4Hj6+MWgVeY8PtThm9Tohk0jLE+cUpGv3rpr8IYMxBkruGkpmC/ nvLLrWfNIHK/S6BKOvqXvrBGBJrBgN6WDolMnH/n26yqE2Zw7ORTqV038TxK eKhnXMwgP8k1iSkH/dKu+k12ZkBXwf5rMQ/7b9V8eMPCDI53PNMbKUC9wzJ7 2cgMGmfdSjvv4Hn9kD80pGcGwtu3MTeW4H7PzseZaZlBjGydR0UZztPf9sZI 3Qy+W3i8znmA/rJnbJ9JM1A/zSGS+Aj50VDomLIZFGTVx4Q9Qb/5oGi0khls rPUc8qrBeXlNlIoVzMCtj1PVqhb3Pf2hw0LeDJrWIJcCOE/nEus1OTMQETyx fuQF9n/uwmKBHHuMy174FdbfePCzCHnk+PPabc24z0zIh/NYT4nx3kX7FvcX Nf80ivnFhTvOTLVi/+cj/N3Yn/H1i8997Zgv9eq1mYoZeIz5yL37D/XxhBm7 Y2bwhmln+tOPWO/R/WwG99u3/+VccTf6hTU1t2qbQZyer8n1XuyXfvJBrb4Z jPvwPLzQj/OJ/9o5Z2yG7/0Ve9Ag7u/mmF9laQYlD/x8jw+jv8LRc5ODGWzu 2NVGHUNOi0sccjUD79kmCWIC9z97+pCejxm84wyIP/AL5xlo9j8WbAYSsnzj u2ZQV+D0bQw3gwSLZi3mOZyHcVGrI9YMJkMD7ywtYP8iFoGTyWagn8XPMPoH /YWnfCqLzKD82RuXrr94Xt8/naVJMgO2vqDGxnWc725iWFOIGWx5a1h0jo6Z JB+vXY47bgbsNfsuK21kJh1jKvqqcb+taQMGj5hRb+R+ZLrXDDj19b7kb2cm GyjnUuO7TWG7kmidPTczmdudblzw2hS4xOlyeXYxk4JjzqxiT0xhx8Zq12uC 6C+36PRLNQWeuj0z5/dj3hU5EWZzU9hVuvafsiTWH0vQCqeYAm9m95M/UljP zsRvq2AKfMFJYf6yqJ+rVLbjNwV+Zy+HAwqY133u8bmtyEYaqj+UMK/wnhLb RlMQPLCyyekY+rlc2nx/msDuXR/HedWZSZqT8YxqgyYgxFTR+lkT90vTvxf1 yQT2DLulUPXQ39YTT2k0AeH/jp1iMWQmI6+pz7+rQX7Oa9VshHrY+T3wwARE bnXwkxbM+H1cIT6eYwKi8WW0f62Qe8iDezJMQOz0pe9VtjjPdJ/pm2Rkd+fX gQ7IE+YVvZdNQNxMpeTgcZyH74yNXbQJ7FPbeWXCBff5st1LNxz50JzvHXfs H7Y0WxRiAvsF3hs7e2F/h+ktfgEmIMFackTAB/V3bzuLfEzgwEoMd48v6nus rHQ9TUDyh8NKegD2e+JWaeeK/Enxq3Ew6r0v/vY5mcDBV9ufs4Vi/aiS9jt7 E5B6NH275QzqSrkPxGyR897GxobjPHz12rNWJnAoqchTNRL9C877JSxNQDr8 vN5aFOpsjt7/mZvA4RO2B59ewP2fRu75YWYCMlZy205dwv0cU919/jFl2/yh eLxPVU9DR+QjR35++nkF61+0zjxHlt3T/PRuMs4rm+x6DfNkt96+5ZqCedMR zz9YmIDcenjk7nSs1/LgjcR55H9aOvdl4P3l8ly5ZYPcc1gz8wb6FVz27cN9 FN6wiZtlY/9THJtFcF/Fqh+bt+Yhly1oXHVBLnz5691t9B/snTnhYQJKKTkf LhVhvsm1vU+8TeDo+TOV6ncxP2R00dcf2dfsOs095B93z2WeMgFlO6kzteWY x1D8n3SYCXzliwp9VIH1L0+WNEaZQMTX/06VVOI+kemHP+N98+fsDc6rwn6H jyT4XTWBeoeQwIynmNfr+CEh0wTsBd/4J9Wh7nZQ8EC+CawN8PjFNuD5vHuS ZlRqAtl53ifDG/F+trAaLleagMrxeu+gJrwPBgkOtzLsL8R+4sQb7LfF2GX1 OvYfcvI8/g71Tv/kTfi+6l02ulE7sF7N9VuQNda76zlIfEW//uWjT9iwXjTb bs83nIc6oTT61xgixqZseL4jH+wcjp8whnrPFEvGcaznp82TajEG+33D5uuT WB8qNiL11BjWxmXNFqbQr3pLubDEGFS8vxh9n0d/+ZH48QRj+CohQe1ZwvPJ Ofr4WQTm/ww36FjB+W5YWNH6Y/7J3boNtJtJQdbkkHFzYyD8PdRvsm4mB4RP D8qKGcPAoaeqKeyoMyQ+Kuczhsjfm4/FcWwmIzept93gMIaGwPvKoTs3k7m0 1lofaYzBUYb2qC8v1svf6tmzZAQ088aKbgKbSRoJLcHRKSMgTy3Imu7dTDpm 3dj7fsAIBmS1juiKIQeK8sx1G0HkYuZh1f3ICd9Ek/4zAsHqiUMKkshhzzxy W42gIVRZSuoQzkN3Z0G02QgcFZIkRWUwvzBtYm8j9lsekOCXw3kETjtl1RtB 7lPp/dsV0b9VLeDCU+x/NkacRRnn5x2WG32C/ZU+im4gcd4B6jt4hP3/ioos qyL/DdHeUoH9604Lz2ggH9R701WO/cPfCo1pIS/Vu3KUYX8Vvt39ujjfthfy zaXYf/2kwEeDzWSDAMV2rgT7QwNfqxH6q4jx68hk5Dbel6bIV279fYg8QLrw PLNA/1HjMg2sj6R9wv3QejNJ+hpyUe9h/xebdty1w3lfxhp1YL+GKKvtuY64 3+iP0Hf3sb9aKcd1Z/Sf8CpSeYj96Ve3JrphHt3yrNhj7P/SgP2CJ56PWdzZ +GojOHYhly3MG/VpFgu3WiOI2iZ0lfRFdjtx1LvBCF7k3ObYGIDzKcyI9rw0 AroDe9PfBGG/pWrJR2+MQPVpEXdiCO4r0+c614b1FLEbxmcwPyR0MLvTCBo7 7/LtCMd5NQtrHn4xAvWpe0K5UZj3he8d15gRxIRJFrpcwPuA7EPu+B5eMT0Q Fb+E+c67NHcvGgHD9UMlP+NwHqtyfo11I9AUfiTx8ArmHw5o79hkDLEVMvdP JeO+bkuUd/jeXqs8OaSUgryH9VzCLyNgfCdXuZ6G9ZUTs8W9RqBlVSP7MgPZ Ibhm91sjuDSiWHPpBs6vHz+4UGMEbwJrlfSzcb5xtiixu0agkwjkx9vI7UO+ eZeMQK/xlc5YOfp/u++Y1DWCBCql9V4FcvMV+jvKRtDa12zoX4nzye1frz9o BAZLb02Xa5B5jD0YthuB4YEOe5ZXyPm/eeaHqJD81ORb+2vkqtCYrM9UaKd0 Oae14P4ekddutVKBevyzB3878ljmaG01+qesJgY7cH75k6bd5VT4ENbjc6fr Xz/tCpNCKhhf/xog1YPzWmTEHk+hwjVhx/m5Ppxvpk14MY4K/1V8C6kZ+Hf/ V9d+RFHB9N33MNUR1BVVHowHUiHVym2d4Qeen+ZE2ZI3FbpGRs+/ncA8zrvS rm5UMKediDWdwfv808NrbU2F9ERvpp1zOM8FjuJBUyp82vUrvm8B+fvAxhZD KnDf9WXL/4P1lL3a7LpUsJSdSXb7i/rU85jHmlTIaAzg2L+OvDvjbY0qFbqp c2lTtCyk4K7LUnwEFXi+BnNX0rOQkYKnmvqVqGB9YjErdBMLSZ7FrxgFKmQt hfIpM7OQubZv2qNkqdBzYTmHlhV5+28vZxkq8HKECTVtYSFp+m+cvy1NBdvc 1YK4bVj/+46o2iEq3DxwTtRwO3LBoq+qFBV6n9KUcHCzkI77vH3yDmK9VpTE Zx7kNyPSjsh2XRvu3+RjIRuatP6LQL4WG6JsIojzflNY+IPcLDfxlmkP8oa/ 1h8wb23M3rphL84fYsmxEfvLZHWMnRLD+kjuQ2mHqeClqxlyYD/O57Wx6fwR KuT+rdn4/QD6w8eGWuSo8LHsQGqWFDJd/E0/RSqwOOQJGR3GerUntIHKVFBl 316xSRY55fDeDpIKoc8vEfXy6Od7x52oToXygL+tQUrIFO1fRVpUGNrjZ7tf Bf2mQVW8+ng/XUPj30gWciCaK3bKiAoGsRanM9RQF/1zQsCCCk/HVNI3auN8 3wpeph+nwnTmQ+FaXTzfFBqbrx5UENEVeRRggPt+fG4Y7Yvn+zfzmLgR8mJF 5YVTVLhaxtreb4L9NbJuDIdTocn+vH26Oeavq3HdvkCFv1vmJ/WsMI/25v74 eCpIP/c4u8EW69tWqPRnqeAR0Mv01B71RF3d915UyN5DzfBzwvuSjNw3ie+v s7NRRNQF/VWJa9b4vgi5UrVUT/QXs76SPEAFrr+nw08G4fw29ZxOPwxBr+zn 5r0hOI+kQ3ZdmyFE2Ttl9ZzGvH30W6HSEH42aFVpnUNdk+5QRZQhCAXUaqyf R/3aQf58L0Ow3CPV+TgG84SZguRNDOHlhR0zQnHIYx7dZiKGsCwbf647AZmv UayP3RCkxtZYk5P+vRd/R+a/BnBDZ2TfairqfwMZLToNIGDLY5dPOci+hdW1 CQZQ3CA2eyUfmVmp+VSYAXz1v3levRD77w2GT94GoN0ZnV1Rgnm8574nGhpA xIVFCY8y9PPuMR4+ZgCVsiee8T/A+bM4RIdkDEAw0/hz/ON/7z0qtovXAMx1 mtxUq5HvdFFbthpAworC/NJTZHE+OvdNBvDiXln0/TrMi1V7WrqqD0t2u7e5 NWDebenMjDl9kNySlsvbiPr9zvoDk/rg0sB48L9XLP8+/7onvutDln9Y3eVm 1M277Yz69OG90LQu+Rbredl3DHzUh4KiL/OH2lCvK3LJa9eHM/te5ez5gKzI nir+Vh8My+9rb+9EPsjRFtqkD8LSWbMMn5C7g5WSXujDn8cxt5a6Me/ZGr0P 6EObgi9lvBfnPxxksq1OH27XWc309OM8t28annumD6HH1G+0Dv77fKkIVT7V B/1XkhowjPUzAnMPkIW0d049GEP9zqZfwehffLchM38C+dcz+Q2Y9476SzX1 F/r3bFi1xH55nZ8nL8ygXnrbOQTnOWXZmB4yhzzjnGaP8+r1lpGei+j3Z37G hvvsdswYt15G3dNu9SLuuzAUlaq3ivPa7LnQgufxzt1HRYWGFf/+Ejr7Ec8r b8Ji7OAGVrLh6m7Ge8OY76t6bTcD6kUjprq/9EF3VuIoBxMrSaMiH1e5qA+C ITtG6FnQ39XbPkprAC0RkwpjW5GV5Y+UcRtADt2noW5OrF84W0DsNYCg2OdX 3u5gJSNFJZpvSuN7Yr4nV8eD+pEtb16SBsCfmP6tnA/zCybeV+H7mt16Pj5X EPPg4sZTDgbQnHbiyLU96JdzKD7kYwDZO837o0VQf/Uwm6pnAIG3yMvB4ljv ITu8W8IAtHbvP+wugf1MM3ILWTC/cHuf5UGsfxE73/NTH5rvjUsdPYL1nC/W HB/qA29t6me6Y8gf4Gq7mj7MEOei5tSwPi2F96e4PjQ1ekqMaKLu5+pWx64P fm9VIt/ooe5R++b0gB68+jImmmyJ+cvqHa6X9CDL/r8P523Qf2qHpXCQHvgN 1p0NtEeutnpx3VEPeMavvTd3QSZHPt5S0oMpn/DTWu6YN5TQIrVPD17OuO9R 9EI+aHvk9E49OPnnaAifH+YfPbBh/7IuqIWL7t4SiHw8/n7qhC5w0257S3MK ebLFtbJPF37G/A36HYr505k6ce268IJxlP/7Wcz7WBTF9VIXrid8aO6K+Hfe OdJW1brgzV4b8Po81udKnzMu04Ud3FebSi6iPtMf6ZmpCwkepXOecchMv7l5 ruoCXc0rIfEr/94Dn4jXZV0IYRqgjiUhH5RosorShUmr5Yg715A7f3D9OKsL x0s4y9zScJ5eQVnuU7rwaVmyZ28G6oI3j4366YKerjbTcBbqbiIW5t447w1n uYJbyOfiUl09dEF+MtzVORfnF0rZsd1VF8qOZqQI3cZ5RTevuRzXBaErD59/ K8Q81zpXM0ddyOh7N4XfxSRNQpD3iL0usEmO8jmWIgeuHORGjo6g1RMox7xB 3rZxO11Yatt15usD7Jd528Ue9ZMCssW3HqGebL010EEXvvtSP9o+wXp7lt9i Trpg1eBFz1vz7z1FC0c660Ib+wXpnmdY3xnfFOqmC+pOOY5Z9aizTs1v89KF pxU1iVbPMU83tN3gpC4cpOus5X6JHPE7UCJQFwqMf41/akK/pthaaagu8Nxm 3Hn9Depnvie0RuhC8qwQxfwd9l+ZUb56QRc2qisHb3+P/U7uOriYoAtnUi1u d35ALtsfsZ6qC9Pf/T+kdCIn/dQquaULbkcS1o0//Ztvf9likS7+Xik6sO0L 5h+uaB59oAtNIj2Xk/uR62pvPmjShaMh81WGg+i3/Jx8uUMXKl5vGWEbxv7e bo829uuCCPc+zrZR1N0PCe2d1IWbHuqqV8Zx/rP0K6N/dGFbjb2f3k/ka3o0 l7bqwUWm09mbp7H++fWb4vO68Ncq5V3Lb+TNz7fZdOtCQEnZ8uV5zFO/E85b rwtjy6/FtJdwnh9iSz63dcFOd9CccQX1VuFbhvjetCa5HsXSsJGk98aORnNd 4JeMPBG9mQ3/Hnz1KWBJB1IjsjJV2ZDZAtK1BnWA6X3la9qtyOqJ5vff6cCc 7489kVzIZkmaUrd1wKthgzGxE9ny0D2dJB3oZ+ePXNvFRjbo1EUsnNWBlgrj 3rDdyNGsH+ksdICk82E+KsxG0nAkJTtr6MBj44vyKyJYzx68x1xGB3Jnn6We lkB96w/lGQ4d4FL/+EL+INY7y6xk0utAfOr09OIh9Nfa/+2c14ZTR/bqn5LD fdTeHqH7og3xlk/S/RRRv2/qN/hWG3LPUga8lDFPjneLb702VGZ/FnclUd9g J1NcoQ1vnnsGOqihLmpMl1ioDV+/L9daaWK/Dtkbglna8HtTAoOpNuqCmrsd k7SB16A8U8sQdbkP4SNnteGQPzGkaox8tDHjQKA2aKa2Syibof/4O3GhE9pg U+V0Ss4S55sRNXnprA1+X37DIRvUv7PLcdppw4XVaCYJ+3/7vVjcaqENWYLb TUSc0J8fUlVnpA3lakU3BV3Qf/dExg59bWh0kxvhcUd+2F0roK0Nny83H9zu hfz1r+ZHDW2YvGd1eosP7kewWympaQNt+/gLJj/kLYbbDY9pA9fsWRb6QPST c7e2ktqwn4vVfC0Y+wkpbY8mtIFUyM5ZCkW93f7WbWQz24M/fp9FPTDLMhD9 XucapH9G4Lz04p6/Me9cvlHY6HnkEY0ZQXVtSH01+OpbDPLv/RzrmtpQPBa4 pfci5kVxzSToaEPd5o1WH+Mwr4gsazHQhg7J9Pz2Kzif/7BntYk2jBiJTrYk Yz0LqW1upQ0rQdVHXqWg/2m8T4GDNrBnaJ+D9H/zbPiT76YNe599aa7JRPYf ZDU+qQ2KX09sq7yJ9a3ObRWntMGQdtWmPAf7l76wfXFOG1yEEwuL81EXV+yJ vqwNpykCU/mF2N9lo/dCijYkej2Qv1WMerzDIZ4cbah60PH2ajnmy5cNBldp w7v/nLcnVGDeDy6O8pfaMLAwZx9bifWcf2kyOrRhfmdscWQV8uPrbYe/aQOz 8o7fZ54ic+z8ufc/bRBwLFYKrsN8K7YuB8yTiVa44NuAeZ2RnbI3tcH+jQ23 SxPqz+6m1bprQ+DkpJP9G9SPaqadwPO6tCWi1PLdv/cqIVZ9RBsqzHJV9DuQ t+VG72PQhqbQQ5coXf8+n5xx1Ckt+HLjxYdjnzGPNjuHs1sL6Ae/u8h+RX25 LjCkXAt2bjxVLvUNWUfRjytLCyTFNi3t+477KmQsmsRqgeVJ8XiB8X/v45VQ qaMWlC77VDAuYL/gEP1WXi1wHJc8176E+S0P7VzYtIDry5Rexgr6v7Kfj6XR gsga/zFR2i0kGUPj5j1CgSN3pZ9MbdhC0nxatJL6QoHxjNnoKgbUib5X59oo YBoaLEBhQX6g7PW8mgJMHrI/2bYgW/F3PSqnQL3F4tOPW5HPVfNKF1IgiFJ9 KZtzCxnZo2J99CYFxOVOm7vtQN31e1FHCgW+iigKS/Jgv66eXfPxFEjlWpmZ 50V93KLjdgwFtBlqoU4A6x/HD30Np8DafNiVC0JbyIZfdz2KQijwaFjZRn8v suvwmWV/Cnh0rYltF8O8Wb/DPd4U4H8FC737UHc7V6rlQYH/KiNfFhxAPUPt r6oLBS4VHLvmLYV6yLRKiyMFVFLpHGUOo15fnfDVjgKz0Y0H/h5BVn2/ds6G AsWBMSuN8sjDbuXlVhSwc9Z4E6+EHPuw0suSAttMGK6bqGBe3/d9lRYUeK36 2mXXMdRfSu2LRw6TviQ9pIa64Ju3U8iHhLRpSjVRrx0QG8T6ka3MbQHauH9s ifVxawrcpH17Q1EP9xe1OuNnSwGjmXhPOkPUrwvksThQgOGbnlyLEdYXSY3J HqdAbTvrxmummL8ZPKZcKeDf0NZhZYH17atKsl4UEHmQlLvbGutvCpzd7EuB nhzqyR+2yCEWhG8QBZKTth6tcEBm+pzndIYCGuc6mE4fx3qezmeDkRRYPpny iXTF/IcRRb8vUuC+vWkhowdyFvPZq0kUcDHYHtjuhfOcKTGG6xR4f+A6m6Mf 1m/67dt8lwIxfJa9ooGo66+P3n5EAUXWnSVTwcgbJl+z1VOgYDJL49xZzOM8 KJzSSQGrXhsOSgTW75zouDdAAbZ3vN/YzqP/o5GB+U8KvHzWV/4xGjlU7/XD GQqcLs0Oy47F+t3rpyO7KSB5w0HH7TLW8z2NbX1Oge9xgtySCbhfqgl9VgkF DLzyH9VdRb58pqwC39cGa+fzF1KRjSsZVt0pUK0tbKh/Hdl0r0SzMQWExIvG e29i3umNcl/FKbA4enf33zvI1P3vNn/VhPwV25XHJTgPh3nu/XeaoLeFvcu3 DOsvtv5pe4a67KlLQw9xvvYn1yJvoK4jfvzWY9RBenVbgiYs2vUqWVT/O98t arvDUb+gOtVSh3lxNFUVjpqwkDHfHNPwz8/PLmOiCXn3ivNVGtG/52GWtCbq /7GZP2xGvUsvq+CAJuSOPj/o/Rbns7FX5BbSBN2VICaRNmTdP06MO1AX6qnN /A/re/pv2dNpgo5sYrrJR+xXdqTv5ZIGzGsf82Ptxrz94st3pjQg125O+3UP chzBzDiqATr+d/ac/4r+16tCw181YC7GelXxG/KvMSvikwbkZLB+mhtCloh9 ydWOOgTGefxA/jwep9yoAdn/ibgITWJ/+9qtV+o0QHu0W7n3F+Y7mApZV6N/ OWFH+gz6E+U6Ch6hn42cMZzD+YkJWZ/7GqAlNNvCtIhsOef6qFQDZo8UFTT+ wfpfn4JCitGvbRUR/hdZfdfpmkL027FYyq1jP1G1S6dva8Dp6v6MJRp2kuzr rKrK0wAD1ZoLZnTIx8z4gnI1QPjdtYCHG9jJhjzttvIcDfhj5u2wZSPq3bID 7sht/Rp63gzs+L7yPXKQCzwFFN5sQj2QPdwM60/PLu0VYcL6BYbDcf/ywzu2 RTOzkzSFzLnK2H/Ppnvr/ZtRj8rt9sX5lpIvTB5lRf2d/rwgzt/G49CdyYZ5 p64zGuF+twvkmxa2IF+gE6fB/UMltz0y2Yr1Bzi9JfF8DKonch5sQ3Y1Gu2p wnzVVwmsnOgniQeMeL5Lb7NPe21H/nK8t/KFBrSahbq95sL5tY6dH2jWgPx+ IxNhbtQvOVTGv8d8z/3k+Z2Y90o1/slHDdCfpT/wlQf1n767nPC+hcK/7lTi RX2P95n4EcxnqGbI4EP9ZG3dEXwv+TwnBowEUQcfCjO+r9AC9dby3ah/+Fwt w6IJ+pL8TzfvQda659LPpQlC1YtFHsLIqj6OzPhel459SHm1F+crzX3+GN9z 69uSSCFRzDOpop6Rxc+TWYzPOTFkeoppqCDm99tZ94qjv8zIfowZ8z3lKAr7 8Tz5nKNa5jUgwPbd80cS6NdnHHDu14B0Q6ejkpLof2tcFv1GAwaOxB/acwi5 JXfZHO9zo7jgvVvSyJ2X7jHHa8A+3sci3DL/7vPrIY0QDQii69/FKoecms1j aKQBmfOB6RflcX6vyfv8hAbUjzFupVPE/vv8w4IPaADje2mGxaPo9xrjr9ms ATdvxE4PqGL+eWb1G23q8Dxx1wkbddS1r+jfaVCHkfMPhrs0UPf/bKb0SB2k PL58adFC/eDVppVMdTCz8TXT0MH8gUFHsUR1OGNA3w662H/mlV1flDq8lJF8 VWmA+lnGoQEfdfgh2kgcpKJuq3froIs6sO2yfHrXCPOMxvk22ajDYbafMsIm 6HfoDHc3VgdL2qj72abY/83fLqqOOoTPce3baY7cZUY0qqpD/mhpQYoF1l/8 0FGvpA6vv5ACbFZYf+T4XbUj6jDZ2pV5yRr9u5d7jA6qw9bnXpwbbNHvFB/9 Q1wdZCvXE8PtkJkZa5j3qoPNnVSmJXv0Rx5PeyyoDpFZ4jEBjpg3lnBonFcd Cq/Ur006IWueLireqQ4tkSan3Z1xn/WdrDNc6jAVODb7zQXzKE4RjZzqwOke ftLWDfM4j3EIcqiDgvW2Hx/dkbtLvzNsUwd7/TvORp7IN1M2h25Vh2jy6Ne3 Xph/dTw3ELn48AdLTW/MW8mv+4PcKuL2X4MP6tvun2HGvN87V/SVfLF+lGam EPtxsSY3P/ZD/hCn8A7nUaLZqyYVgP5OFZ9wnNdxtqauJBB19S2FNbhPzIiB /N5gZM1ffyJx37vdQw9zTiGvt8b8J6wObe9CD/CEIjfm2lfgec0Ca3HqaZzn umUuD54n96N8oS1nMb999PgWPG/lIrlbl8PQf5WEJLyP45nvdtBHoH/atO0G 3tfFBKdrEefwvIx33D2M93nv3ALLn0isf3rawwLve8FVkO5XNHLF6JIqvo9d Vo/DPC6gP/PTCvNJdSD1dBYHYzFfUYriEKoOcdJBk58uY/6+YZ4yfH/rm3eL K8Sjf9x6rQvfZ9Bwq2tWAnLbifuLefj+6s/kr1xBv0HtjMkVPP8M0X7bJNRb FVT4TqvDf/6du+qTMf+w9R0TV3XQ0j1vKXDt3/tNIRaN8H2uffnwLRX1KDFK rATez6eLbGrpyGZ+Pf486sBfIaNbcB25v3ishVEdGF0SX7plIU82Vr0aUYPe N8eqJnIwb/TygYE7amB0+9esXh7OU6WSqJCpBk1hN6TK8//tk7pCE68GDw7O 3/UrROZd0vjiqwZ7mfJHPhRh/f3flMnjapA1aLDncDFyjWuut7kaXEgrvjlf gvucSciuVlHD30tm3eb3kGUkPGMOq4GfFh1XdRnyUd7OejE1sF6xSTrzAOtL Xnae41SD952M73oqUN/gmcSwWQ3Uyx8zKj/C/klHZP7SqoGk05ao9cf/7p8/ VmZGFW4r1tY7VuF+XKKWIT9UgZvTc+V5NdYnHrQXH1SFKz+3y+95ivpYWYlO jyrQvX4RFPMM69m4qT2dqhCS61sxXIt+nu+OPW2qMHma95dmPfLcxSmdN6pw 3OTNvmLA+a6fZtv3UhU+SZxyZ3qO9V8k20NBFfQY9hR4vfj3/yEfRe6ZKrzo fz/wthH5Su0F1ypVkKsJ4zvwCvt/jczeUKkK966JWyc2of5p4PbWClXY7f0x feo15pPGxUnlqpCuEf0f9Q369+jWh99Thc0CUuwPW5CfHlvqKVGFyKVePY53 yNmlHiV3VWH+w+XLQa1Yz7S++0exKniVyjZ1tWF+Y4VsBnJ/zBCdXDvOO6JQ U4Vsap9MZHxAvz5rLQXr38gph/3p+Pd5yzPSwnyVrePV1p3Im04m1JSqQuV4 +vyzLqyXHI24UfZ/ReYdT/X3x/EyI2Rll7KylXCnj3uNQpKolDISKjvJKhL1 C1khpMwks5DwTbylksxS0UAiIxUZZZV+7/vn8/F8vd/nfM4593zuxRBUnhpp b+hlrW8kbfKeIWRl/vQOe8eqr31TUWkIooGZJZ/eI5f+PTL6wBCirczHGR+x 3v756JX/DGFFZV4hrw+9RuzFvHpDOM2ef5R9AHnusalqkyGM91lluXxi3UcD JvLPDaE7oVh8yxCO9ytf52S3IaR1Cw/dHsb5T/S7Gr43hCPrz5YqjCDHBo7k DBrCSMYuptw45jc805j8aQjF/ffX5n5Fn3hGsX/RELw3yfTIfkOvcP7FXnYj WLj93X3DJI7Hm+bfLm4E9eP7dG9O4Xyzcou75YwgQq3+n9Q0stTKhIOmEez0 Vmy9PoP5yluvZNSNgK8iLkVijnX/X8+6hPWvZn85pP1Cr9cm7Yb9U/UcVMTm 0ScVODRMGYLsI80GkSWczyehKz14vr6spEYlLSNXh2an4nkpZP6zFvqLPG/e 1XnbELSfd40JrBJiNLo87rkTaQjzPOTKuNXIx3e8Nz1tCI8scs7xsQsxGElf LJyPGcKObl8hXi4hPA8K/SvGeH7Wv/8YxY35tbkKEXqG8NKWWcDNgyw8pR2m bAiH+oVonHxYb/dgcZDfEDzHK11WCWO9yvRlmwEmbFOT1jovIsQIJy3bZ79m wm+vyMW/opjPNylwecGE87M28cvimNexGT5czQRjvUcHQyQxT8ywxZcxYU2w gvyiFOaNoicot5mQtDJX83sDjr/L9vi/a0ywZdpHnJHFvK77FskEJshcfGYx twnzveqcZVFMGGzWED8th/0V+MXqIphwmyf187Q85rWCfYxCmeBusVLiq4jc PqC0I4gJmgluAVNKyJMle5+cZsLsq06GtzLWR1ty1vkwoVaUtPaHCo4fr2Or 4cmEUNvstx5qON5w2xGpk0wwzODOmVDH+uAItQg3JnD1+7if1MR63eZ3Li5M aJN9pzOuhXkVzpAmZyYkOjP+uW3DfhJlCjeOMmHf7cIXI9roxdUnJ52YIDku mOKig/ULU9/qkQdUgx2GdZE73bavwfwtr8/KziTk3SvvO5BPlJvNDpKxX5rC L4FjTNCYrah3pOJ8ru7MaMPxZ3SlogZo6PnfDrAfZ0JNUIS1vT56A9q7Gpz/ uboJmT4Cxy8euzGGz8dYsR6zY2D/ClODZF8mcDLrKt4z0c+39T70Z8Kwr2Br Rzb6VlNOKyoDZkqij6jnom8nlo3pDGAbY5uKyUNv9H42g2CAsNy5C19voV+U X9nLZICc/S8R09vo3VVV3I3xV1y6d0FBAXrBhcjhnQxgvh4jcxbi/K6lb2jY xQArgaNtx4rQp4pzLu1hgJPZB/umYvT24WZp+xjge9Hm56ZSfL63A4vXDjEg HNojzpehNyMUfzswIFsX7tDLsT5cU+WjOwPu+pKpNyown94j63SKAQ0lFe2L lZh/UdaxI4gBA5vzp6sfsPpLXKFcZsDkkQ0X19cg9zTVmiQw4G9aqph/Lfab aX1/P40BfK/XFXX/h/3+0P5G5jBARiCatq0OuXyzdnURA9TN2DoTHrHGu3zZ /D4D6BfPOk3WY30Wx/D1UgZYwNyMBWD/+m2Fu28y4PCS16WSRsy7cp45FMsA d90xcd4m5As7bOvPMSDE16n4xBNcvz91R4K9GJAxat2l2Iz91jutYa3Pu26S ZE4bspqVi6wkA8b5K0pW2jFfOv/ZhI8B86aqhH0nq15sKPqfAYiBzDGpVzj+ oNKv610GoLR07VdQN3pztc2ltQagp7suqvc1cpHBgE+eAewvWV2W0oP5Ry+D +YIMwGU0xGC2F5lyMmHkmAH4b557tfc9crZZvq+VAaSkjf4W6ENelqRmqhlA frdjtFc/8n+KM4SUAdznfy/dPiDE+v+DeDKPAXRHtjGiPyMnhknaTBAw1GD8 emwI+WOfOnwkYGax3nXHF2S9GemBDgLYdEkL+SM4P7HdbOWNBAj5lsewjyF7 n13WqSJgU4nKBudx5Ne88l6FBGwdzbvX+BX5bHTKwUwCrI5cexP6HZkr9olZ NAFOaQLH+35g/xm12j3hBPh0X16kTqGvmnHhCSIgjH917PWf6M97jwT4EhBv GrJxYRq9usb+9JMEZEXOlh+YRX/lUZfXMQLuNngaPZhDTi72nbcnoGFx5K3I b9Z9cclG9xABHTqOJ/zmkV99SN6ynwD198lRkwvIRQ9M4/cSEBvaUui+hLxS tOeFJQHfNv9tGV3G8X71tr2zIMC8edtX57/oux0HH+0ioNjdjefTCnKdc/kZ ZJ51N1QOrxJmhIusdmTH/In7XWa9q5EH7da57SagxZbD3YYdeefVL5l7CNjy hxzTxYHs+XR1iTUB/8vxKt7FJcxYJbI+Ju4AAaPGea3PuZHzbuWYHCbA5GvP hBEPcmbiiddOBOTHrV3byIts+oeDdJwADm2GGp0POYb7uq83Acd6/HfV8mN/ ztc7wwMIaAop8tBZhwxhOm7nCZCTHbhSLog8oBYhh/tx4Ylwqbow1pss2TxI JmDw+M72QhHk/3g7NmYTwOA7911hPeY3hgk6lhCQXV7OlyuGHOLPDKglYGXf iPoGCeSrApEuzQTUZ1p6rZdGfnbvafMXAmQMI+OuyiDzLvDSfhFwbrSmjH8j 8orr5P+4DOBjzPeOaFnki1JJxRIGQNXaPMm5mfX8upIFeJ4zXu8XiJBD7kse l9hhAIuBMZor8sjt/aeyFQzgoAxYhihiva+b7Di7AdQ2znr/VkLveFxodpgA cVflBD9l9OpSJxqfEhDAY39vUgX9vVojqwICdK2bp0bV0Zfm8NZ6EJDye2nd MU1kP3u9RNyvuQytrZ+0WOvz47iaDgGVw+m+vdrIBZ72Jf/0QTiqI9FGB/lz 19HEUX04pc5W0aWL9bI/vpM79WHrGY/p52TW89Il3mbrQxkX4VdLII9Hmulb 6ANfiV+SDgPrI3l4DSn64LnnTmU5E9lX3GbtFn1QTRecLTRGJt3/941DH2Lo JiKKO1jnoeoW+y86fB0M3p67k7UeinsHR+hQqDJ8+ro5cgPd7OsLOnB3iqes t8Dxrhx4s76eDm5+FlVXdyMvNn/lrqBDs9iFN/x7kBueF8FtOijWPZiLtsL6 hCQd/Rt0uOg4Icpljf7o0eLwq3T4wi6rG2HDGs9LLSaKDkaFNvtX9qE/Nt17 KJwOeRZRZ0IOIDsovZwKooN17xvbfltkSfev1X50WO28mco4hHygWkDNiw7l 371kbtmx1svYzuIEHZwCH65wHsH+oRajUi50EGTj/nzCHjlwTUeqEx0g1uZJ mwPm91coN9rTwVs857amE/rV4SJph+mwMe/75atHkV3K7kjb0aFTneI+54z5 S37/dh+iQ2jNJQtbF+T2NbqayOqG3ZoPXZHli5wfIfe1bxTacBxZODZvAetj bT1mz59AjvwmMHyEDrShmrdDJ7H/zX+PzzrSYcKTo9bEA70iW0+TMx0y5q0y Cj3RF6u51rrRwTwi89xab/SnHkQf8aDDIt+Eg7cP+uF39vd8cb/S9JivfJGV O5fLA+hwUC5SXscP8187Q4+G0mFNWRdn2mn0gqIrjRfpUEOSGV/0R5/Xk9oV Swex3Q9KIRB5b23IUhbuZ+/qBLlgzJ83WxIrosMZZ8tTl0LQ29GXh+7T4U3g mO6uUPRyahPRbbi/bDoSd8NYn+/rfK7v6LA9LnxJMBx9m4XkTzxPSXmS0BOB /PGknRi7PhhquOVSLmJe0+RJhbA+TNdURt68hFxlfv6vnD7kGP5z/fc/zP+u LFzcrg9WHbtMnaOQ7xTu3GisD6sOpqs+i2bdL2PFK0r6cG/oC5/yFWSudJ4w Xn0QWAh99SNOmPW+krR7TYeGiNb7VgnoeyyWq2vp4MUvnno/EX0AkO/j87bL ldsFJ7M4fkuMJx1idg8Nc1zHPOeNwKp1dKC+02w+nsFav6oPAks0+Op8trD1 BrKTjx3PCA1Mg0S9ErOQX20T/PSIBgtsR/fMZiO/8Qh4WESDO3Fl2w7kIkPZ Ib00GnDd2vFbOh/HW3d3fp0/Dao1kt+F3UZfkz3kdYwGrrWfHn4uQG5dKfa0 ocHTjqDzd4ow/9pdZ7cuDfwPPjvKW4IcW6yotYUG8sNCxl6lmE+p31cpSYOI heI12++hT2xqv7mKBurXfv6ML0euYxfR/0WFnm167ycqMC+0ozRoggrhnWcf 77jPuq+Ie3sGqaDm8bgorwr5cY52Uw/mubmTVh4gh8ntftmB+XyLELsa5OLA 9SHPqKDKTHKurkUu2J8H9VR4099rLvwQ++/35c2tpkJYyIbt3nXIeqEuG8up oCx+TLr1EfLarc9JxVTovl/IrtTAyhNmP/KpcM5q8tsFYOWPrDbIoYLSj+1v +huROwkujZtUeBkd/IjShOM5ZnjXpFMhRAnyrz1BbpXfO3CNCopPOOKmnyJX JDzNTca8o/mZ3c1Y/yDp0+okzP9JsC96jnzmc+1KIhUUrr814XyB+Tdbj6cj d+pKax5tRT6tu7oLOajbSay+Dfn+rcy8q1SQ8ylYkehATt1qI4L929d+H/Xv ZH2eE8mbcfyAwm1dL7uQLwe5tKdRYZNJYI36K8yLZ/4QvUGF1s+PsqO6ke9V TixlUcE/jC3qy2vWefD2C7tFBVlpU1/GW6wPvngjuxDzNXEHb/Yg3y0653AX 8/teMxZ6kTuS1OuqqLBxWkJl33usfzj3+EEdFVriHITKP7CeN9LG8gkV/FTz F9f2oc+em7/YRgWZ518/H+9HT/vz7NAbKpxadaZSdhC5JZcyMIY+82HG2c/I MkV88TNUaKasiuwdwvoRSZe+v1SQOn3FJmGE9bw8y/vE8Hyue0X7Nsp6P84c Py9PA+9SMYWd48g9YlWm22ggYXaE79ZX1vtX7Xe5AQ2aRnLnVibQE6PGtZY0 8IwY67P7jn5gqdrBgQZishrPqn8g05cTw4No0FjnVyY8hXlT/z159jTwOFh7 zfsn+ic1jTZGmP/1N7R1Gr1l6WKKCuavGrkpzSKbU9a5CdJAtK1Tb+AXcn+N fO0nKjzSH+ndvYwsFEfbeIkKbh9UG4v+IGtF5Q36UEEw0LeQcwW5yCZu+2Eq uJYvB9WvEmGsSp9nXtlOBQF5YSkNLuSWGl+ObxRYoyKSWMCNbFHqPf6OAmxa olybeJDj7u0JfE6B31SxGWE+EUb4uSLF1AIK/GSIn4jlR5/KbqWURoGJHRID nOuQn2xvORpFgX5rqdYFIeTOPr6PnhToOSjN8BPB+gP/CUg6UeClg0z1N1H0 rdov2PZRoNVlg7qrGPLfpQPpphR46r4xb0Ac8yNPut/rU6DBV1bioCQy2cD2 +XYK1AZsin8lhXmvjf+cVClQGiEX8nQDa74v5a9LUqAgSv6nvizmObh7SMIU yIlXcKvZhJx8QixyLQUyUhT7tsphXuvOvxBOCqRkKFkXyyN3+JfKrqJAfM6W FnlF1vNEkE4tkyGqQJnIVELeElnnM0+GiFKVKjFl7Hd3i430HBnOVqqqJqog a8pJ+k+Twb9WLYdHDfOhCsohU2TwblAXi1RHLziYoTFJhhNPNWL/aKDfyB0b /4MMzq2abAFayNK7xDKRj7zUCprailxvv+8Q5g/0bJ08oY0sNe30BPtZ9W1z GdrO2r/qAx9xPPMh7Q+HdZFvOlnl4nyMx7dbvdVDjs05sX6BDMSkTrMlGVlD +SHpDxnIc7r0FgrOR7fIcc1qCmgv6VUyacghb09f5qKA+iqych0d8zMOQg/4 KKDERcnSIZC1562vilBgEx9V9K4B5gWsbGSkKSApTIvZwkRvIK1xQJ4CwhL0 VbmGrPPGu0yoU4Bvo36AlDHmf3b19uhSgEuB+J5swtpvmYENDAqsUjVw5t/J 2p9byqK7KLCkxXj3P1Pkk+u7/ztAgTldpuUqc8zvZ/39gQLjTCPqrAXyhUHh llAKDO00Lve0RPaeNlSPpUDfbhOl0T1Y7+Zmy7iB589mx03Hveidpt05SijQ dWin8Htr5G3G6UF1FGhxNI2y3of5uohv5Q8p0ORqttK2HzlB+31zNgUeeZj7 m9hifoBL/twlClSf2jXRcJC1H5mfX3pQoDzQwolsh3wgSeOZNQWKQ3f3VBxG lr8oe4hKgazoPU35Dtjv0StbJzx/l3JtMmJc0PuatU1WkeFlnGf3hCv6WWFF 3TwySIVc4t11HP3pIDXuRDLcta4JWeuOXlQ83tKLDAvEy0oPD/T2e4SfHiGD odrXiTZP5J9yyc8syNDDLn041gc5POODpyYZNv3cnvzdF5mTeCG8iQzufRZt Fn7Yb+gsh4kwGVaqwmj8Z5Cnn5ZbLpDANDfttFcAsupLM6XvJEiKKy/pCESO 9j8fM0gCJbch6fgQ7McVJbjYSgJf62WbybPoY34nsz8mwUNCNNYylNX/L/uN GhJwqGk8vRuGebZMf7hLAkvxHX8EwpFl3iz6FpAgnd1Rx+cC8nDenXtZJBia CvTsisB6dZ6ks2kkUO9LzNe6yOrP1fEmkQQBLUV9CZeQX2Z41sWQoLGqSfTn /7BepPmi1iUS8OZ+tLCKQp9/WWVbOAn2xc1dLI9GPvjJu/EsCbKC+esFr2De qONEfyAJxl2VfvnGop+3UovyJ4G2tYHGqzhkZffWxlMkOEccdN2WwLqvJOwu +5CgWfVU5tVE9FZHJj96kUBQPObt9FX0kzo3GjxJYMd+i986Gb1enr8Wcv5U nUllCvqGW/GayJMf34QKpyLXUP7WIZNbfjzwS8P8mWNverFfRBXXZHc6ctkm 5Qgcrz1HVml7BuYrTvHV4XzE4sgOyTdY5+HAtQicr1Pw3tTZm8hrO3re4fMU u7p32mQhq/R+qcfnndsbyVWVjfWPT79mrQdB3CREc5Ev51Xr4HpFqT4I8M9D tjyW14zr2S3WeffNLdbnr7p4DNdbhn1sVOc2637MGE7D/XCb+rfxWgFyqeDR Xtyv8o8Str/uYD5DnFSA+7n0fFvC/iL0JfeCOe6R8D499m99KfqIqyk+eD7e xZ4jBZQhd31IOddGArngaz49d5H5q/ZK9pCgeu/zT6kVyGPr97L9IMEqYlB8 vpLVL7POcpEE5qqLe2yrWPOp0lbjIsMAm1qjeA3mKQmpKZvJwF0Vn5P+CHnH Nxc1RzKMt+h1bW5g5TnIC6fI0NI/8LcY0B+mHAi+hPc7t9bh+iZkdtpw+l0y rDnctX6oBfOUFHMrHrxvfAKNPVqR+4MvNG3G++Ki7Om5Ntb9yjP0FT/f0Xd9 XnJ1YX2WV8JBHwrwsgleUXuLPK5fUDuI70ex2v+qejDPcNPtXcH3nZrTuP47 9Left5dsoMKV/eUmVh+RS89GBtpTga/ICr/aITOzpG+O4Pva6uqZhh/Ivh6W 2hJ0mHSh5O+cwn5CYR4NTPx9F/y5++VP9MZju9nw+3/CrW1bh2dZ55m9u6IJ fz/Ov5rgXsL8l8NDlUH6IJQl7LSXS5QR3qJ4dj+3AcxUPoz/wC2K75O/8+50 A+h+7lx/jAc9mM1T/AwgabpSKoAPvcel7xyDBiBsYvM2Q1iUwXhgMKDszICZ Q8vsCqKijEaO32o3zjOg2/uWdtl6zHdrFLtnMiA5fTYBJNDHP/PZ/IEB/mU3 GkylsL/1fPeaRQbsazL68Uoa2cIya7cEE3R6v0kf3oD1jvc/TZGYIPo92fzL Rhwvdt3tKVsm/B+xOPN7 "]]}, Annotation[#, "Charting`Private`Tag$388903#1"]& ]}, {}}}, AspectRatio->NCache[ Rational[1, 2], 0.5], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{36, 15}, {15, 5}}, ImageSize->400, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Arial", FontSize -> 14], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 3}, {-1, 3}}, PlotRangeClipping->True, PlotRangePadding->0, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.967867335624732*^9, 3.967867376183888*^9, 3.9678684845517044`*^9}, CellLabel-> "Out[169]=",ExpressionUUID->"e22241f7-908a-49bf-85c4-4286c93a617c"], Cell[BoxData["\<\"cfunction_cyl.pdf\"\>"], "Output", CellChangeTimes->{3.967867335624732*^9, 3.967867376183888*^9, 3.9678684852345266`*^9}, CellLabel-> "Out[170]=",ExpressionUUID->"2576d642-aa4f-4905-ba36-2f8d3a9ea9fe"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"intorder", "=", "6"}], ";"}]], "Input", CellChangeTimes->{{3.950698713514763*^9, 3.9506987291435947`*^9}}, CellLabel-> "In[171]:=",ExpressionUUID->"6956ce3d-8a7c-4964-b75e-3b1bc07f8c74"], Cell[BoxData[{ RowBox[{ RowBox[{"EEof\[Rho]IR2", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "intorder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Aof\[Rho]IR2", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "intorder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"auxfunc2", "[", "\[Rho]IR_", "]"}], "=", " ", RowBox[{ RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Rho]IR", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"EEof\[Rho]IR2", "[", "\[Rho]IR", "]"}], ",", "\[Rho]IR"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Rho]IR", "]"}], ",", "\[Rho]IR"}], "]"}]]}], "-", RowBox[{"EEof\[Rho]IR2", "[", "\[Rho]IR", "]"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"CLM2cylof\[Zeta]s", "[", "\[Rho]IR_", "]"}], "=", RowBox[{ FractionBox["3", RowBox[{"2", "\[Pi]"}]], " ", FractionBox["1", "2"], RowBox[{"Aof\[Rho]IR2", "[", "\[Rho]IR", "]"}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Rho]IR", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"auxfunc2", "[", "\[Rho]IR", "]"}], ",", "\[Rho]IR"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Rho]IR", "]"}], ",", "\[Rho]IR"}], "]"}]]}], "+", RowBox[{"auxfunc2", "[", "\[Rho]IR", "]"}]}], ")"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.950682496649765*^9, 3.950682529927631*^9}, { 3.950682575269188*^9, 3.950682577448246*^9}, {3.950682808679422*^9, 3.950682809862718*^9}, {3.950698719883419*^9, 3.950698731348875*^9}, { 3.95276098377674*^9, 3.9527609849757185`*^9}, {3.9527630257317376`*^9, 3.952763028104102*^9}, {3.9678688230732994`*^9, 3.9678688232457347`*^9}}, CellLabel-> "In[217]:=",ExpressionUUID->"52c3487a-21bc-4b92-93cd-bdf5b90caf6b"], Cell[BoxData[{ RowBox[{ RowBox[{"tableEEall", "=", RowBox[{ RowBox[{"Join", "[", RowBox[{"tableEE", ",", "tableEE2"}], "]"}], "[", RowBox[{"[", RowBox[{"1", ";;", RowBox[{"-", "1"}]}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEof\[Zeta]s1", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "intorder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "intorder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"auxfunc1", "[", "\[Zeta]s_", "]"}], "=", " ", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"EEof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}]]}], "-", RowBox[{"EEof\[Zeta]s1", "[", "\[Zeta]s", "]"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"CLM1cylof\[Zeta]s", "[", "\[Zeta]s_", "]"}], "=", RowBox[{ FractionBox["3", RowBox[{"2", "\[Pi]"}]], FractionBox["1", "2"], RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], RowBox[{"(", " ", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"auxfunc1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}]]}], "+", RowBox[{"auxfunc1", "[", "\[Zeta]s", "]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"tableEEall", "=", RowBox[{ RowBox[{"Join", "[", RowBox[{"tableEE", ",", "tableEE2"}], "]"}], "[", RowBox[{"[", RowBox[{"1", ";;", RowBox[{"-", "1"}]}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"EEof\[Zeta]s1", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "2"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "intorder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "=", RowBox[{"Interpolation", "[", RowBox[{ RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{";;", ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}]}], "]"}], "]"}], ",", RowBox[{"InterpolationOrder", "\[Rule]", "intorder"}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"auxfunc1", "[", "\[Zeta]s_", "]"}], "=", " ", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"EEof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}]]}], "-", RowBox[{"EEof\[Zeta]s1", "[", "\[Zeta]s", "]"}]}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"CLM1cylof\[Zeta]s", "[", "\[Zeta]s_", "]"}], "=", RowBox[{ FractionBox["3", RowBox[{"2", "\[Pi]"}]], FractionBox["1", "2"], RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], RowBox[{"(", " ", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], " ", FractionBox[ RowBox[{"D", "[", RowBox[{ RowBox[{"auxfunc1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}], RowBox[{"D", "[", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", "\[Zeta]s"}], "]"}]]}], "+", RowBox[{"auxfunc1", "[", "\[Zeta]s", "]"}]}], ")"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.9506822065144*^9, 3.950682206667275*^9}, { 3.950682408496649*^9, 3.950682467602682*^9}, 3.950682517104621*^9, { 3.950682585441113*^9, 3.950682587414877*^9}, {3.950682817111459*^9, 3.950682831562199*^9}, {3.95068308713988*^9, 3.9506830882605247`*^9}, { 3.95069872226169*^9, 3.950698722847745*^9}, {3.9527609883668203`*^9, 3.952760989759906*^9}, 3.9527630332642994`*^9, {3.9678674016299434`*^9, 3.967867402098978*^9}}, CellLabel-> "In[221]:=",ExpressionUUID->"6982fd85-4876-4022-919b-59f76a530e0d"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"\[Zeta]sturn", "=", RowBox[{"\[Zeta]s", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], "-", "Acritial"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{ RowBox[{"-", "510"}], ",", "3"}], "]"}], "]"}]}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", RowBox[{"\[Rho]Iturn", "=", RowBox[{"\[Zeta]s", "/.", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Zeta]s", "]"}], "-", "Acritial"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{ RowBox[{"-", "510"}], ",", "3"}], "]"}], "]"}]}], "}"}]}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.967868945094927*^9, 3.9678690237338543`*^9}, { 3.9678691388956327`*^9, 3.967869150905476*^9}}, CellLabel-> "In[308]:=",ExpressionUUID->"9035688a-d584-4653-8f83-bbf7183665c3"], Cell[BoxData["0.8861342275979507`"], "Output", CellChangeTimes->{{3.967868968151366*^9, 3.967869024166801*^9}, 3.967869152075951*^9, 3.9678698803685703`*^9}, CellLabel-> "Out[308]=",ExpressionUUID->"b0097739-2b3f-42a0-b4b4-2a7e7a263e18"], Cell[BoxData["0.2977679106110384`"], "Output", CellChangeTimes->{{3.967868968151366*^9, 3.967869024166801*^9}, 3.967869152075951*^9, 3.9678698803727727`*^9}, CellLabel-> "Out[309]=",ExpressionUUID->"b8c61866-3c35-4f84-9532-657a7e4b02c7"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"labelStyle", "=", RowBox[{"Directive", "[", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", RowBox[{"FontSize", "\[Rule]", "14"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{3.967879823020852*^9}, CellLabel-> "In[312]:=",ExpressionUUID->"0a51a90e-4b26-455e-adf8-8d7af4f03018"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"plot", "=", RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", RowBox[{"CLM1cylof\[Zeta]s", "[", "\[Zeta]s", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{"4", ",", "3"}], "]"}], "]"}], ",", "\[Zeta]sturn"}], "}"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], "\[IndentingNewLine]", ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Aof\[Zeta]s1", "[", "\[Zeta]s", "]"}], ",", RowBox[{"CLM1cylof\[Zeta]s", "[", "\[Zeta]s", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", "\[Zeta]sturn", ",", RowBox[{"tableEEall", "[", RowBox[{"[", RowBox[{ RowBox[{"-", "510"}], ",", "3"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], "\[IndentingNewLine]", ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", RowBox[{"Thickness", "[", ".002", "]"}]}], "}"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Zeta]s", "]"}], ",", RowBox[{"CLM2cylof\[Zeta]s", "[", "\[Zeta]s", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{"55", ",", "3"}], "]"}], "]"}], ",", "0.2977679106110384`"}], "}"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Orange", ",", RowBox[{"Thickness", "[", "0.002", "]"}]}], "}"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Aof\[Rho]IR2", "[", "\[Zeta]s", "]"}], ",", RowBox[{"CLM2cylof\[Zeta]s", "[", "\[Zeta]s", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Zeta]s", ",", "0.2977679106110384`", ",", RowBox[{"tableEEIR", "[", RowBox[{"[", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]", RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Acritial", ",", RowBox[{"CLM2cylof\[Zeta]s", "[", "\[Rho]Iturn", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"Acritial", ",", RowBox[{"CLM1cylof\[Zeta]s", "[", "\[Zeta]sturn", "]"}]}], "}"}]}], "}"}], ",", RowBox[{"PlotStyle", "->", "Black"}], ",", RowBox[{"PlotMarkers", "->", RowBox[{"{", RowBox[{"Automatic", ",", " ", "5"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", ",", "\[IndentingNewLine]", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "2.5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", ".25"}], ",", ".1"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "\[Rule]", "350"}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", SuperscriptBox["GoldenRatio", RowBox[{"-", "1"}]]}], ",", "\[IndentingNewLine]", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Darker", "[", "Blue", "]"}], ",", "Thick"}], "}"}], ",", RowBox[{"{", RowBox[{"Orange", ",", "Thick"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"45", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", "\[IndentingNewLine]", RowBox[{ RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", ".5"}], ",", ".3"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"LabelStyle", "\[Rule]", "labelStyle"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", RowBox[{"1", "/", "2"}]}], ",", "\[IndentingNewLine]", RowBox[{"PlotRangePadding", "\[Rule]", "0"}], ",", "\[IndentingNewLine]", RowBox[{"ImagePadding", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"36", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"ImageSize", "->", "400"}], ",", RowBox[{"AxesOrigin", "->", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}]}], "*)"}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}], "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"plot", ",", RowBox[{"PlotRange", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{".645", ",", ".675"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", ".22"}], ",", RowBox[{"-", "0.08"}]}], "}"}]}], "}"}]}], ",", RowBox[{"LabelStyle", "->", RowBox[{"Directive", "[", RowBox[{ TemplateBox[<|"color" -> GrayLevel[0]|>, "GrayLevelColorSwatchTemplate"], ",", RowBox[{"FontFamily", "\[Rule]", "\"\\""}], ",", RowBox[{"FontSize", "\[Rule]", "12"}]}], "]"}]}], ",", RowBox[{"ImageSize", "->", " ", RowBox[{"350", "/", "2"}]}], ",", RowBox[{"FrameTicks", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", ".1"}], ",", RowBox[{"-", ".2"}]}], "}"}], ",", "None"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{".65", ",", ".67"}], "}"}], ",", "None"}], "}"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Export", "[", RowBox[{"\"\\"", ",", "%"}], "]"}]}], "Input", CellChangeTimes->{{3.967869006943431*^9, 3.9678694188253717`*^9}, { 3.967879832595392*^9, 3.9678799221915507`*^9}, {3.9678799603486123`*^9, 3.9678800264274297`*^9}, {3.96788010802044*^9, 3.967880118407221*^9}, { 3.9678802874699564`*^9, 3.96788057529177*^9}, {3.967880632668533*^9, 3.9678806338744783`*^9}}, CellLabel-> "In[464]:=",ExpressionUUID->"f9c0d793-234d-410e-bb40-6f9d74b4531c"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd2Hc8Vl8YAHAkJVSEQrKyM7KjPEZGESWjJEWZJUoKKTMzW/be633tPV57 bzJCxftSUVQiRH7n/v7h8/085zz33veee85zDpe5vZ4FBRkZWTf6g/2fSQi3 rfQIgMfbglpeYXiwHaPUTvgeAP9YRx+QbPBgXP5IxMM4EOyWLgZ3meGBCj94 2KIzECx6Opk07+DB8IzAj0tSQXAlkfKXkTkejCKdh0XTguCfaYCxhy0e+pSa S48dfgN5DpSGC8/wgHtDEbXp+gYO3HW00vPFw0j7eafZz2/AXfh4WogbHsQU HAxb9INBYfjr1+eo/ap8kmxOczB8lQqz8XLEAxlN24k3oiFgOG8d3IR8+Ttp yyEhBE4NviPuf46HPQ6yaYODofD1HcPKMso3O8tUL+8UCiEV9/wmffBgZsqX xDEfCg9cLI6VvcZD4NcT4MUfBkrW9aVCnnjokUss+n07DIZk1SOcXuGhUYqd 0yoqDCxta4j4l3j4tZYQNtUTBlWH2P72oHh/0AlybfJwsGEykYhH/dOORj5u lA2HudWU7D6Uv/4tzbz4o3ConZae2gjEA6OIl15GZji07Aa+2kHPf/HLRgvT dDiMhq0ll6H7s5m0kfSnj4BklyWeFG88ONJNZ2xrREAaS9N4M3Jo9GVGu1cR cG39O9kBlF/Wq9rnY3kEjO3oV1/0w8O5D6fXry1HwEx8fqEiul5TVahFG1ck TIY5Pb2ITMe29U7mRiSw3JRgs/LHQxyjmXpeSCT0ebe76qD+K0WdlWztkWBX 4OS5D/n45hn+kL+R0OCozeaOnPUnLIZMIgq2kqkLClD/suq1A47WUZA1c2DI EuVfvWjgvJAcBZVZf194v8HD66yKL0bvomBcPq05D8XvEhlv9tC8hTSQUcgL wAPfAcfu8ypv4dssG5kkMjXL0Lki57cgKjz/Wx15kfNMPlfRW/A9WY1/j6zG 58catfAWxmJuJL1H+e6LzwVSnYyGm83mlsLoelLq8n+d9aKB5UbTRwZkrUcR D5b9o6Hqbo25ZBAezhZ9nb5NiIZ+4aj5Eux9HFHSHlqPBjXhU+3hyPORb+tV zsSA0/mGpQFkPdWlMxXmMdC9JuFsivp/4FZM4o+LAStW2iYxlL9PNpwufjAG Xk4QtEWC8cDvR3xJSxUL8gGsP86h+Dsm6ZVX52OBB3fZoB71D//y2vTnk1g4 4Xr8szfy/L7xgXt5sbCv7QZTGPLph7ww/jEWgpYPKE4j+/E+LdJkjoP4P/46 t1A+RqkWjjrtOEgt93ClQNfDJRwJE/GOg2SStcYyilPdNSFLrYkDjmH9K87I bT65Dgw/4qC3QyJZBtmM7vcnH754CErfzuVHFt1VvPbHJB4qDl7a1ETmHksQ /RcTDxmtEbhEZOm9PzT7R+OhIdGuhhld74zX9a80hxMg21TrZS5y8l18B8Ol BJCMPztARO2pkw9msvgkwFabf30+ctMFc09OQgIUpVCvJCGvqdSZ8m8nQM2p IoY65LLiY+dFpRPBqEXr5g7yl4AHLNIOiWB1p4TiJsp/d7hlQ6EgEVh3fu7v QG4OYBlTWUyEE/qFMjzIKRX2JZe4kmBP2vjxX9T/oVF7yFWTJPgtF3poHdn9 MetDo5gkmExq/0WH2h+lsr9kOpIE0X/6vZSRLxxv5bOgS4Y/b/a++yPT5DBT PtRMBtVb2U3TyPeqbOaeeCdD+HZgqD4y6+X6RpfGZDi3b7lADvnL3cOJHlvJ sDTJrimD7Lh7x8VPKgVOVmVFaSFrcJUYhtingDEv39BT5Kl+cqm3+SlgKLSV WojsT6lHn7iQAux1336nI+sQrz6/djQVEvrKOl4gZwVuLoyJpEIzB6WQNfL7 zRT9G1qp4DJtrYbZUVSjddo6FZIycT6uyN+FV87e8U2FM6J2UwnI1T+jUucz UmGu5ihFF7Kih8IRy+ZUmPU3qKlGnpmYe/n1Qyr0O+Y8w9p/3fT79nAnFYTG FrKDkUuJIrd+sKQBk06/cijyi9jRbkfZNEi8G/olGdntuIvcH/00KHPqZKn9 //c4leP6JA0i6dVtZ5E/P21l+heaBlJ0uea9yDHXrX08cWlgEs1pWYF8bJd2 jbI3DdKOXKstQLZ+XGLm/yUNdF1i5fHIicUGQzRU6UCRlF5Zh4332i3FUJ50 SNsJPTmCHBqahGNQTocgxd7sFWQxMeWT0abpEB0aloy9P6c4UiCLWzpYvvxO hl1ffsBvKzEuHcj75C63IRv0C1lzVqVDQmebWieWL7p/PGMsHTzfVy9j+fGC Dmr8v9Lh+qCv9wLyQ1+G8vwjGVCjKtW9g/yqsJxbVCQDQrcVBr4iBycYhpdc zoCvD95LYs+veH1zT8o6A2zY/qVMYt/PaNyj6tcZkIoLfYfd3xdWhVmFjAxI PvtyFcu/JzijRWjKgL+dx1+uI//cc6tV+ZABZzQzUw+G4EEukV2w428GrNYT dTZQ/NK/hphLLJmwIs5d/Q05kNeUql8mEzSSyvHY/dyh//f0qn4mXFUX/IXF OZqTiKOPM8FA1LwOy88qdUHPKDQTGk4wj1Gg/BVi1+kX8zOhb/3PW3pklnXr oacdmTDsfqQBi2d4vwrdN58JCvJJJ/6i/vnvI3UidjPBrn+edxMbD1u5dFws WUDTkdKxhXz/Y0NfkVQWXMjn8N3DxnPQSJDi1SwYsZrKxp7nxe7i5f4HWSBh uS7OiMwm9ZfaxC8L4hkD0o4il4se6V5KzwITH5+PWHu7b9z+Lo1ZkO7M+JsS 2eqhjMbB91mwPiG2gLked4kqZj0LFN5Q2GHtPYpM2nnps4E6mGL/EWSCg71P +Zls2Cmv+3kc+eUPT1VVzWy4ecNAlxu5SiSKYuReNmTq8Sxg93OfP7v5rns2 eHSy2mD383SmymM1PhtOtIcJYfkGtLrhVWU28CtSHMB+r2tP3/+jHcmGGwq3 0pmQp/SXGxK+Z8PsWLLDSWSZb3/dhKhz4E0IT9NpZIlztOdrTueAYu5+Ww7k YPmTfzWUcuDAx6FMVuR9q8K147dyYG5RL/IEsrqBgovF8xyQ1e0XYUEme3hZ 7ndEDpRKnz2H5R89e/OPFz4H/pAYdbmQb2VZVdL35IDLIuciP7JQu5NT6kIO CF7bMBZD7gr1lhIjzwVC71ALD3L1vvC1hpO5MPleQRDr/4QjuVRbLheO55lN ciJbz+U/nr6eC3rJeDz2e5FpVonb2udC7eDNe3zIpWILZ7Jmc8GuiptMEFmv X4SXrTYPdqKWC0WRZz/fYzrgWABLJ6Ok5LHnVwt8TBNSAE4BTGUKyD9oivuP 5BUA80tLBkXkB+feCTK2FcByyuwJZeRvPVuvT3wsgNsSYl4XkUsa2OdPbhfA v87kZUBeOaysyMVUCGJ8sv1Y/866e/G84oVg09pSjPlm8+sNQa1CuCqbEYC1 F9t1m9DmwcHiiX1OWD7lmFjJa4o4UKoSk1dHdrctCzW4iYMNZ3cPTWRXx/7l m09xAH8jmbSw8YJf1DANxUH05xEGLF50Yi/DPB8H0pHakhrIvThmMqt2HIzb pDFjtrEVMXnwCQfTp7PLMU9cVq22/4uDCI3zm1h/o8Dh2IhRtC4nSolfQR7c /fA7egXVacbkP3SQj9stX02gLoLLPzZWriJ/GN0oTDmNTF7/F4s3i5BTZ0IR +H3K0cZ89dkhi1zjIkj88FQC86E8huZCpyJoqfmRg9mkmYW9JKwIeFYmk3SR s2s5XCoKimDpUdgOlv+pY8SZb8rFIP5zn48+8vJGqPEj3WK4UXiZwRB5afiN /w+TYpj0PDiGxVvJAyqf2BbD38QLGpjrvX1Iv58XA+O+ehHMjAbuDM9fF8P7 N6b/59vn6KK0FVEMK0wMSgbIZe+fPHqRWgxWVoK6WP5LAQ8Sd3HFkCXRGG+E jZ8X93rc64rhtBLHwZvY+yky3iTvLgb34HgGLC7DdY3PZxzlP+nSj/Xf7VfX pyIh3079jrm7VMHL/2cx1F7PeYi19+gTKz60VwxL0eUXbiBTnOD58Ia2BHaD S3Sw/KcjmGiPsJZA8j//AGNsPFtrGFQKlMDpipZaLC6h5Jx8W7YEPpxS0cYc xpT7mVK9BJa+1Glg5ieNixfql8C5SIY8zJk5lK7X75WA+8eue1i+3FtnW7cf l8CzxzH3byE3/TWhTfcogbX7DJEmyA7efgaXQkvg+kf9QSzOv1Kc/CMJ3c/7 D88wq8lOfY4pLIHpiEo3zBzGZGehrgTUKGJmMG9c43Nd7C4B3MqnQCzfLotW a/BkCXwP2//sNrIh7hGt9OcSaDm152eKvZ8D4QYz6yUgRybfg8XluEuTvSlL IYc69RXm8q3hz0LHSkE/hOCL2cb/h/gIVyn4sid9wMzXTefqIl4K141qX2D5 8isFWzmhFC7LG+vcwZ5f6yJt15VSIL4ZVrmLjPO6bWBvUgoPXbKCsLieoVMy 84NSCK/V0MJM1xz0ucGlFDK2hgww38+hFt9cKYXPJxTUzJBdbjO4pOyWAvuB +U7Mj+xZWtRpy+DY5qajOfKv8VM0K6xlcDzH99w95IRgbv23gmUgWMAdhsV/ vDmddF6uDL79a76L+c7A6UWiehkwqFnYYVbX4hELMiiDBMvQUszfdjicJe6X wSE2CQEsn88Ma/PUkzIwUY1rwSxCPHbI07MM0h6ZOt7H8lPTXBcIK4PkN3vD WLz1ElniYHIZqH0uz/u/f8Ia6RmuDNZSWKsw//1DEjlVXwbCLzs2MH8wGnvW 3oPutwTMsHw9Zc2Eh1NlEP58dBlzl3L0tbqNMqia7VnCzG9hTqRmLAdP5tF+ zC4KamdKuMuhyLWa0gKbnz/yOt04Ww76T+nMMQ9fomzcg3L4qMM/g7np8Seq HJ1y2D1+wcoSWVe3VlfndjnEJPIMYnGp9+Gx6w/K4QiZQyFm+kNWc4mu5SBo oV2B+dH4OaGLAeUwVpeziLle5pDjckw5aPSIy2P59Lgn6yKyy+GmMmUOZruw DEr5inK44niX2wrL7/zwylxrORCEDof8377CWTFkuBxYI+/aYTYq9hJT+FgO 4oc+PcI8bhbI+eVbOThwPAvDrN0SSv92uxxuR3f0Y+bpiaBQOVgBHrnJnFj+ 4seRaytMFaAXaeWJWaYknJTAUwEJozUymEkewe80z1YAmav/fsyjk74d64oV kEIesoblO1DysipduwIUEg+QYXEH8ie5usYVsF/+Fz/m5eZ7cTtWFaB7+JEl ZsUlvcA8pwqgIeOtwMzyBF4YeleAPW05rTXma4IP94VXQMZI+gss3vHq6O3i 5ArodyOaYA759fvK7cIK6F35dBNzX8a44qHaCsi7FOfwf/uACrGqzgoI2pRN wlyQEM55/10F8P59/B5z1JAtPT2xAu4Okriw63lzKFM0/qgAwwZiPxY3d2dc s/1XAWIzvQmYD34mEY/TVsKkqqA35rNXSsfaWCoh4Jnq//bJdWt/zF8JWfJB cZjDV1UrT0lXgr7892bMwycO5vSqVAJug+8P5nTW7hjnq5VwgvGUJHb9K8u+ /rymlZDKmZeFxfd5KruMPKiESkL2/+9jdnjTxt2lEmxX4p9ifj9aaHzGrxIO 4mrdMBPdbmtNRVVCs2RD9P/P33LovG96JbC1CzRilksoPyNZXAm/YtO+Y576 a8z+qaES3Cz8IjELvd+lC+6tBAsytbuYY4ST/p2bqoQ8sw1lzE8W5FYXFysh 17tHFrO4lcWQEkUVyNbdMcC8cMC7JJ69Cu7lOGhhPiZAm64hXAXndTdp/x8P j8IjfstVgf41/TlsvMQMMninqVfBp0bLLsz7lcIcdfSrYHA9rgkzezn1/b9m VdB9naMTMz+nu36ufRXQR4tNYtZx/nHR4GUVcCxpr2LOLL4tTRFUBVUjXwMx szV08BbFVoF61C9dzEHhwswm2VVwjNKeD3MJ1xsq6vIq4NJOpMN8xuzLRkVz FVjkuuzD/EpV6bP5YBVUeFLsx0xbHzlxZLYKsmlsD2PmapzvrF+qAqlsv1Hs e148L1Jts1kFUd2fQjFbCzvmMlNVg8nswC3McW7lsa3HqkF+mEoW82Wen/4O XNWQbkDNiVmcQdCFXawaImeMGDHPFHr6rF6oBh7GhKOYDyWOhTZrV4MDwYQe 8/UBroTIW9VwQ1I5FJvPBCRssi1sq6HPc0ITc39FfomsSzVYZ1Ecw3xLY7Ge 2r8aZBNvfsPmz6Yxtq7p6Grwazo9grlOS2sUl1UNK4y5TZiJcU8/uJdXA1+4 fRnmjMKYr9daq6F2Zfn/+V3qcflvnpFquDs59gGb/zPHevbWP1XDupVAJubx 1veHularQfy10XPM7sIkpvh/1ZDqlmOAmWtzkfMhXQ0UxT5TwMzETBRWPFkD 6mo7q9h65fV4UuaocA3IrdW9xXxvo0N5/lwN/Kr+qYnZMwyvXa5ZAzL17NSY nwqHGvka1cCrl15j2PpJR97jNRBRA99nnSuw9bEjf3zClLoWJk59ZsPWY5Ya /XnxE7Xg/3m3C1v/TaN7vlHw14L1nrM7ZllhuT9j0rVwo3LkPOYTd5PIcy7W Qo7r0i5WP8izb9O4XK+Ff6ljHpjTLuswa5nXwgXB9sOY2YfiONkf1wI7W1I2 Vs+ovZ0RWnWvhdWSIg3MD7cLXrhv1ILm7sdVrP6yC0l4fW1/HUzZVob+X5+Z eYbyMNbBB4NBCcwXjW/HrXPXAevvM/FYPShsIpbRebYO6u0tjmM2TabvOWJX B9L50tevY9dLHWdKJaL2jke4sPp1IaX5+5lfdeB609sKq2/1PNLaa8jq4YXf i16snqa1B6dR9nqoe+2arY2s2vljlOpGPYwLZGpeRjYoPhxq11cPtQa7zGrY 9/P2nOX2+3pwFQmyxPYH0XZGF/y+1kN+W1qtKvIbhwfLqVQN8MvX6oEK8iTT T/UxpQYwvNRkie0veCL0/8pXNID73OqJc8hKocnDna0NYLbBoy2HzVc6Uzn6 Iw0gkzjqIYuNpxec+o9WG8Cl0YQgja2fD38WpAk2gj6VEEggf7d4ceNgciPI Lim3C2Hvz5Ag8rawEUKC1Mew/dZAyE8K7rpGeGglUieAPCHGiVOYbARSZGYu tj+r80gjs2cgwAFVyShs/3auly7znS8BKIzY32L7yduDM5zWUQR4WpvrjO03 j+/FJW2nEeDmYbvb2H75gsaHaI4GAhB9VASx/W2FdKC/zRoBPnWMh2L743+q fOX/xJrgku/yFBUybnz9Z6dME7w0PPt2P/Y9KtSJhV9ogitcnVex/fpDfv4C Hq0mWPAe7SBHbuX1TNO0bIKDqT/ssPOVfVeE3kQkNgHJxljhJ3Y+UqLdfSuj CVjefOtcxc4/vO5R8eY3QUHu7HXs/Gdm/yOPqqomcEkNs1pGPry55jgz0gTu jDeUsfMVzz3cDT7qZpDgMbfBzmO+bPGeqHVqBi2PB0fqkX/TNnxietkM/c1J lNh5lmiOSt5jn2aQk7DdqMLOp2ZPyAtGNoO1QGV5GfKm3Hfj2OJmSPO7ehw7 vzI5yRj3bLkZusJbV2KRgwY87478aoaeqx1B0cjkidP8otvNcPhJB38U8hxJ r3LhYAvI7PgaYudrGplaI/p8LWB47PTT19j5V44SlaRZCySRW6c5IKdqmfSF WLfA2LmFVTvsPMfELGLJvgXeuyTIP0CWoeM/lf6qBSwu/2ixwM5f8hOk6BNb QHz6zFNjZMkystur4y2wqJQypIJs8cwsvkC7Fca9TN8dRr7urCwReL0Vfsnl xdAg15kd7LE2bgVu+v16B5F7ZC9v8Vq3gkjZq2py7Dx2J9Yw1bsVZnVENH+/ QfXgU3nat7WtwOvSzTeJHNSmYP5KoA3S5CKoE5AzjiVtmIi1QdJE8m40dv4s 8TFQQaYN5MUJyxHIzw7uL9tUbYOggpsVgcj50sPkjnfaIJ7H6bMLspe7QpxV dBuczNH9YYjMVtGJu0rZDgaOTiI0yC6NXlm0NO3QHfxUgwpZ5MOJpC76dvjO TmVMjmzi+C5IiaMdugzF7/8JQvWaVYCVuHw7iEpzMRCR8xhzjh91aAeb+djP 1chsPP9uDE63gzWHDhl2/m96NUMraL4dCjbeUN1APhLFpqjxtR10SMn79JAv XvLhJmy0wxer2Ck15K1m0a94+g4Yc2FgF0E+7J9nF6LRAexXBbu2AvFQw3D2 2pWyDtgxFQ4OQq49WdmVUNsBL9eK8N7I+qp/Yam5Azz4htteIM9eahPxG+qA OJxu/wPk05NqVM3fO2BrclVTC/nYqfx8KYFOEJgOKzuAnCTwu4EtqRMOqtPS PAtA6+NK/hnbzE5Q0nnr9BDZfvFYQnVBJ9AWRg+bI/cFbj8zqO2EzkLJW7rI I7p0wqETneC8fraGH9lMesabgqEL5kMfur3zR+N/Lf73F98uMCEyfjiN/DRA Xbw2uAtkfD7TsCI3qaU+CIrqAu9vVMJHkMNsTeZE0rvg1LU357f88NA+uNT1 pKEL7uiLZ/Qh61Zv+e2sdQF9PaOLA/LruIiWI2bdsKRvtVjgi96v88m1T1bd oDT1mzYFOU9Fjaf0UTfIDr/ljkAeDX7spe/WDXIeyazOyPWRfOfjYrrB/1el rCpyrmhwIvdANxwmO0I3/hoPbXde00kr9ICLyJWS7z54WJ80ro5V6YHo8qfK s8iGNXnmO5d64NLb27V9yMxVxRWtN3qgJMXJrAC5rEDHQO9ZD/wx9ImzQhaa 4nC1L+mBmx7q/tPeqJ5pjdLP4+8F82ytJ8VeqL70Y/5OK9YLz4zDiInIFJqb Pg4yveC/YiofgHxSf7JUVq0XQO1grBlyq+cvqg7zXnjhY0lLj1xl1Rs6n9QL 3ySft9l6ovo7spGdjbEPRLtw4Qc90P42kfyQCVsfvJIlfPrpjgfXuyHridx9 wLJ6nWEamcHas+fU2T44O615Eoes/rDsAbdOHxSqcjTpIhd2OwYK+vfBwEC8 UugrVM9yR0vI7vSBxC/m0g03tJ66S1E57+uH/GNcx2aQD5zdnaw+1A9sLnl6 zZjNqd3kWfpB0mzTNgiZ22a16oJMP+hcXKE4hVy4j4LqokM/5A3xt55/gYdO Ff81XVI/sM+X37rjgtavhJ2AY8v9kDrJb6WC/FI+lmPiZz/MZlRf40XOc1DW NN3rh3Rz/tYlZzTfZSuFPmQdgMP3xmmfIj/wYF7zvzoAdt1fZD2eo/2T0DGa 5voBmI5wt37lhOqVCi8fn9YBuDqry3obOfjw1o5GzwDYWjPnKCA7zK0vDUwM QOnx6qubT1G+Gvq6mV8DcGyBYcoe+XrSjNCmwCA8DL83a+SI6mH9j0qibwdh n7BlyqHHaPzSTB7zSUS+4nZuzgGt71MeC1MZg/BuwDSjCnkqccbndekgHLhF tXAP2ScxvGxmcBCoO++z19qjerat20pt/xDsWM3L3n6E1uMzt//+giGQ9bk4 5vYA1c8D1waSVIdgdvwLzRXk/nifVE2NIfjr60HHjpyslqaSrDMElr5JdvW2 ePDFJ7+8dHsIMn/qxW3a4KE7eaE/xXUIWDcl3Syt8dDgdGNYq2IIKkMNaI5b oPVvpWCvqnoIQpf5O4n38bBqdEHkdP0Q/Ehn1SlGvvme2XenZQi4No43aCLT ZIWI4oaGQFKBj+35PVSPXv148/C3IRD4daew2wzNX2p6jEPcw5B0o+n3RVM0 /izHBM7zDQNj9P3WQ8jLF1zP5woOAz1rqdHQbVQ/J4uYeYgPQ4CQwZAx8u8+ 1lRxxWFguye39dAEfT8fL62F3RyGdxqHjvoao/XRDvflatgwPJl1+xlgiOrJ sR+MVFHD4HI7KloFucXxiFJdzDB8qDy/um2A9rduUxG8KcPA62dRY4ts/vKV 0DZuGI65MyWq66P6dN8fzozeYWhcZP2yeg0POXpNXL+pRuBtQ5wu1RX0fdnv 8OUdGgFlh5CNcm08cM4vCZkeHgH7UO7L95CDzKdEu5hGwLVF73ejFpq/+sb5 Ek+PwIODOzpPLqN6zIZjXFVlBH5t0Ix3aaD6yI1WIOLlCGw7JzJKquDB7yjU SnuOgFXiH9NJZfR7XKPUmvIZgcKVPt2XyNcllK0534yAqKIab4cSmq+iTMLx 8SNglOYYfB3QfKI9kdhTNQIqVKbUt8+jfDJBIeS/RgDP+HVOQAbVs30uvraW o3CBGacfKYAHsmZh2UGbUSioSUrhR75LcWlR0m4UrDOvBNXx46FyggC7jqOw +2Ty4jwfqnd9nn8M9RyF0hNtcsK8aP24NTxUnjgKd4r2FvK5UD2hSfd4d2QU Pp908L3DiodPhcLXA2AMEozceUMOof2t926RjOoYOJkWXtylxoPzmschkvoY sLk++vgA+bJgVLWizhiYhUr7ahxE70+leHPNZAwcj9NGbu5H80/jDJWp6xis ecmTK5PjAeqStcQrxkBUzVLV5g8O1tIYN/qE3oGKblbG3hwONpNt1BVE30Hp GK+DIfKzAvmovLPvQK55paTwEw7u4zQFfOXeQU47X5TRRxyocr0/C+rvoOhR Wmf2DA7aYna6is3egSZpK0poAgcfj17cDI99B+kqTFfbe3HQ6qD4QYtqHBw9 75WfLcPB48+uSrnU43CLXfq7ZSkObr1oSaGkGwf/Y7QBCSU4wPfaGDQcG4cy XfUvFMU4kHwymSjKNQ7gpiTfU4iDCZ4z8UfPj0M7Jf2ofDYOtm3pFUcejwPl 9uixtFgc7D+1nqo1Ow6WVzJ+2L7AgemCC/ePT+Ownkn59a4rDmIrulKiSOMw wfSB2tAFB301lcGzy+PQ5faz7cJzHOCGHGXst8eBPKmMYp8jDqoTLKvDj09A j5MRy31bHHhkGFqMXpuAgfhK8pc3cHCWsiZKs2MCdCyIJ7+cxQFZ40A5rnsC 0ib+qdSI4yAswHaIoX8C9BIigwLEcJAhwb89MzoB32/7ePOL4OCuxY3jj+cm 4GzE0b0bAjjgdy12it2ZgBc1TEXhp3DA++llPlFiEowfeMoZHsJBIcUXsQcp k3BwUfIk3cdC0FGQHjueMQniQinaPrOFsPdP+klb9iREr7fobk8Xwr9KxQR2 /CT0HjbtnZ8shAVeUupg/STQ9bN7ZY0Uwis/0WcS7yfhn5D1+Z/thSCX+ZZ3 jXEK5iI9ChMLCkE42NfxTuAU+Iu6DjM7FkJm7Su5reAp4JGpl1R7XAj0jpwb EeFTcPb6NeUn9oWwuHb5VkfsFIzKl+t1PSiEDe/MvjM5U/C3+6rD/fuF8Fc1 TX2zdQrogqQWbhkUwnH5boeA3Sl4x8e8riRTCNGi4caRDu/B/UbRnfK1AlDi SZTuU5+Gw5c2XeosC4Dlw5V3zqIzsN9TgZ1Ukg83GGr4D1DNgpGzysy7pTxo D5KsC5mchciF/dEsB/JA6WKbzHbdB2j0yOQhX8yBzluXMqlDP8K3+1fT/+Rn w/z7vIOS5z7Bhd+8q9ons2D50WRmaPon6EowCPptkwGq4z8v/Ts4B0nCDkKx bmnwPXqNcevZHEQ+fj0QwpoMZAeVasxm5kCo3NmnoS8WLjwzvMv8YQ7iDSqV fpbFgqCk1Peej3Mw5auPY0yIBanKvSpJ4hzQFs1bCdnEQhRp6Qjl0hykVllT h1HGwt8Wv5qUP3MQ/MiE9ZxcDLg6TTxtYZiHk1n0G7kRb+Gi33PLEs152E62 k6akj4BAtmAWo8vzQMhO6rj4OxwY5wn4Ha150HpvrflkIhzU7om4a+jOg72v LDEyKRxOuf2pmDaYh7bC9b5VgXCYsg+z+Wc+D5qiT7d3FMLgJOVXozMv5+G0 UYvUdtYbKJjWi+ItmQddn6ddhZ4+cFh52iyndB6+c5hlSqv4QGNk6lHB8nlg ls5ue0vhA37ZkfRnquYh8kuj7rSXNwhNriWLN8yDunP+l+eeXgBVouOS3fNA 15uRMPXMAy5FHBDgnpsHPs5rmtFezlDcub8k7igRdrfE7j+wMAaJu47bEgxE NH6jGgdnjOAetxlL3zEiDATwvDPWM4A2qYsTu8xEGDoaIvtB9iqcvzWme4ed CKuvLyTFl8jCZvppFlYhIpSahyqo0+oQhunkxB6pEuH0hSccoZJ2hEWONs4A JyJEqb46MPvTi8D9VvX+zjMimLAL2clc8SZ0njZ/Ye9MhPv0PxxGcr0JxZPk pw1eEOHd+SCT0bs+hA2c7a1TnkTw9SV5ko29Jix0eGnkviFCUsunL2qd/oSI T/xScRlEcLLdjfUihhCIgkx4qiwiJH4qu1OvEUpgZor545hNBOXsVAGVwlDC 56XBzSt5RGi2u+zHohBGYIy8WryHJ0Lf+EzxFFU44Uja3tjNWiLUGMX8qc+K IETKHNn+PITyz88aa1NEEwRSPjNojhCBFNMoZSMXTaDEfdrMGSXC1qI+e/Gj aILXhUxhq3EU/+o1XT8dTZiNfyZAnCbCr8PFFhNVMYS/HvvvDC8SYZhknnTe OY5wKz658vUOERYEaNfPsyURxk/RCn/cJUJ+gDwzmVESYT58zEpujwhSzTjK 3xFJhB+UY+eWyEnw5a842NMkE/x/MSpoHSCBzWnjiZp/yYSueJMQCgYSTKmS GTx4nkowOJNyRY2fBBP1CuKeL9IJ7yM1JcsFSDBzXs3NMyWdcDmBdZhbiAT3 B818MlrTCYeCdaT2zpBg45ZYyBXaDIKWgldEuQQJFBJi9xRTMghtV3Nc6BVJ wHbN0LetN5Pw7UyecoQ+Caqv29bMKOUQRI/IVv4xIMHBO2/s3GxyCFzmp6ZN jEggwffty8WIHMKfyW9SfMYkoL3179w1Ug5haICTq+IOCXi5WL1NA3MJ170z UlptSZCwc37X70MegTP8iUqaBwnqLij2seUVEsyleagXPEmgIn0qXm2skGAh m+cl4E0CD0vgTNgrJMxdOheMf00C5ytejj2GOMLVH05blYEk6L1hKadyAE9Q iJ5Yr44iQU/HzfJJhyJCjXBKvnsuCQr1PpPbS5UQFF+4adfkofzt+JO0V0oI ydFNsb/ySWCbSqnbZlFC+PHaWOw+jgTZaxcIvjElhPWxQW3VUhIc+5Jz6eZO CYFex+nAzzoSFG+ntJj3lhKs+TJNDw6SYJ/OV4Yoj3KC1Oza7M0hEnStJBnq pJYT5FPMF/OHSUBxQPmZZFM5IZrQEaY1RoLTauTd7mQVhK13OYp+UyTwocvI F/auINTTxEZ9JpLgZbBctnB4JcHxrLHd2QUSGMw8b24tqyR4pkR1ui6SQGZi zSx4vJLwKcjhH81XEggIXqGvOllFeBEVaiWwQoKL3T8CHxdUEebeXCvT3CTB gGVS69pINSGIa9oicIsEZ8TVMj5uVhM6Jd3De7dR/Gmj5n6OGoIdC+ma9i4y Ta0s2cMaAuVsqJUGxQKMjdXptx+sJXw+x23FQ7sAW6dqmFl16ggb9VlWJnQL MJL+s+jb8zpCoxvzZNThBSDEC1rvS68jlJsZUFHSL8CTQxvMZH9Q/OgZv2mm BeA8ob6mlVlPIDu7b+PI8QWguqKfpj9UTxAyeD+oemIBfof8S8jZqSfs5e81 57EugERg25CYYQOaD6imptkWwEjsTb2ldwOBld3jBh37AnCbxhovFzcQ2G61 g+KpBajGy79p/NBAuBsiFvKIYwGkLsWJzNE2Ev4DJ+Hwsg== "]]}, Annotation[#, "Charting`Private`Tag$409987#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[0.002], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1Xk01HsUAHApkqUSQohKm6RNWsQvS5okSdmSJSovla2sITx6xbOmPK1a LBVKkSXm2neiRUXDDPObsTRmMLLzrj++53s+536/95zvvefc7xond/PzggIC AhW45nfHmG0xbsokoXkkeStDnAq7HCdL/kZ7UjaYKyynwh0dYc5/6H8kqO0W UlTwodMpFejGeAe5RnkqTKunjMmqkMQyq/TDJRuosFJi/44y9LNK/VvvDlIh hH9VWmotSaSGJq/tu0aFOsuKpFxVkoA2M8uoTioceh3vYa9GEgsS/BqO1AEI BLwQebCNJG5TI6s5FqVQQ4kpeqtJEjmazSOptaXw6FHD6Q37SUKdNWJy+UgZ WCev7d9OkMTbPSXJfVVloB1ltvk/Q5IY+prX23KiHL6PcEzajpAET++YZBS9 HH77ylBfm5LEpiu1xg2uFWDaluT68yRJ2O06MvxSuBI2vjsQ8sQa63GV0bb+ cSU01dvn6NqRhM/SOOHne6vgYaSDzw4nkjjKftHjzq6CeOnxDXCBJP6sgJ+V 8dUgQVMIf3iJJI5EZX9nmtfAjKemnpkHSQiMXnKtkK8FydVlz59eI4nSCEGT 7b9qoVhS+6iOP0mIWe1xzCisg7PBV376BpHExVdr16ndqQdessTu8VCMU0qm sqIaoOWfWlXTmyQxKhSYQ4tuhIbVO8cPRZKE1Jv3sc/+bYLO8RT7oBiSWOL/ B27nNEPrQumF1gkkUVBv3Wbw9ROoqejyRO+RhIx1SNqd0BaIvV76408ySUyt +KQ7tr0V0m492Xr7Efb7pv+p/fRW2B2jzjF9ShKVaSnpNpmfoXc5q6X3BUl8 7lwQzA7/An4q4cnqGSQh4njg0D6Hr7AiZOvwg9ckwZrLGNB3/AbdzjF5H7JJ YrGhZwb/fBvQ3rVmZOSQBP/o/dKBoO9wV7a8siSXJDoZuhrLGn+A5AKv2dB8 kshyMnMSXN8OpyWadJyKSGK9fFl0flUHyN0Y2jNSTBJ5BieK7gTQQMrATXwG zSz0SskMpQHbWbZLuATrO/2jvfYWDaQ7OMGr0HZ31C3Fkmgg6JOaoYfe6x/6 uuA9DTK4Ei9i0eEHLWY+cGjAOa61T41KEhHdL9edOtcJU+GnWmyAJFKKtJtS z3TBhpBNE87o2uotNpbnu2DOrErZDX35XtsTMbcuSDOyvhCGNqRbXwm/0QXl +h0/XqF5ksP+b551Ac9c6uQUOmtPBHewrwsMiT3375eSxMDK5AA5XTq42ng7 fS4jiVkbcVGHH3Tg+9tbdaC5JoOnRWl02F9FMWaiT0Z/0C5g0GFdu7LaH/Rq vTd5CgN0SOK0tMqXY/w21C6YpcMiKeEyR/RXd38HE1UG+PnwFTloAbLad8CL AcxB3+K5CpJw3OGb0yHXDfa0KKZIJUm0pufq5qzuBt1gTdEV6HyTU1GRqt1g HKxvqopeS4nxpGzvhoNClEIKuuZhY/vQ4W7Qss9aFY92dfrlO+vbDf/2BIuo VOF7F7cEy3d0w6GskO5NaJvkyatujG6Q1BUv2oGeU3R9WcPuBndzOGuATg3J ZN3kd0NnXNSdC+icEuWN+5b2wLifW0gmmpSf/uCh3wMZMf2BWtU4Dx5WKx3L 7gHPxudduugKw+KOFXk9wKocJg6jCyZ+H6J97IHF0WYTVuhjt+t3htT1wGUR weP+6MHlkZOzzB7o7uJFfETnKqgWMRWZMFH/QFm3ButpF6jnE8cET76zphGa CVvSO5KYwOB8MDJFi5s/O2/0hAnGg1PO9ujTv+MWqWczQc9jPCQYrewv6bW3 kQmJcVcMqeiC6qHztktIUJX5NqhdSxLyIhcl+P+QsPYxVcMAHV9pxgmPJYHL CrhsjM69mbVJIYkEnThXhjX6c9J0rVUaCZqbVud4o03S9E6tqCJhn/tddjY6 6Rr3S/xCFhhqFWYr12E/IPkgK5wFqpauGRvQbxivvDSiWXCmnflkK7phKVkf eJcFxnTNW9po6x1vl6inseBD/F5dK/Q9M27EtxoWWHyJImLQfiq11afF2bC+ mnJ3Eh0hK7rR+T4bjGWmvy+oJ4mrilaHDV6woYe1RG4JWlApsHxLNhtWhO+K k0VrLbfhy5SzoaDivaMmeiYz39esnw3OY8vDrqCHItWqXQ70gtz94AoaGh6G Dlxh98IasdK3TDT9+tko9+FesHA5/mAA/cbFS+j6TC9so1j+NYGmtjaVvJHq A2HfCYZ0A9ZDxKg4/mAfJN7VPnkU/TGVt8nwYR+kHmpX+4Dee/ESt862H1rt NE4Uozf/d9XXzKUfGvOUvMvR5Z9Bi+HVD9ebG/Oa0ZcYoglrIvvhPuG8io1+ yZXRUy7sh4K69R6yjSTxoUdygYL8AKxvf3bUB+1RcP1GEGMAgsLzVQPnbUPx chkcgLjEM1OhaN9NJjftpgYgNsLyaTQ6VIZu6SbzGzwXCbS8QMu9Tf9b1fg3 SEn+yv+M1inSfsfN+w0CoZQ36k0kUTa7eTAxiQM+WgylnWjV5hIjWioHdjNk I/egOx03PNiVy4FdZXa2+mhBplKkaCsHYk7oM6zQYQlyjc5ig5CbsS4gDM2N eVHZFjYIFF4/7dv8+XgrsA/iwkDsg7l2tMyq5Lr4aC5kWnStpqO3pRkXfnvE hXv81Zb98/lyF7+Po3JBteda+iz6mfnqBZcEeOBqq/FtQzNJRPVd0rA15EG9 q+tpb3Rh5d4rpl94QBF/eS8ArfglV+YMjQfqpXOfbqCFhPp7vdk82Jowsi+y eX7efnVpnuLBuE5v/2P09IIkHZn1Q2BwIaW0Bt0iaDghFjAEw8ObmxvRr3p9 vrPCh2DjicofrejOhda2n2KHYFH2ZrIDHRI7WVSXOgSmK1+1c9G5jNj8C5+H wCtj1V7ZT+hOYTcbjWGo2B2wUhHdoaF7QGH/MPC1eoZU0GzRqou/Dw1DbOGn J2roXn/26RK7YfirUOiHDrpS1YOrGDMMXsuDCp3RD3wLCwaHhqHJ2VQnCx0r EmveVD0CN3Pl3XPQtW+uWzR+GYFbbgaP89DSro+if9FHYDL2Lb8Evexpu+qO qREIeMwKbUY721TkZW/ng4KJqxIXPZryiLrqCR+WmnFUR9D9K4nXOll8GPar 3TyGDgikSV37yIcDqRFb5tA196XHFX7w4eqp5cuWteD/KpcReGbFKGSvW2qp gd7W6nK2KnIUPvX07NyJdtUUS9h1fxRqLotJaKHPXhHi5L8chT5d00KdeSs1 0RbWjQIvI2nIBK1xT0T5tcgfEPfroruiz0nIfXP/9w94nLyU/wLNtDt3yyh9 DMIErqVloAPW2geKFo9B/1GZhEy0bLJA1XDLGCR6KjvkojcJFtfsmBqD5+16 LRXoMPGqmasnxiE0V2dpN1rlvFiio9AEJIpEVZPoOyl5ZJLiBHgVuFzvQ0tP nByY2DUBV781tvPQ+2NTfhLOE6DydLfHHDpb7awIvWICXnXO8BVaSeJG4paZ X9GT8Dt80lsZnXq3XW48fRJ0FING1qIT4jYWHyqfhKYSSeZmdFqNSH3A2CQU rPnrwR70CRdfqu25KYiINnAyRxsdlj4WRJmGJelWry3m76/qjBG+MA3FSr08 a7TWK8PZhr+nQajguqcDOjLPVH5pKTrzDOUy+oxUV0aY9gyoFOt7u6MdLie+ FbCdgZLjKY+95vObHL1dGjADIfHA8kPv26KUJfJxBrQXhwgFosV7NwYndMxA amyeyg20wbI16menZ0AxxmFvGPqop32It9IstJ0PMolA58c2GbXozsL/RNrf Bg== "]]}, Annotation[#, "Charting`Private`Tag$410014#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[0.002], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwV03s81PkaB3BSWhy3NC6tRasic6jOy+buW7EV2yvrktuRS7sp1amkMG5j MqEVI5EUG+s2pLNahWbL46chNJhUk7sx8/2Z3diNFLns6Xz3j+f1vN5/ff54 Ps/GI2d8jq5SUlI6SebvrZmuan4gHiPbBplv2s8KMHaU3fmW2G9WeGKsWgHD QbY7DxHX7hVJXUsVUNHh5BVK/H7mSaDWVQX0PZLknSWe3idZmDyngBA/+/AC YgXfUjnRTgGs3jQ9KfHxFI9X2sJJEIerDrNYGNXlJ0+ovaFhUSS3YhM/dohB b2U0aFfHJXGJ7VQNrQaHafDMbNvEI44Rq+QLemgY+gpfriAOneTvbrhHQ+fM t1V9f1t5xSs+gQbOgRILiwSMNCXt1bbaNMRfi/IcJt7/uVN2mTuGkETXKimx 8G20+TtXDD9r5KpMEqsXlox/7YAhTrOmbYY47FQEzFtj2DV9z0c1EaMNr754 mWyAYarLSLCDOOPCQwPTKTlExBlUXSb+Rfexd3G+HF68j5l1ScIoheG7oDwj g6z/sHhuxDkb1zG+nJKB94EpGw/inqDgOvdJGRRtWn/OjzikZgVdHZGBcjFL 7STxSMy2p/u6ZGCTlpN0g7hppLzZslwGwqXGmPfElyTFZXcDZbBX1FhRn4xR kmDvh++7J2BXy0HTJmK6stq7uX0CsgRXbz0mZpn4G2lRE3CswbCom9jtsL68 tWkCfPu28jHx3NQbplvlBOjOe+sbpWBkuBy00Jw6AUNruP9KI77QRi+GOEyA vOPR8RA2Rt+H+Gy1vCeFHJ7ywBHiZ+Wb1b3uSqGhqHl/FHF7Ir8mrkYKQ4HJ NrHE1OCSaW+ZFGL7wjVyiUN9Wjt5eVLQU/lBXUjceaVpzdHzUnDk2ZtYp2LE LhA4ejlIIayluEiFg5HuoihCxBuH+AiF028XMfqwtL+17tko3JWEOI5xMZp5 xhFUuIzA5ky79q50jNzbM8cj/hiCPj97rY+ZGIm2z6rUlw2CR/TpUcMsjO6w vQ99SB8A4+DDK+7ZGI0+5JROZryG8KTW6WYeRmYtB5tWMiWQt2XgiVEeRsXy pvsed1/B73u0CzryMVIJT/e8L34J1xv/jdmFGO2dM7+j9NlLKOf/eNLsJkbO bpXfsYNewHmXje90SzDKG8yS1PD7YTg/Xqi4jZGxU2grU6sfFvvfla4rx2jx 1ZZu6+jnECHet2tfFUYWQ3rvi6ViuLk7sDC4BqOLnyX8mREhhiSr6NdP6zD6 ciy6axX0QeHY6IxOPUbRUWJGwWAvcNI0dUIbyP3qTZg7VvdCe+Vyq1oT+T+T hpJblj2gEVf2KUuAUfI/n/+2NlIEpuyKn862YGTuxePnljwDs0d5XsFtJM+m Ljdd1g2iMb2djA6MJMuPnls5dwNr6C8ju26MHgbRmku8LsjWRwkWvRidMbsf fHa+E7an3Iwy6Mdo/KbotlNkJzSbP/j1nASjdwXGtaHip3Dwkg+7cAijZeXq sFDPp8BH3N3McYx+teb6aEEHbMrw67wkJ/0uTrV12NMBCR9GT48qMEp18zjC ErXDc31ff/40RtpNV6IqvNvhH4HFBl/NkvyBT+r+ciH4nbIusp/H6EFXYu7u s0KYhkATx2XS34UTbzJUhLDBfzD74yeMIp0Z2++XPYFLDLOZHWtoNMNyKQtw egIrc981bFanUctaLSljvA0SvKyOrdOm0VvrIOXrGW0w6H5eJ2U9jebWnCjt YrbBiMr2mNtGNMq4thjwxwAFTvUW3Ebic7E6npzXFGSFca73EGt+ijzDkFBw sjgYlok7b1f7ur6gwOpo+cbADTTqMtvPyeuhgCnnWup+TqMbhjeOubdRkGLi grjGNLr1TRmj9w4FdVfCk24R1z+QBR+vpYBTgwW/EDtf0OpfVUPBT0It5wni At3lQ/ZVFAQG/H7Q9QsabWaubqgspWCp/L+NH4nVewXNlwsosFs1oKZjQiPm XIuBRT4FDkcjQi2Is3es5QvzKNDXztfwJw4TO4Yo5VJg3hUX20B8Q0d7XcIP FERtKn3ZTdwfuX7J8DIF+dssbWXED0Uaes0ZFGxlBizomNJo12L163kuBYdV /xdsSZwbZp92PY0CtWOrWxGxDSMvbOdFCq7tObElgNh0tvaUJJWC8JxtOaeJ t/TE18ayKfg/YuibLQ== "]]}, Annotation[#, "Charting`Private`Tag$410041#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwVknk41A8XxWVfy1oklFCUkpJoxv2SkqSFKCmypqIskZKd7PsaIWKibMkS pRuFlEqRCKk0M4x9CD9DXu8f9znP5znPOf/cs8n2mokDOxsb2/zK/V8vxO6M vSpHBaUP3o+8/BtwF/u3jWqbqRB1O0R52KABWX/25ywoUYG8Z4NinEgDFnfv 2/1oBxVG1oYkHSt8hYRvbqi7DhXaHHhp0IS4lTf3wC09KowqakleuIj4VnVb auQhKiiS3qdZCaz4vYwPb45RYd+4eM7LMy/xQ5zL+WxrKuwusFXM5anH35E9 ycN2VFB/2j1/sOYFZiZ8FyA7UaEmzc/G0ekFaq7vjl10pcI5qt+PyY/P8UZG enNfEBXm3p77sqm4Dm+MQLdTGBXErV39UxzrkP6M1bUYRYXBHz05++XrkF1i jwcphQq/9BlebFm1aG4aIyRVSIXNHafXPch5hsMkz6uDxVRQNnTkHbB9hg2N Uc5VT6hQ4iAltXbLM1TTlZFyfU6FInElfquKGuy6KqsAn6gQ/yV6XV1HNaar 3rY62EmFLQ4vKOrZ1cjq7Rwy6aGCxbXSIp9L1aigXtISPEiFl0KB+c7s1WhZ 2f9w/zwV0uXEdpwkV+Grv0WWPktUCPGe5ekQqsJ48UXxRnYauFnd7ecYqMRX 61o97IVoYBbePGoXXIkdLxOpLHkaqGpLn67veIruIW7fXY7TgOCyIMnEV+Bh tksKyWY0wMqm/D7HCjTKHuBttKSBUyL3jJpOBW4fdfba40SDa4+uENHjTzBX FJ67B9KAVaX/qd7sCd5OWCrrDKPBBddUkU61J6jWzzFCjqWBykj+1kuCT3DS mMqvlLny+r3JG7ibylHu4YYuoyoajKdJhLzbX44Gxzp+0p7TYKvlkEXq+nIc CDT4Fd5Ig4ydPnuzp8tQcVDj3q9PNKgLLB/8516GksZUxh8GDdZkO0ka+5Si RlRcjoo8Hajzaw+uLSvGhc0OUWrKdDib1tCX5V2Md4MiukhqdFhHLk5v1StG 3yyOi046dOgbbbrL3vMYz8VG3eS3pENgzIPKJ4KP8aeeb5d7Ch1iAg0sh2OL sMi0IO/7PToMjAY6RtgU4Q2vjQcP59NhWtxHoXBPEXpsiB/d85QOj6uDliz6 CvGvZ8Qfk8904JaWF7TcVYjmjjYZGauHII+h1XR8koKOB66d6ZYYgntcEwbR bRTkT93VsF5mCGKt9/TJFVHwokHLrZJtQ/BUm5JtYEdB3aDXdD7DIRA7cdTs Vm8BLlprJdwNGYLwQIOrQd/zUVnjpbZc9BC4kPITy57nY9LPDPWipCEwtV9y 35yVj4807Oda84bA3/pib++FfPSqVSXrNKzk2xru3Bh5gN939omO/RsC9XLF TxTBBxg2wy9XxT0MvORU6J/KwzwVTcXA1cPQMeX0w/hbHtb1eAsoyg6DUfGr ye95eSjv96EykzwMtFP2AwmkPLz123M/4TsMF0rWr6HfzMVub9mwg8vD0FzV 1HxA8j7u3LZq91keBriD3adVnPdxeKZls/saBsSLUL59GMjBdzw6bx7LMWB3 7Gtfw/gcbBQvSjpIMCCw5EB5y0w2+l0/IiEcxADr8VTzfe+zkGuoS/d0JAN6 Hy967H+YhVvUyrxyExnQ2s+xEBCchcdKvzJ0HjBgqygnpZ2Uhals6+5mvWHA y1/V910r7uGLbdn/aDwjILxMEdpWlIk/Ox35zguPQPqWxXD+iEy09uKgfpUc AWM19QH5S5nInhm0ql15xV9um2cpr/DejdepRiPwfC75kG5pBob6jronxo+A U6+CX+Gru3j5175TA9KjwPXn88ZqvnRc/6Ney0lxFIR1FjmSxtJwmCNrcXrH KHg2hvflfk7DSVM9QXG9UbhzayHaNCMNtTP3T3k6jQLF9eHmBdU0jCy71FFf NQpaFzTEmOdTMcBujNfAZAy+s96+qO9PRpEhEVnFc2OwytHKnq8lGZ/T2wq5 HMegh8W0v1WejNYR+mIfb47BxisRSu+Dk5H9Yj/DJ3cMtpcrfJLdnozXW+K3 GE6NwWtLztIjwUkod9uzITVxHLbMbLN5aZiIh8uqM4XvjUOa0Dsrm32JaDGh ezy6YBzkJf21ZLYkIsdtknbEs3FYTups/sGZiN0m/kPpP8YhNplTLqQhATks S2eEtk3AuZPZsmqQgE94sVG3aQL2x2YEU4/Eo9X8IanpjxPAx6i2OU6Kx/gG 4dWU7gkACZ/hNtV4LKmgvBcenYBbmTQndpF4NCSxVd7mm4T605hHKY9DnpMf v0eqTcKbzi+mPzpj0dDjaqum/yQ0CqORnWYMnmOa1iWGTMJ6Q9vahA0xqKT/ X8B4xCRwYooydVUM1ut9jypMnoQhIQu2hbZonJzL9FN6NAkbjUXVOu2jMVHv tIjh10lA++gOkcwoPJHiPi2/fQoYQg0mfBsjUaZHfix11xSoFoZFWfFFYlBA VK6A5hScySSMPzMj0EPvmuac7hS4PF6Xvbo5Aut5pNm/nZ6CGv6HY79dIjC8 VuHKs+ApOHLnk3NLYzgeKxn3X+qdgthmtzU6AWEokiER5vJrCpx3cSTpuYTh Wxm17T9oU3BdiCJpdTYMb9k2GTdMTcFzUnZKz54wZFM+0B/Lw4SUlCnTH4w7 mBVYQDm0mwnOb8cal8/ewd0xP74oRDGBNaEXV3MkFGUmL3s8jGeCqJuYh4V2 KL48HpSjksoE0p+7GqtVQjGxf3e6ei4TWuJe/y7jC8WjedOLh2uYwPEksr69 NQRHV0dtjBtkQuIvYwVX4xDcpFVt5kuaBiZFp9rFJhj/Rp7wL9edhj7mA5Vt p4JxyqpA/M+haWh14taaPRSMS8WcgUdPTsOttbI9lduDcc0XS3N5x2lgGLor fpkPwhaV9rxfcdNwwOjgQd+kIHRqjzQpHpyGki8v7GS/BOKJqJkDo0PT0HS+ x8ClORAvZvOlbh+fhiEBgcctdYH4rHP0bOn8NCTURFVkPwjEKP1iq2qhGaji LVXs9AzE+c6vPN2aM6Djpz50fEMglhoGv7KOngHfbuEpZbcAtBKRiJRJnAFW iszUmEMAVptM1/amzUA2S8ut/mwAcs4rGVk8mIGMO5ee+ukHoOkLX2WLuhlg n38cEy65wvodYVeGZiBHdseHM6H+2Go0dLVb/y/k9fdp3Sf7YaHZoGbDv7+Q K/yq04Lug/1hiR/UOWfBlJajO93lgxlf/z3K55uF85tfy2Y2++CmAFVShPgs XBQqpklQfNChpPmJmcosWOePfKty8MHXxvW1LLNZiAlNGY2n38LO0pjmWyWz UPb5M/uhvzdx59TgO63zcxBitrwcpOGNSsu18zm2czCnGcgXstUb9T8HWHM7 zcFNnt7QOGlvZIru/9bhPgf839UeNa3yxtjW35fdwufgI2WLc8nHG9jLFrxc /XQOMrfSzW0u30C3jvbWy/zz8CRSpVakyAt1KjdUOT+bh/8+71j20vVE7TXm 0eYv54EZ4DTRp+GJlRnFmcSbeejl32h5VMUTOUz4bCXa56GrYtLHQMwT65OZ 4Q30lb4Bo6YS6nV0fpMorbDuP1je8rN6V/R15KjwJYl4/Qci12RaOgY8cKCr VDl4zwLIpc7Jxea44yN4+VhMewFsW+4kF6e6o/e7EPN8WID3ETUXPse4I6vo vWLzkQW48fQTXfW2OwZbnioUsFkAptEon7qFO1q3aStlxyyA/CFPHxtxd7zf tffkT9oCbGqTdtCIc8PYTODtvMuC+pmfueEprqiZr29By2FBn1Cdl1uMK7YU s77MF7CgcnPOnguhrujRLkzIVrBAXyvm1HFPV1xzpHPp8jsWkKSyQz3MXHF0 zdyEAIsFjfJ9bz+udUWuCvh7+dwiDNj4ypjvv4bm1w3Y0+WWYHbSABo8XbCt vU46TXEJTDoZ1tedXLAgws48ddsS3O5N9lOzdMGbD9l2pmguQS9vdsprwgUl I2WvJB9fAmf+TsNTgi4oeql1Md1/CaTm6H8kC5yxRsJ8vnZgCSZp2V7/9V3B wbtDkqfv/4MOA1m5MPvLuHnXun5bTjaiQE/dlzJ1EWMH7hvce8tGZHmSBdwe OqAq09bdNmAVwThsvJbZZodONf2GGw6zE/TVb7LtBG3Run+WVCfIQagIblH3 jbqA6WLBdxLecBACu9ynT92zwmCKhJRRNCexqunZ0Ritc/g37020tAEXYeB4 +LU/+SxuqJ6ojPjHRaivZhmX+55Bm33v+j43cRN7OxJSS9+aY+HFnea8ATzE jYnTJ1vPmOEqv5GP647wErFhMwNsk6ZoIq19vUyYj3g0S/l9rcwEXUKV70u+ 4yNcfpeN/cw+iTghLnsmiZ/I5w6y+xJ/Aq0fFsC54wJE2Qi51PfUcVyg2zp/ 5BEkVEu5dChPjZHbfcuMRLsgcb0m+hWX2FF8e93LVyRKiPiatheuFh9Bncvp 5EGz1cQRr7iAbQcNkT9uiddGbA3BnXSxsGL1YdyjtEMSPqwhDlR8/R0wfQiv bk57ftNImLAUeb2v5+tBvCkaeje/SJhQ4Aj2y+nXRy1G//rna0QI1tSVe92/ D6BMpZvzsocI0VnWxnl1SQ83v7+zPf6zCLE3R6h2g4Ye7prmahfUFCVsHCtK Ui/pYpyzVW9HiighRb47eL6GwCsVorlvmKKEppCcRLMogVr7bDNyT4sRic3s t4O+6mCiRptcc5UYUTAh2XC/lIx6G3ojL9eIEd21r/5kF5FxOs9ydnWtGMFv epUnO5+MzrJPPp5+IUYM/jpEyskg46WKRyHDjWIEX0IdW8kdMkonIZdQuxgR cPHyQ6YVGbcZFFueYogRTfRZB15hMjpUPOucHxEjXJ5+ipEVION2YvexrDEx Qj1HR0mDm4xy5u56tMkVbuRMtFskYbmrhJr3nBih/yWk/M0QCZso3+TucYoT /xj0zMQGEl7zr80huMWJ+gtHmMUvSFjYyrORyiNO3NjaZdpSQ8I6g+FNOwTE ibNkhvRiCQnXLb9QeSUiTgxLb5+2zyDhQ+/lEnsxcUIq/3GXXwoJM2JLdvFJ iBPr7bsi0uNX8opHtU0kxYkowWR4f4e0sgcSzkqJE+V1Uup/AknInEzTz5QW J5Sr1DoXb5NQIdzqHcis8O4EGQlvEhrKxJ/4IytO6Gr3cKl6kPB/JQryxA== "]]}, Annotation[#, "Charting`Private`Tag$410068#1"]& ]}, {}}, {{}, {{{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{0.6600868966165301, -0.13670237850019723`}, { 0.6600868966165301, -0.11738402713061619`}}]}}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[7, 360]], AbsoluteThickness[1.6], GrayLevel[0]]}], TraditionalForm], {0., 0.}, Automatic, Offset[5]], {{{ 0.6600868966165301, -0.13670237850019723`}}, {{ 0.6600868966165301, -0.11738402713061619`}}}]}}, {{}, {}}}}, PlotStyle -> {{ RGBColor[0, 0, Rational[2, 3]], Thickness[Large]}, { RGBColor[1, 0.5, 0], Thickness[Large]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{45, 15}, {15, 5}}, ImageSize->350, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 14], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{0, 2.5}, {-0.25, 0.1}}, PlotRangeClipping->True, PlotRangePadding->0, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.967869035936609*^9, 3.967869118026797*^9}, { 3.9678691599952497`*^9, 3.9678692347768583`*^9}, 3.967869268837721*^9, { 3.9678693031183667`*^9, 3.967869419162803*^9}, 3.9678698823897305`*^9, { 3.9678798249642367`*^9, 3.967879923099925*^9}, {3.9678799619721026`*^9, 3.967880026723281*^9}, 3.9678801198750725`*^9, {3.967880302036281*^9, 3.967880351501693*^9}, {3.967880395412565*^9, 3.967880575640585*^9}, 3.9678806342132525`*^9}, CellLabel-> "Out[464]=",ExpressionUUID->"0fd87130-cbf2-4913-8ad7-5cfae61fe9de"], Cell[BoxData["\<\"cfunction_cyl_new.pdf\"\>"], "Output", CellChangeTimes->{{3.967869035936609*^9, 3.967869118026797*^9}, { 3.9678691599952497`*^9, 3.9678692347768583`*^9}, 3.967869268837721*^9, { 3.9678693031183667`*^9, 3.967869419162803*^9}, 3.9678698823897305`*^9, { 3.9678798249642367`*^9, 3.967879923099925*^9}, {3.9678799619721026`*^9, 3.967880026723281*^9}, 3.9678801198750725`*^9, {3.967880302036281*^9, 3.967880351501693*^9}, {3.967880395412565*^9, 3.967880575640585*^9}, 3.9678806343616595`*^9}, CellLabel-> "Out[465]=",ExpressionUUID->"93e39772-7509-4fe1-b4f1-18f1c929e817"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[Large], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwd2Hc8Vl8YAHAkJVSEQrKyM7KjPEZGESWjJEWZJUoKKTMzW/be633tPV57 bzJCxftSUVQiRH7n/v7h8/085zz33veee85zDpe5vZ4FBRkZWTf6g/2fSQi3 rfQIgMfbglpeYXiwHaPUTvgeAP9YRx+QbPBgXP5IxMM4EOyWLgZ3meGBCj94 2KIzECx6Opk07+DB8IzAj0tSQXAlkfKXkTkejCKdh0XTguCfaYCxhy0e+pSa S48dfgN5DpSGC8/wgHtDEbXp+gYO3HW00vPFw0j7eafZz2/AXfh4WogbHsQU HAxb9INBYfjr1+eo/ap8kmxOczB8lQqz8XLEAxlN24k3oiFgOG8d3IR8+Ttp yyEhBE4NviPuf46HPQ6yaYODofD1HcPKMso3O8tUL+8UCiEV9/wmffBgZsqX xDEfCg9cLI6VvcZD4NcT4MUfBkrW9aVCnnjokUss+n07DIZk1SOcXuGhUYqd 0yoqDCxta4j4l3j4tZYQNtUTBlWH2P72oHh/0AlybfJwsGEykYhH/dOORj5u lA2HudWU7D6Uv/4tzbz4o3ConZae2gjEA6OIl15GZji07Aa+2kHPf/HLRgvT dDiMhq0ll6H7s5m0kfSnj4BklyWeFG88ONJNZ2xrREAaS9N4M3Jo9GVGu1cR cG39O9kBlF/Wq9rnY3kEjO3oV1/0w8O5D6fXry1HwEx8fqEiul5TVahFG1ck TIY5Pb2ITMe29U7mRiSw3JRgs/LHQxyjmXpeSCT0ebe76qD+K0WdlWztkWBX 4OS5D/n45hn+kL+R0OCozeaOnPUnLIZMIgq2kqkLClD/suq1A47WUZA1c2DI EuVfvWjgvJAcBZVZf194v8HD66yKL0bvomBcPq05D8XvEhlv9tC8hTSQUcgL wAPfAcfu8ypv4dssG5kkMjXL0Lki57cgKjz/Wx15kfNMPlfRW/A9WY1/j6zG 58catfAWxmJuJL1H+e6LzwVSnYyGm83mlsLoelLq8n+d9aKB5UbTRwZkrUcR D5b9o6Hqbo25ZBAezhZ9nb5NiIZ+4aj5Eux9HFHSHlqPBjXhU+3hyPORb+tV zsSA0/mGpQFkPdWlMxXmMdC9JuFsivp/4FZM4o+LAStW2iYxlL9PNpwufjAG Xk4QtEWC8cDvR3xJSxUL8gGsP86h+Dsm6ZVX52OBB3fZoB71D//y2vTnk1g4 4Xr8szfy/L7xgXt5sbCv7QZTGPLph7ww/jEWgpYPKE4j+/E+LdJkjoP4P/46 t1A+RqkWjjrtOEgt93ClQNfDJRwJE/GOg2SStcYyilPdNSFLrYkDjmH9K87I bT65Dgw/4qC3QyJZBtmM7vcnH754CErfzuVHFt1VvPbHJB4qDl7a1ETmHksQ /RcTDxmtEbhEZOm9PzT7R+OhIdGuhhld74zX9a80hxMg21TrZS5y8l18B8Ol BJCMPztARO2pkw9msvgkwFabf30+ctMFc09OQgIUpVCvJCGvqdSZ8m8nQM2p IoY65LLiY+dFpRPBqEXr5g7yl4AHLNIOiWB1p4TiJsp/d7hlQ6EgEVh3fu7v QG4OYBlTWUyEE/qFMjzIKRX2JZe4kmBP2vjxX9T/oVF7yFWTJPgtF3poHdn9 MetDo5gkmExq/0WH2h+lsr9kOpIE0X/6vZSRLxxv5bOgS4Y/b/a++yPT5DBT PtRMBtVb2U3TyPeqbOaeeCdD+HZgqD4y6+X6RpfGZDi3b7lADvnL3cOJHlvJ sDTJrimD7Lh7x8VPKgVOVmVFaSFrcJUYhtingDEv39BT5Kl+cqm3+SlgKLSV WojsT6lHn7iQAux1336nI+sQrz6/djQVEvrKOl4gZwVuLoyJpEIzB6WQNfL7 zRT9G1qp4DJtrYbZUVSjddo6FZIycT6uyN+FV87e8U2FM6J2UwnI1T+jUucz UmGu5ihFF7Kih8IRy+ZUmPU3qKlGnpmYe/n1Qyr0O+Y8w9p/3fT79nAnFYTG FrKDkUuJIrd+sKQBk06/cijyi9jRbkfZNEi8G/olGdntuIvcH/00KHPqZKn9 //c4leP6JA0i6dVtZ5E/P21l+heaBlJ0uea9yDHXrX08cWlgEs1pWYF8bJd2 jbI3DdKOXKstQLZ+XGLm/yUNdF1i5fHIicUGQzRU6UCRlF5Zh4332i3FUJ50 SNsJPTmCHBqahGNQTocgxd7sFWQxMeWT0abpEB0aloy9P6c4UiCLWzpYvvxO hl1ffsBvKzEuHcj75C63IRv0C1lzVqVDQmebWieWL7p/PGMsHTzfVy9j+fGC Dmr8v9Lh+qCv9wLyQ1+G8vwjGVCjKtW9g/yqsJxbVCQDQrcVBr4iBycYhpdc zoCvD95LYs+veH1zT8o6A2zY/qVMYt/PaNyj6tcZkIoLfYfd3xdWhVmFjAxI PvtyFcu/JzijRWjKgL+dx1+uI//cc6tV+ZABZzQzUw+G4EEukV2w428GrNYT dTZQ/NK/hphLLJmwIs5d/Q05kNeUql8mEzSSyvHY/dyh//f0qn4mXFUX/IXF OZqTiKOPM8FA1LwOy88qdUHPKDQTGk4wj1Gg/BVi1+kX8zOhb/3PW3pklnXr oacdmTDsfqQBi2d4vwrdN58JCvJJJ/6i/vnvI3UidjPBrn+edxMbD1u5dFws WUDTkdKxhXz/Y0NfkVQWXMjn8N3DxnPQSJDi1SwYsZrKxp7nxe7i5f4HWSBh uS7OiMwm9ZfaxC8L4hkD0o4il4se6V5KzwITH5+PWHu7b9z+Lo1ZkO7M+JsS 2eqhjMbB91mwPiG2gLked4kqZj0LFN5Q2GHtPYpM2nnps4E6mGL/EWSCg71P +Zls2Cmv+3kc+eUPT1VVzWy4ecNAlxu5SiSKYuReNmTq8Sxg93OfP7v5rns2 eHSy2mD383SmymM1PhtOtIcJYfkGtLrhVWU28CtSHMB+r2tP3/+jHcmGGwq3 0pmQp/SXGxK+Z8PsWLLDSWSZb3/dhKhz4E0IT9NpZIlztOdrTueAYu5+Ww7k YPmTfzWUcuDAx6FMVuR9q8K147dyYG5RL/IEsrqBgovF8xyQ1e0XYUEme3hZ 7ndEDpRKnz2H5R89e/OPFz4H/pAYdbmQb2VZVdL35IDLIuciP7JQu5NT6kIO CF7bMBZD7gr1lhIjzwVC71ALD3L1vvC1hpO5MPleQRDr/4QjuVRbLheO55lN ciJbz+U/nr6eC3rJeDz2e5FpVonb2udC7eDNe3zIpWILZ7Jmc8GuiptMEFmv X4SXrTYPdqKWC0WRZz/fYzrgWABLJ6Ok5LHnVwt8TBNSAE4BTGUKyD9oivuP 5BUA80tLBkXkB+feCTK2FcByyuwJZeRvPVuvT3wsgNsSYl4XkUsa2OdPbhfA v87kZUBeOaysyMVUCGJ8sv1Y/866e/G84oVg09pSjPlm8+sNQa1CuCqbEYC1 F9t1m9DmwcHiiX1OWD7lmFjJa4o4UKoSk1dHdrctCzW4iYMNZ3cPTWRXx/7l m09xAH8jmbSw8YJf1DANxUH05xEGLF50Yi/DPB8H0pHakhrIvThmMqt2HIzb pDFjtrEVMXnwCQfTp7PLMU9cVq22/4uDCI3zm1h/o8Dh2IhRtC4nSolfQR7c /fA7egXVacbkP3SQj9stX02gLoLLPzZWriJ/GN0oTDmNTF7/F4s3i5BTZ0IR +H3K0cZ89dkhi1zjIkj88FQC86E8huZCpyJoqfmRg9mkmYW9JKwIeFYmk3SR s2s5XCoKimDpUdgOlv+pY8SZb8rFIP5zn48+8vJGqPEj3WK4UXiZwRB5afiN /w+TYpj0PDiGxVvJAyqf2BbD38QLGpjrvX1Iv58XA+O+ehHMjAbuDM9fF8P7 N6b/59vn6KK0FVEMK0wMSgbIZe+fPHqRWgxWVoK6WP5LAQ8Sd3HFkCXRGG+E jZ8X93rc64rhtBLHwZvY+yky3iTvLgb34HgGLC7DdY3PZxzlP+nSj/Xf7VfX pyIh3079jrm7VMHL/2cx1F7PeYi19+gTKz60VwxL0eUXbiBTnOD58Ia2BHaD S3Sw/KcjmGiPsJZA8j//AGNsPFtrGFQKlMDpipZaLC6h5Jx8W7YEPpxS0cYc xpT7mVK9BJa+1Glg5ieNixfql8C5SIY8zJk5lK7X75WA+8eue1i+3FtnW7cf l8CzxzH3byE3/TWhTfcogbX7DJEmyA7efgaXQkvg+kf9QSzOv1Kc/CMJ3c/7 D88wq8lOfY4pLIHpiEo3zBzGZGehrgTUKGJmMG9c43Nd7C4B3MqnQCzfLotW a/BkCXwP2//sNrIh7hGt9OcSaDm152eKvZ8D4QYz6yUgRybfg8XluEuTvSlL IYc69RXm8q3hz0LHSkE/hOCL2cb/h/gIVyn4sid9wMzXTefqIl4K141qX2D5 8isFWzmhFC7LG+vcwZ5f6yJt15VSIL4ZVrmLjPO6bWBvUgoPXbKCsLieoVMy 84NSCK/V0MJM1xz0ucGlFDK2hgww38+hFt9cKYXPJxTUzJBdbjO4pOyWAvuB +U7Mj+xZWtRpy+DY5qajOfKv8VM0K6xlcDzH99w95IRgbv23gmUgWMAdhsV/ vDmddF6uDL79a76L+c7A6UWiehkwqFnYYVbX4hELMiiDBMvQUszfdjicJe6X wSE2CQEsn88Ma/PUkzIwUY1rwSxCPHbI07MM0h6ZOt7H8lPTXBcIK4PkN3vD WLz1ElniYHIZqH0uz/u/f8Ia6RmuDNZSWKsw//1DEjlVXwbCLzs2MH8wGnvW 3oPutwTMsHw9Zc2Eh1NlEP58dBlzl3L0tbqNMqia7VnCzG9hTqRmLAdP5tF+ zC4KamdKuMuhyLWa0gKbnz/yOt04Ww76T+nMMQ9fomzcg3L4qMM/g7np8Seq HJ1y2D1+wcoSWVe3VlfndjnEJPIMYnGp9+Gx6w/K4QiZQyFm+kNWc4mu5SBo oV2B+dH4OaGLAeUwVpeziLle5pDjckw5aPSIy2P59Lgn6yKyy+GmMmUOZruw DEr5inK44niX2wrL7/zwylxrORCEDof8377CWTFkuBxYI+/aYTYq9hJT+FgO 4oc+PcI8bhbI+eVbOThwPAvDrN0SSv92uxxuR3f0Y+bpiaBQOVgBHrnJnFj+ 4seRaytMFaAXaeWJWaYknJTAUwEJozUymEkewe80z1YAmav/fsyjk74d64oV kEIesoblO1DysipduwIUEg+QYXEH8ie5usYVsF/+Fz/m5eZ7cTtWFaB7+JEl ZsUlvcA8pwqgIeOtwMzyBF4YeleAPW05rTXma4IP94VXQMZI+gss3vHq6O3i 5ArodyOaYA759fvK7cIK6F35dBNzX8a44qHaCsi7FOfwf/uACrGqzgoI2pRN wlyQEM55/10F8P59/B5z1JAtPT2xAu4Okriw63lzKFM0/qgAwwZiPxY3d2dc s/1XAWIzvQmYD34mEY/TVsKkqqA35rNXSsfaWCoh4Jnq//bJdWt/zF8JWfJB cZjDV1UrT0lXgr7892bMwycO5vSqVAJug+8P5nTW7hjnq5VwgvGUJHb9K8u+ /rymlZDKmZeFxfd5KruMPKiESkL2/+9jdnjTxt2lEmxX4p9ifj9aaHzGrxIO 4mrdMBPdbmtNRVVCs2RD9P/P33LovG96JbC1CzRilksoPyNZXAm/YtO+Y576 a8z+qaES3Cz8IjELvd+lC+6tBAsytbuYY4ST/p2bqoQ8sw1lzE8W5FYXFysh 17tHFrO4lcWQEkUVyNbdMcC8cMC7JJ69Cu7lOGhhPiZAm64hXAXndTdp/x8P j8IjfstVgf41/TlsvMQMMninqVfBp0bLLsz7lcIcdfSrYHA9rgkzezn1/b9m VdB9naMTMz+nu36ufRXQR4tNYtZx/nHR4GUVcCxpr2LOLL4tTRFUBVUjXwMx szV08BbFVoF61C9dzEHhwswm2VVwjNKeD3MJ1xsq6vIq4NJOpMN8xuzLRkVz FVjkuuzD/EpV6bP5YBVUeFLsx0xbHzlxZLYKsmlsD2PmapzvrF+qAqlsv1Hs e148L1Jts1kFUd2fQjFbCzvmMlNVg8nswC3McW7lsa3HqkF+mEoW82Wen/4O XNWQbkDNiVmcQdCFXawaImeMGDHPFHr6rF6oBh7GhKOYDyWOhTZrV4MDwYQe 8/UBroTIW9VwQ1I5FJvPBCRssi1sq6HPc0ITc39FfomsSzVYZ1Ecw3xLY7Ge 2r8aZBNvfsPmz6Yxtq7p6Grwazo9grlOS2sUl1UNK4y5TZiJcU8/uJdXA1+4 fRnmjMKYr9daq6F2Zfn/+V3qcflvnpFquDs59gGb/zPHevbWP1XDupVAJubx 1veHularQfy10XPM7sIkpvh/1ZDqlmOAmWtzkfMhXQ0UxT5TwMzETBRWPFkD 6mo7q9h65fV4UuaocA3IrdW9xXxvo0N5/lwN/Kr+qYnZMwyvXa5ZAzL17NSY nwqHGvka1cCrl15j2PpJR97jNRBRA99nnSuw9bEjf3zClLoWJk59ZsPWY5Ya /XnxE7Xg/3m3C1v/TaN7vlHw14L1nrM7ZllhuT9j0rVwo3LkPOYTd5PIcy7W Qo7r0i5WP8izb9O4XK+Ff6ljHpjTLuswa5nXwgXB9sOY2YfiONkf1wI7W1I2 Vs+ovZ0RWnWvhdWSIg3MD7cLXrhv1ILm7sdVrP6yC0l4fW1/HUzZVob+X5+Z eYbyMNbBB4NBCcwXjW/HrXPXAevvM/FYPShsIpbRebYO6u0tjmM2TabvOWJX B9L50tevY9dLHWdKJaL2jke4sPp1IaX5+5lfdeB609sKq2/1PNLaa8jq4YXf i16snqa1B6dR9nqoe+2arY2s2vljlOpGPYwLZGpeRjYoPhxq11cPtQa7zGrY 9/P2nOX2+3pwFQmyxPYH0XZGF/y+1kN+W1qtKvIbhwfLqVQN8MvX6oEK8iTT T/UxpQYwvNRkie0veCL0/8pXNID73OqJc8hKocnDna0NYLbBoy2HzVc6Uzn6 Iw0gkzjqIYuNpxec+o9WG8Cl0YQgja2fD38WpAk2gj6VEEggf7d4ceNgciPI Lim3C2Hvz5Ag8rawEUKC1Mew/dZAyE8K7rpGeGglUieAPCHGiVOYbARSZGYu tj+r80gjs2cgwAFVyShs/3auly7znS8BKIzY32L7yduDM5zWUQR4WpvrjO03 j+/FJW2nEeDmYbvb2H75gsaHaI4GAhB9VASx/W2FdKC/zRoBPnWMh2L743+q fOX/xJrgku/yFBUybnz9Z6dME7w0PPt2P/Y9KtSJhV9ogitcnVex/fpDfv4C Hq0mWPAe7SBHbuX1TNO0bIKDqT/ssPOVfVeE3kQkNgHJxljhJ3Y+UqLdfSuj CVjefOtcxc4/vO5R8eY3QUHu7HXs/Gdm/yOPqqomcEkNs1pGPry55jgz0gTu jDeUsfMVzz3cDT7qZpDgMbfBzmO+bPGeqHVqBi2PB0fqkX/TNnxietkM/c1J lNh5lmiOSt5jn2aQk7DdqMLOp2ZPyAtGNoO1QGV5GfKm3Hfj2OJmSPO7ehw7 vzI5yRj3bLkZusJbV2KRgwY87478aoaeqx1B0cjkidP8otvNcPhJB38U8hxJ r3LhYAvI7PgaYudrGplaI/p8LWB47PTT19j5V44SlaRZCySRW6c5IKdqmfSF WLfA2LmFVTvsPMfELGLJvgXeuyTIP0CWoeM/lf6qBSwu/2ixwM5f8hOk6BNb QHz6zFNjZMkystur4y2wqJQypIJs8cwsvkC7Fca9TN8dRr7urCwReL0Vfsnl xdAg15kd7LE2bgVu+v16B5F7ZC9v8Vq3gkjZq2py7Dx2J9Yw1bsVZnVENH+/ QfXgU3nat7WtwOvSzTeJHNSmYP5KoA3S5CKoE5AzjiVtmIi1QdJE8m40dv4s 8TFQQaYN5MUJyxHIzw7uL9tUbYOggpsVgcj50sPkjnfaIJ7H6bMLspe7QpxV dBuczNH9YYjMVtGJu0rZDgaOTiI0yC6NXlm0NO3QHfxUgwpZ5MOJpC76dvjO TmVMjmzi+C5IiaMdugzF7/8JQvWaVYCVuHw7iEpzMRCR8xhzjh91aAeb+djP 1chsPP9uDE63gzWHDhl2/m96NUMraL4dCjbeUN1APhLFpqjxtR10SMn79JAv XvLhJmy0wxer2Ck15K1m0a94+g4Yc2FgF0E+7J9nF6LRAexXBbu2AvFQw3D2 2pWyDtgxFQ4OQq49WdmVUNsBL9eK8N7I+qp/Yam5Azz4htteIM9eahPxG+qA OJxu/wPk05NqVM3fO2BrclVTC/nYqfx8KYFOEJgOKzuAnCTwu4EtqRMOqtPS PAtA6+NK/hnbzE5Q0nnr9BDZfvFYQnVBJ9AWRg+bI/cFbj8zqO2EzkLJW7rI I7p0wqETneC8fraGH9lMesabgqEL5kMfur3zR+N/Lf73F98uMCEyfjiN/DRA Xbw2uAtkfD7TsCI3qaU+CIrqAu9vVMJHkMNsTeZE0rvg1LU357f88NA+uNT1 pKEL7uiLZ/Qh61Zv+e2sdQF9PaOLA/LruIiWI2bdsKRvtVjgi96v88m1T1bd oDT1mzYFOU9Fjaf0UTfIDr/ljkAeDX7spe/WDXIeyazOyPWRfOfjYrrB/1el rCpyrmhwIvdANxwmO0I3/hoPbXde00kr9ICLyJWS7z54WJ80ro5V6YHo8qfK s8iGNXnmO5d64NLb27V9yMxVxRWtN3qgJMXJrAC5rEDHQO9ZD/wx9ImzQhaa 4nC1L+mBmx7q/tPeqJ5pjdLP4+8F82ytJ8VeqL70Y/5OK9YLz4zDiInIFJqb Pg4yveC/YiofgHxSf7JUVq0XQO1grBlyq+cvqg7zXnjhY0lLj1xl1Rs6n9QL 3ySft9l6ovo7spGdjbEPRLtw4Qc90P42kfyQCVsfvJIlfPrpjgfXuyHridx9 wLJ6nWEamcHas+fU2T44O615Eoes/rDsAbdOHxSqcjTpIhd2OwYK+vfBwEC8 UugrVM9yR0vI7vSBxC/m0g03tJ66S1E57+uH/GNcx2aQD5zdnaw+1A9sLnl6 zZjNqd3kWfpB0mzTNgiZ22a16oJMP+hcXKE4hVy4j4LqokM/5A3xt55/gYdO Ff81XVI/sM+X37rjgtavhJ2AY8v9kDrJb6WC/FI+lmPiZz/MZlRf40XOc1DW NN3rh3Rz/tYlZzTfZSuFPmQdgMP3xmmfIj/wYF7zvzoAdt1fZD2eo/2T0DGa 5voBmI5wt37lhOqVCi8fn9YBuDqry3obOfjw1o5GzwDYWjPnKCA7zK0vDUwM QOnx6qubT1G+Gvq6mV8DcGyBYcoe+XrSjNCmwCA8DL83a+SI6mH9j0qibwdh n7BlyqHHaPzSTB7zSUS+4nZuzgGt71MeC1MZg/BuwDSjCnkqccbndekgHLhF tXAP2ScxvGxmcBCoO++z19qjerat20pt/xDsWM3L3n6E1uMzt//+giGQ9bk4 5vYA1c8D1waSVIdgdvwLzRXk/nifVE2NIfjr60HHjpyslqaSrDMElr5JdvW2 ePDFJ7+8dHsIMn/qxW3a4KE7eaE/xXUIWDcl3Syt8dDgdGNYq2IIKkMNaI5b oPVvpWCvqnoIQpf5O4n38bBqdEHkdP0Q/Ehn1SlGvvme2XenZQi4No43aCLT ZIWI4oaGQFKBj+35PVSPXv148/C3IRD4daew2wzNX2p6jEPcw5B0o+n3RVM0 /izHBM7zDQNj9P3WQ8jLF1zP5woOAz1rqdHQbVQ/J4uYeYgPQ4CQwZAx8u8+ 1lRxxWFguye39dAEfT8fL62F3RyGdxqHjvoao/XRDvflatgwPJl1+xlgiOrJ sR+MVFHD4HI7KloFucXxiFJdzDB8qDy/um2A9rduUxG8KcPA62dRY4ts/vKV 0DZuGI65MyWq66P6dN8fzozeYWhcZP2yeg0POXpNXL+pRuBtQ5wu1RX0fdnv 8OUdGgFlh5CNcm08cM4vCZkeHgH7UO7L95CDzKdEu5hGwLVF73ejFpq/+sb5 Ek+PwIODOzpPLqN6zIZjXFVlBH5t0Ix3aaD6yI1WIOLlCGw7JzJKquDB7yjU SnuOgFXiH9NJZfR7XKPUmvIZgcKVPt2XyNcllK0534yAqKIab4cSmq+iTMLx 8SNglOYYfB3QfKI9kdhTNQIqVKbUt8+jfDJBIeS/RgDP+HVOQAbVs30uvraW o3CBGacfKYAHsmZh2UGbUSioSUrhR75LcWlR0m4UrDOvBNXx46FyggC7jqOw +2Ty4jwfqnd9nn8M9RyF0hNtcsK8aP24NTxUnjgKd4r2FvK5UD2hSfd4d2QU Pp908L3DiodPhcLXA2AMEozceUMOof2t926RjOoYOJkWXtylxoPzmschkvoY sLk++vgA+bJgVLWizhiYhUr7ahxE70+leHPNZAwcj9NGbu5H80/jDJWp6xis ecmTK5PjAeqStcQrxkBUzVLV5g8O1tIYN/qE3oGKblbG3hwONpNt1BVE30Hp GK+DIfKzAvmovLPvQK55paTwEw7u4zQFfOXeQU47X5TRRxyocr0/C+rvoOhR Wmf2DA7aYna6is3egSZpK0poAgcfj17cDI99B+kqTFfbe3HQ6qD4QYtqHBw9 75WfLcPB48+uSrnU43CLXfq7ZSkObr1oSaGkGwf/Y7QBCSU4wPfaGDQcG4cy XfUvFMU4kHwymSjKNQ7gpiTfU4iDCZ4z8UfPj0M7Jf2ofDYOtm3pFUcejwPl 9uixtFgc7D+1nqo1Ow6WVzJ+2L7AgemCC/ePT+Ownkn59a4rDmIrulKiSOMw wfSB2tAFB301lcGzy+PQ5faz7cJzHOCGHGXst8eBPKmMYp8jDqoTLKvDj09A j5MRy31bHHhkGFqMXpuAgfhK8pc3cHCWsiZKs2MCdCyIJ7+cxQFZ40A5rnsC 0ib+qdSI4yAswHaIoX8C9BIigwLEcJAhwb89MzoB32/7ePOL4OCuxY3jj+cm 4GzE0b0bAjjgdy12it2ZgBc1TEXhp3DA++llPlFiEowfeMoZHsJBIcUXsQcp k3BwUfIk3cdC0FGQHjueMQniQinaPrOFsPdP+klb9iREr7fobk8Xwr9KxQR2 /CT0HjbtnZ8shAVeUupg/STQ9bN7ZY0Uwis/0WcS7yfhn5D1+Z/thSCX+ZZ3 jXEK5iI9ChMLCkE42NfxTuAU+Iu6DjM7FkJm7Su5reAp4JGpl1R7XAj0jpwb EeFTcPb6NeUn9oWwuHb5VkfsFIzKl+t1PSiEDe/MvjM5U/C3+6rD/fuF8Fc1 TX2zdQrogqQWbhkUwnH5boeA3Sl4x8e8riRTCNGi4caRDu/B/UbRnfK1AlDi SZTuU5+Gw5c2XeosC4Dlw5V3zqIzsN9TgZ1Ukg83GGr4D1DNgpGzysy7pTxo D5KsC5mchciF/dEsB/JA6WKbzHbdB2j0yOQhX8yBzluXMqlDP8K3+1fT/+Rn w/z7vIOS5z7Bhd+8q9ons2D50WRmaPon6EowCPptkwGq4z8v/Ts4B0nCDkKx bmnwPXqNcevZHEQ+fj0QwpoMZAeVasxm5kCo3NmnoS8WLjwzvMv8YQ7iDSqV fpbFgqCk1Peej3Mw5auPY0yIBanKvSpJ4hzQFs1bCdnEQhRp6Qjl0hykVllT h1HGwt8Wv5qUP3MQ/MiE9ZxcDLg6TTxtYZiHk1n0G7kRb+Gi33PLEs152E62 k6akj4BAtmAWo8vzQMhO6rj4OxwY5wn4Ha150HpvrflkIhzU7om4a+jOg72v LDEyKRxOuf2pmDaYh7bC9b5VgXCYsg+z+Wc+D5qiT7d3FMLgJOVXozMv5+G0 UYvUdtYbKJjWi+ItmQddn6ddhZ4+cFh52iyndB6+c5hlSqv4QGNk6lHB8nlg ls5ue0vhA37ZkfRnquYh8kuj7rSXNwhNriWLN8yDunP+l+eeXgBVouOS3fNA 15uRMPXMAy5FHBDgnpsHPs5rmtFezlDcub8k7igRdrfE7j+wMAaJu47bEgxE NH6jGgdnjOAetxlL3zEiDATwvDPWM4A2qYsTu8xEGDoaIvtB9iqcvzWme4ed CKuvLyTFl8jCZvppFlYhIpSahyqo0+oQhunkxB6pEuH0hSccoZJ2hEWONs4A JyJEqb46MPvTi8D9VvX+zjMimLAL2clc8SZ0njZ/Ye9MhPv0PxxGcr0JxZPk pw1eEOHd+SCT0bs+hA2c7a1TnkTw9SV5ko29Jix0eGnkviFCUsunL2qd/oSI T/xScRlEcLLdjfUihhCIgkx4qiwiJH4qu1OvEUpgZor545hNBOXsVAGVwlDC 56XBzSt5RGi2u+zHohBGYIy8WryHJ0Lf+EzxFFU44Uja3tjNWiLUGMX8qc+K IETKHNn+PITyz88aa1NEEwRSPjNojhCBFNMoZSMXTaDEfdrMGSXC1qI+e/Gj aILXhUxhq3EU/+o1XT8dTZiNfyZAnCbCr8PFFhNVMYS/HvvvDC8SYZhknnTe OY5wKz658vUOERYEaNfPsyURxk/RCn/cJUJ+gDwzmVESYT58zEpujwhSzTjK 3xFJhB+UY+eWyEnw5a842NMkE/x/MSpoHSCBzWnjiZp/yYSueJMQCgYSTKmS GTx4nkowOJNyRY2fBBP1CuKeL9IJ7yM1JcsFSDBzXs3NMyWdcDmBdZhbiAT3 B818MlrTCYeCdaT2zpBg45ZYyBXaDIKWgldEuQQJFBJi9xRTMghtV3Nc6BVJ wHbN0LetN5Pw7UyecoQ+Caqv29bMKOUQRI/IVv4xIMHBO2/s3GxyCFzmp6ZN jEggwffty8WIHMKfyW9SfMYkoL3179w1Ug5haICTq+IOCXi5WL1NA3MJ170z UlptSZCwc37X70MegTP8iUqaBwnqLij2seUVEsyleagXPEmgIn0qXm2skGAh m+cl4E0CD0vgTNgrJMxdOheMf00C5ytejj2GOMLVH05blYEk6L1hKadyAE9Q iJ5Yr44iQU/HzfJJhyJCjXBKvnsuCQr1PpPbS5UQFF+4adfkofzt+JO0V0oI ydFNsb/ySWCbSqnbZlFC+PHaWOw+jgTZaxcIvjElhPWxQW3VUhIc+5Jz6eZO CYFex+nAzzoSFG+ntJj3lhKs+TJNDw6SYJ/OV4Yoj3KC1Oza7M0hEnStJBnq pJYT5FPMF/OHSUBxQPmZZFM5IZrQEaY1RoLTauTd7mQVhK13OYp+UyTwocvI F/auINTTxEZ9JpLgZbBctnB4JcHxrLHd2QUSGMw8b24tqyR4pkR1ui6SQGZi zSx4vJLwKcjhH81XEggIXqGvOllFeBEVaiWwQoKL3T8CHxdUEebeXCvT3CTB gGVS69pINSGIa9oicIsEZ8TVMj5uVhM6Jd3De7dR/Gmj5n6OGoIdC+ma9i4y Ta0s2cMaAuVsqJUGxQKMjdXptx+sJXw+x23FQ7sAW6dqmFl16ggb9VlWJnQL MJL+s+jb8zpCoxvzZNThBSDEC1rvS68jlJsZUFHSL8CTQxvMZH9Q/OgZv2mm BeA8ob6mlVlPIDu7b+PI8QWguqKfpj9UTxAyeD+oemIBfof8S8jZqSfs5e81 57EugERg25CYYQOaD6imptkWwEjsTb2ldwOBld3jBh37AnCbxhovFzcQ2G61 g+KpBajGy79p/NBAuBsiFvKIYwGkLsWJzNE2Ev4DJ+Hwsg== "]]}, Annotation[#, "Charting`Private`Tag$409987#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[0, 0, NCache[ Rational[2, 3], 0.6666666666666666]], Thickness[0.002], Opacity[1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" 1:eJwV1Xk01HsUAHApkqUSQohKm6RNWsQvS5okSdmSJSovla2sITx6xbOmPK1a LBVKkSXm2neiRUXDDPObsTRmMLLzrj++53s+536/95zvvefc7xond/PzggIC AhW45nfHmG0xbsokoXkkeStDnAq7HCdL/kZ7UjaYKyynwh0dYc5/6H8kqO0W UlTwodMpFejGeAe5RnkqTKunjMmqkMQyq/TDJRuosFJi/44y9LNK/VvvDlIh hH9VWmotSaSGJq/tu0aFOsuKpFxVkoA2M8uoTioceh3vYa9GEgsS/BqO1AEI BLwQebCNJG5TI6s5FqVQQ4kpeqtJEjmazSOptaXw6FHD6Q37SUKdNWJy+UgZ WCev7d9OkMTbPSXJfVVloB1ltvk/Q5IY+prX23KiHL6PcEzajpAET++YZBS9 HH77ylBfm5LEpiu1xg2uFWDaluT68yRJ2O06MvxSuBI2vjsQ8sQa63GV0bb+ cSU01dvn6NqRhM/SOOHne6vgYaSDzw4nkjjKftHjzq6CeOnxDXCBJP6sgJ+V 8dUgQVMIf3iJJI5EZX9nmtfAjKemnpkHSQiMXnKtkK8FydVlz59eI4nSCEGT 7b9qoVhS+6iOP0mIWe1xzCisg7PBV376BpHExVdr16ndqQdessTu8VCMU0qm sqIaoOWfWlXTmyQxKhSYQ4tuhIbVO8cPRZKE1Jv3sc/+bYLO8RT7oBiSWOL/ B27nNEPrQumF1gkkUVBv3Wbw9ROoqejyRO+RhIx1SNqd0BaIvV76408ySUyt +KQ7tr0V0m492Xr7Efb7pv+p/fRW2B2jzjF9ShKVaSnpNpmfoXc5q6X3BUl8 7lwQzA7/An4q4cnqGSQh4njg0D6Hr7AiZOvwg9ckwZrLGNB3/AbdzjF5H7JJ YrGhZwb/fBvQ3rVmZOSQBP/o/dKBoO9wV7a8siSXJDoZuhrLGn+A5AKv2dB8 kshyMnMSXN8OpyWadJyKSGK9fFl0flUHyN0Y2jNSTBJ5BieK7gTQQMrATXwG zSz0SskMpQHbWbZLuATrO/2jvfYWDaQ7OMGr0HZ31C3Fkmgg6JOaoYfe6x/6 uuA9DTK4Ei9i0eEHLWY+cGjAOa61T41KEhHdL9edOtcJU+GnWmyAJFKKtJtS z3TBhpBNE87o2uotNpbnu2DOrErZDX35XtsTMbcuSDOyvhCGNqRbXwm/0QXl +h0/XqF5ksP+b551Ac9c6uQUOmtPBHewrwsMiT3375eSxMDK5AA5XTq42ng7 fS4jiVkbcVGHH3Tg+9tbdaC5JoOnRWl02F9FMWaiT0Z/0C5g0GFdu7LaH/Rq vTd5CgN0SOK0tMqXY/w21C6YpcMiKeEyR/RXd38HE1UG+PnwFTloAbLad8CL AcxB3+K5CpJw3OGb0yHXDfa0KKZIJUm0pufq5qzuBt1gTdEV6HyTU1GRqt1g HKxvqopeS4nxpGzvhoNClEIKuuZhY/vQ4W7Qss9aFY92dfrlO+vbDf/2BIuo VOF7F7cEy3d0w6GskO5NaJvkyatujG6Q1BUv2oGeU3R9WcPuBndzOGuATg3J ZN3kd0NnXNSdC+icEuWN+5b2wLifW0gmmpSf/uCh3wMZMf2BWtU4Dx5WKx3L 7gHPxudduugKw+KOFXk9wKocJg6jCyZ+H6J97IHF0WYTVuhjt+t3htT1wGUR weP+6MHlkZOzzB7o7uJFfETnKqgWMRWZMFH/QFm3ButpF6jnE8cET76zphGa CVvSO5KYwOB8MDJFi5s/O2/0hAnGg1PO9ujTv+MWqWczQc9jPCQYrewv6bW3 kQmJcVcMqeiC6qHztktIUJX5NqhdSxLyIhcl+P+QsPYxVcMAHV9pxgmPJYHL CrhsjM69mbVJIYkEnThXhjX6c9J0rVUaCZqbVud4o03S9E6tqCJhn/tddjY6 6Rr3S/xCFhhqFWYr12E/IPkgK5wFqpauGRvQbxivvDSiWXCmnflkK7phKVkf eJcFxnTNW9po6x1vl6inseBD/F5dK/Q9M27EtxoWWHyJImLQfiq11afF2bC+ mnJ3Eh0hK7rR+T4bjGWmvy+oJ4mrilaHDV6woYe1RG4JWlApsHxLNhtWhO+K k0VrLbfhy5SzoaDivaMmeiYz39esnw3OY8vDrqCHItWqXQ70gtz94AoaGh6G Dlxh98IasdK3TDT9+tko9+FesHA5/mAA/cbFS+j6TC9so1j+NYGmtjaVvJHq A2HfCYZ0A9ZDxKg4/mAfJN7VPnkU/TGVt8nwYR+kHmpX+4Dee/ESt862H1rt NE4Uozf/d9XXzKUfGvOUvMvR5Z9Bi+HVD9ebG/Oa0ZcYoglrIvvhPuG8io1+ yZXRUy7sh4K69R6yjSTxoUdygYL8AKxvf3bUB+1RcP1GEGMAgsLzVQPnbUPx chkcgLjEM1OhaN9NJjftpgYgNsLyaTQ6VIZu6SbzGzwXCbS8QMu9Tf9b1fg3 SEn+yv+M1inSfsfN+w0CoZQ36k0kUTa7eTAxiQM+WgylnWjV5hIjWioHdjNk I/egOx03PNiVy4FdZXa2+mhBplKkaCsHYk7oM6zQYQlyjc5ig5CbsS4gDM2N eVHZFjYIFF4/7dv8+XgrsA/iwkDsg7l2tMyq5Lr4aC5kWnStpqO3pRkXfnvE hXv81Zb98/lyF7+Po3JBteda+iz6mfnqBZcEeOBqq/FtQzNJRPVd0rA15EG9 q+tpb3Rh5d4rpl94QBF/eS8ArfglV+YMjQfqpXOfbqCFhPp7vdk82Jowsi+y eX7efnVpnuLBuE5v/2P09IIkHZn1Q2BwIaW0Bt0iaDghFjAEw8ObmxvRr3p9 vrPCh2DjicofrejOhda2n2KHYFH2ZrIDHRI7WVSXOgSmK1+1c9G5jNj8C5+H wCtj1V7ZT+hOYTcbjWGo2B2wUhHdoaF7QGH/MPC1eoZU0GzRqou/Dw1DbOGn J2roXn/26RK7YfirUOiHDrpS1YOrGDMMXsuDCp3RD3wLCwaHhqHJ2VQnCx0r EmveVD0CN3Pl3XPQtW+uWzR+GYFbbgaP89DSro+if9FHYDL2Lb8Evexpu+qO qREIeMwKbUY721TkZW/ng4KJqxIXPZryiLrqCR+WmnFUR9D9K4nXOll8GPar 3TyGDgikSV37yIcDqRFb5tA196XHFX7w4eqp5cuWteD/KpcReGbFKGSvW2qp gd7W6nK2KnIUPvX07NyJdtUUS9h1fxRqLotJaKHPXhHi5L8chT5d00KdeSs1 0RbWjQIvI2nIBK1xT0T5tcgfEPfroruiz0nIfXP/9w94nLyU/wLNtDt3yyh9 DMIErqVloAPW2geKFo9B/1GZhEy0bLJA1XDLGCR6KjvkojcJFtfsmBqD5+16 LRXoMPGqmasnxiE0V2dpN1rlvFiio9AEJIpEVZPoOyl5ZJLiBHgVuFzvQ0tP nByY2DUBV781tvPQ+2NTfhLOE6DydLfHHDpb7awIvWICXnXO8BVaSeJG4paZ X9GT8Dt80lsZnXq3XW48fRJ0FING1qIT4jYWHyqfhKYSSeZmdFqNSH3A2CQU rPnrwR70CRdfqu25KYiINnAyRxsdlj4WRJmGJelWry3m76/qjBG+MA3FSr08 a7TWK8PZhr+nQajguqcDOjLPVH5pKTrzDOUy+oxUV0aY9gyoFOt7u6MdLie+ FbCdgZLjKY+95vObHL1dGjADIfHA8kPv26KUJfJxBrQXhwgFosV7NwYndMxA amyeyg20wbI16menZ0AxxmFvGPqop32It9IstJ0PMolA58c2GbXozsL/RNrf Bg== "]]}, Annotation[#, "Charting`Private`Tag$410014#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[0.002], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwV03s81PkaB3BSWhy3NC6tRasic6jOy+buW7EV2yvrktuRS7sp1amkMG5j MqEVI5EUG+s2pLNahWbL46chNJhUk7sx8/2Z3diNFLns6Xz3j+f1vN5/ff54 Ps/GI2d8jq5SUlI6SebvrZmuan4gHiPbBplv2s8KMHaU3fmW2G9WeGKsWgHD QbY7DxHX7hVJXUsVUNHh5BVK/H7mSaDWVQX0PZLknSWe3idZmDyngBA/+/AC YgXfUjnRTgGs3jQ9KfHxFI9X2sJJEIerDrNYGNXlJ0+ovaFhUSS3YhM/dohB b2U0aFfHJXGJ7VQNrQaHafDMbNvEI44Rq+QLemgY+gpfriAOneTvbrhHQ+fM t1V9f1t5xSs+gQbOgRILiwSMNCXt1bbaNMRfi/IcJt7/uVN2mTuGkETXKimx 8G20+TtXDD9r5KpMEqsXlox/7YAhTrOmbYY47FQEzFtj2DV9z0c1EaMNr754 mWyAYarLSLCDOOPCQwPTKTlExBlUXSb+Rfexd3G+HF68j5l1ScIoheG7oDwj g6z/sHhuxDkb1zG+nJKB94EpGw/inqDgOvdJGRRtWn/OjzikZgVdHZGBcjFL 7STxSMy2p/u6ZGCTlpN0g7hppLzZslwGwqXGmPfElyTFZXcDZbBX1FhRn4xR kmDvh++7J2BXy0HTJmK6stq7uX0CsgRXbz0mZpn4G2lRE3CswbCom9jtsL68 tWkCfPu28jHx3NQbplvlBOjOe+sbpWBkuBy00Jw6AUNruP9KI77QRi+GOEyA vOPR8RA2Rt+H+Gy1vCeFHJ7ywBHiZ+Wb1b3uSqGhqHl/FHF7Ir8mrkYKQ4HJ NrHE1OCSaW+ZFGL7wjVyiUN9Wjt5eVLQU/lBXUjceaVpzdHzUnDk2ZtYp2LE LhA4ejlIIayluEiFg5HuoihCxBuH+AiF028XMfqwtL+17tko3JWEOI5xMZp5 xhFUuIzA5ky79q50jNzbM8cj/hiCPj97rY+ZGIm2z6rUlw2CR/TpUcMsjO6w vQ99SB8A4+DDK+7ZGI0+5JROZryG8KTW6WYeRmYtB5tWMiWQt2XgiVEeRsXy pvsed1/B73u0CzryMVIJT/e8L34J1xv/jdmFGO2dM7+j9NlLKOf/eNLsJkbO bpXfsYNewHmXje90SzDKG8yS1PD7YTg/Xqi4jZGxU2grU6sfFvvfla4rx2jx 1ZZu6+jnECHet2tfFUYWQ3rvi6ViuLk7sDC4BqOLnyX8mREhhiSr6NdP6zD6 ciy6axX0QeHY6IxOPUbRUWJGwWAvcNI0dUIbyP3qTZg7VvdCe+Vyq1oT+T+T hpJblj2gEVf2KUuAUfI/n/+2NlIEpuyKn862YGTuxePnljwDs0d5XsFtJM+m Ljdd1g2iMb2djA6MJMuPnls5dwNr6C8ju26MHgbRmku8LsjWRwkWvRidMbsf fHa+E7an3Iwy6Mdo/KbotlNkJzSbP/j1nASjdwXGtaHip3Dwkg+7cAijZeXq sFDPp8BH3N3McYx+teb6aEEHbMrw67wkJ/0uTrV12NMBCR9GT48qMEp18zjC ErXDc31ff/40RtpNV6IqvNvhH4HFBl/NkvyBT+r+ciH4nbIusp/H6EFXYu7u s0KYhkATx2XS34UTbzJUhLDBfzD74yeMIp0Z2++XPYFLDLOZHWtoNMNyKQtw egIrc981bFanUctaLSljvA0SvKyOrdOm0VvrIOXrGW0w6H5eJ2U9jebWnCjt YrbBiMr2mNtGNMq4thjwxwAFTvUW3Ebic7E6npzXFGSFca73EGt+ijzDkFBw sjgYlok7b1f7ur6gwOpo+cbADTTqMtvPyeuhgCnnWup+TqMbhjeOubdRkGLi grjGNLr1TRmj9w4FdVfCk24R1z+QBR+vpYBTgwW/EDtf0OpfVUPBT0It5wni At3lQ/ZVFAQG/H7Q9QsabWaubqgspWCp/L+NH4nVewXNlwsosFs1oKZjQiPm XIuBRT4FDkcjQi2Is3es5QvzKNDXztfwJw4TO4Yo5VJg3hUX20B8Q0d7XcIP FERtKn3ZTdwfuX7J8DIF+dssbWXED0Uaes0ZFGxlBizomNJo12L163kuBYdV /xdsSZwbZp92PY0CtWOrWxGxDSMvbOdFCq7tObElgNh0tvaUJJWC8JxtOaeJ t/TE18ayKfg/YuibLQ== "]]}, Annotation[#, "Charting`Private`Tag$410041#1"]& ]}, {}}, {{{}, {}, TagBox[ {RGBColor[1, 0.5, 0], Thickness[Large], Opacity[1.], FaceForm[Opacity[ 0.3]], LineBox[CompressedData[" 1:eJwVknk41A8XxWVfy1oklFCUkpJoxv2SkqSFKCmypqIskZKd7PsaIWKibMkS pRuFlEqRCKk0M4x9CD9DXu8f9znP5znPOf/cs8n2mokDOxsb2/zK/V8vxO6M vSpHBaUP3o+8/BtwF/u3jWqbqRB1O0R52KABWX/25ywoUYG8Z4NinEgDFnfv 2/1oBxVG1oYkHSt8hYRvbqi7DhXaHHhp0IS4lTf3wC09KowqakleuIj4VnVb auQhKiiS3qdZCaz4vYwPb45RYd+4eM7LMy/xQ5zL+WxrKuwusFXM5anH35E9 ycN2VFB/2j1/sOYFZiZ8FyA7UaEmzc/G0ekFaq7vjl10pcI5qt+PyY/P8UZG enNfEBXm3p77sqm4Dm+MQLdTGBXErV39UxzrkP6M1bUYRYXBHz05++XrkF1i jwcphQq/9BlebFm1aG4aIyRVSIXNHafXPch5hsMkz6uDxVRQNnTkHbB9hg2N Uc5VT6hQ4iAltXbLM1TTlZFyfU6FInElfquKGuy6KqsAn6gQ/yV6XV1HNaar 3rY62EmFLQ4vKOrZ1cjq7Rwy6aGCxbXSIp9L1aigXtISPEiFl0KB+c7s1WhZ 2f9w/zwV0uXEdpwkV+Grv0WWPktUCPGe5ekQqsJ48UXxRnYauFnd7ecYqMRX 61o97IVoYBbePGoXXIkdLxOpLHkaqGpLn67veIruIW7fXY7TgOCyIMnEV+Bh tksKyWY0wMqm/D7HCjTKHuBttKSBUyL3jJpOBW4fdfba40SDa4+uENHjTzBX FJ67B9KAVaX/qd7sCd5OWCrrDKPBBddUkU61J6jWzzFCjqWBykj+1kuCT3DS mMqvlLny+r3JG7ibylHu4YYuoyoajKdJhLzbX44Gxzp+0p7TYKvlkEXq+nIc CDT4Fd5Ig4ydPnuzp8tQcVDj3q9PNKgLLB/8516GksZUxh8GDdZkO0ka+5Si RlRcjoo8Hajzaw+uLSvGhc0OUWrKdDib1tCX5V2Md4MiukhqdFhHLk5v1StG 3yyOi046dOgbbbrL3vMYz8VG3eS3pENgzIPKJ4KP8aeeb5d7Ch1iAg0sh2OL sMi0IO/7PToMjAY6RtgU4Q2vjQcP59NhWtxHoXBPEXpsiB/d85QOj6uDliz6 CvGvZ8Qfk8904JaWF7TcVYjmjjYZGauHII+h1XR8koKOB66d6ZYYgntcEwbR bRTkT93VsF5mCGKt9/TJFVHwokHLrZJtQ/BUm5JtYEdB3aDXdD7DIRA7cdTs Vm8BLlprJdwNGYLwQIOrQd/zUVnjpbZc9BC4kPITy57nY9LPDPWipCEwtV9y 35yVj4807Oda84bA3/pib++FfPSqVSXrNKzk2xru3Bh5gN939omO/RsC9XLF TxTBBxg2wy9XxT0MvORU6J/KwzwVTcXA1cPQMeX0w/hbHtb1eAsoyg6DUfGr ye95eSjv96EykzwMtFP2AwmkPLz123M/4TsMF0rWr6HfzMVub9mwg8vD0FzV 1HxA8j7u3LZq91keBriD3adVnPdxeKZls/saBsSLUL59GMjBdzw6bx7LMWB3 7Gtfw/gcbBQvSjpIMCCw5EB5y0w2+l0/IiEcxADr8VTzfe+zkGuoS/d0JAN6 Hy967H+YhVvUyrxyExnQ2s+xEBCchcdKvzJ0HjBgqygnpZ2Uhals6+5mvWHA y1/V910r7uGLbdn/aDwjILxMEdpWlIk/Ox35zguPQPqWxXD+iEy09uKgfpUc AWM19QH5S5nInhm0ql15xV9um2cpr/DejdepRiPwfC75kG5pBob6jronxo+A U6+CX+Gru3j5175TA9KjwPXn88ZqvnRc/6Ney0lxFIR1FjmSxtJwmCNrcXrH KHg2hvflfk7DSVM9QXG9UbhzayHaNCMNtTP3T3k6jQLF9eHmBdU0jCy71FFf NQpaFzTEmOdTMcBujNfAZAy+s96+qO9PRpEhEVnFc2OwytHKnq8lGZ/T2wq5 HMegh8W0v1WejNYR+mIfb47BxisRSu+Dk5H9Yj/DJ3cMtpcrfJLdnozXW+K3 GE6NwWtLztIjwUkod9uzITVxHLbMbLN5aZiIh8uqM4XvjUOa0Dsrm32JaDGh ezy6YBzkJf21ZLYkIsdtknbEs3FYTups/sGZiN0m/kPpP8YhNplTLqQhATks S2eEtk3AuZPZsmqQgE94sVG3aQL2x2YEU4/Eo9X8IanpjxPAx6i2OU6Kx/gG 4dWU7gkACZ/hNtV4LKmgvBcenYBbmTQndpF4NCSxVd7mm4T605hHKY9DnpMf v0eqTcKbzi+mPzpj0dDjaqum/yQ0CqORnWYMnmOa1iWGTMJ6Q9vahA0xqKT/ X8B4xCRwYooydVUM1ut9jypMnoQhIQu2hbZonJzL9FN6NAkbjUXVOu2jMVHv tIjh10lA++gOkcwoPJHiPi2/fQoYQg0mfBsjUaZHfix11xSoFoZFWfFFYlBA VK6A5hScySSMPzMj0EPvmuac7hS4PF6Xvbo5Aut5pNm/nZ6CGv6HY79dIjC8 VuHKs+ApOHLnk3NLYzgeKxn3X+qdgthmtzU6AWEokiER5vJrCpx3cSTpuYTh Wxm17T9oU3BdiCJpdTYMb9k2GTdMTcFzUnZKz54wZFM+0B/Lw4SUlCnTH4w7 mBVYQDm0mwnOb8cal8/ewd0xP74oRDGBNaEXV3MkFGUmL3s8jGeCqJuYh4V2 KL48HpSjksoE0p+7GqtVQjGxf3e6ei4TWuJe/y7jC8WjedOLh2uYwPEksr69 NQRHV0dtjBtkQuIvYwVX4xDcpFVt5kuaBiZFp9rFJhj/Rp7wL9edhj7mA5Vt p4JxyqpA/M+haWh14taaPRSMS8WcgUdPTsOttbI9lduDcc0XS3N5x2lgGLor fpkPwhaV9rxfcdNwwOjgQd+kIHRqjzQpHpyGki8v7GS/BOKJqJkDo0PT0HS+ x8ClORAvZvOlbh+fhiEBgcctdYH4rHP0bOn8NCTURFVkPwjEKP1iq2qhGaji LVXs9AzE+c6vPN2aM6Djpz50fEMglhoGv7KOngHfbuEpZbcAtBKRiJRJnAFW iszUmEMAVptM1/amzUA2S8ut/mwAcs4rGVk8mIGMO5ee+ukHoOkLX2WLuhlg n38cEy65wvodYVeGZiBHdseHM6H+2Go0dLVb/y/k9fdp3Sf7YaHZoGbDv7+Q K/yq04Lug/1hiR/UOWfBlJajO93lgxlf/z3K55uF85tfy2Y2++CmAFVShPgs XBQqpklQfNChpPmJmcosWOePfKty8MHXxvW1LLNZiAlNGY2n38LO0pjmWyWz UPb5M/uhvzdx59TgO63zcxBitrwcpOGNSsu18zm2czCnGcgXstUb9T8HWHM7 zcFNnt7QOGlvZIru/9bhPgf839UeNa3yxtjW35fdwufgI2WLc8nHG9jLFrxc /XQOMrfSzW0u30C3jvbWy/zz8CRSpVakyAt1KjdUOT+bh/8+71j20vVE7TXm 0eYv54EZ4DTRp+GJlRnFmcSbeejl32h5VMUTOUz4bCXa56GrYtLHQMwT65OZ 4Q30lb4Bo6YS6nV0fpMorbDuP1je8rN6V/R15KjwJYl4/Qci12RaOgY8cKCr VDl4zwLIpc7Jxea44yN4+VhMewFsW+4kF6e6o/e7EPN8WID3ETUXPse4I6vo vWLzkQW48fQTXfW2OwZbnioUsFkAptEon7qFO1q3aStlxyyA/CFPHxtxd7zf tffkT9oCbGqTdtCIc8PYTODtvMuC+pmfueEprqiZr29By2FBn1Cdl1uMK7YU s77MF7CgcnPOnguhrujRLkzIVrBAXyvm1HFPV1xzpHPp8jsWkKSyQz3MXHF0 zdyEAIsFjfJ9bz+udUWuCvh7+dwiDNj4ypjvv4bm1w3Y0+WWYHbSABo8XbCt vU46TXEJTDoZ1tedXLAgws48ddsS3O5N9lOzdMGbD9l2pmguQS9vdsprwgUl I2WvJB9fAmf+TsNTgi4oeql1Md1/CaTm6H8kC5yxRsJ8vnZgCSZp2V7/9V3B wbtDkqfv/4MOA1m5MPvLuHnXun5bTjaiQE/dlzJ1EWMH7hvce8tGZHmSBdwe OqAq09bdNmAVwThsvJbZZodONf2GGw6zE/TVb7LtBG3Run+WVCfIQagIblH3 jbqA6WLBdxLecBACu9ynT92zwmCKhJRRNCexqunZ0Ritc/g37020tAEXYeB4 +LU/+SxuqJ6ojPjHRaivZhmX+55Bm33v+j43cRN7OxJSS9+aY+HFnea8ATzE jYnTJ1vPmOEqv5GP647wErFhMwNsk6ZoIq19vUyYj3g0S/l9rcwEXUKV70u+ 4yNcfpeN/cw+iTghLnsmiZ/I5w6y+xJ/Aq0fFsC54wJE2Qi51PfUcVyg2zp/ 5BEkVEu5dChPjZHbfcuMRLsgcb0m+hWX2FF8e93LVyRKiPiatheuFh9Bncvp 5EGz1cQRr7iAbQcNkT9uiddGbA3BnXSxsGL1YdyjtEMSPqwhDlR8/R0wfQiv bk57ftNImLAUeb2v5+tBvCkaeje/SJhQ4Aj2y+nXRy1G//rna0QI1tSVe92/ D6BMpZvzsocI0VnWxnl1SQ83v7+zPf6zCLE3R6h2g4Ye7prmahfUFCVsHCtK Ui/pYpyzVW9HiighRb47eL6GwCsVorlvmKKEppCcRLMogVr7bDNyT4sRic3s t4O+6mCiRptcc5UYUTAh2XC/lIx6G3ojL9eIEd21r/5kF5FxOs9ydnWtGMFv epUnO5+MzrJPPp5+IUYM/jpEyskg46WKRyHDjWIEX0IdW8kdMkonIZdQuxgR cPHyQ6YVGbcZFFueYogRTfRZB15hMjpUPOucHxEjXJ5+ipEVION2YvexrDEx Qj1HR0mDm4xy5u56tMkVbuRMtFskYbmrhJr3nBih/yWk/M0QCZso3+TucYoT /xj0zMQGEl7zr80huMWJ+gtHmMUvSFjYyrORyiNO3NjaZdpSQ8I6g+FNOwTE ibNkhvRiCQnXLb9QeSUiTgxLb5+2zyDhQ+/lEnsxcUIq/3GXXwoJM2JLdvFJ iBPr7bsi0uNX8opHtU0kxYkowWR4f4e0sgcSzkqJE+V1Uup/AknInEzTz5QW J5Sr1DoXb5NQIdzqHcis8O4EGQlvEhrKxJ/4IytO6Gr3cKl6kPB/JQryxA== "]]}, Annotation[#, "Charting`Private`Tag$410068#1"]& ]}, {}}, {{}, {{{}, {}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], LineBox[{{0.6600868966165301, -0.13670237850019723`}, { 0.6600868966165301, -0.11738402713061619`}}]}}, {GrayLevel[0], PointSize[ NCache[ Rational[7, 360], 0.019444444444444445`]], AbsoluteThickness[1.6], GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ PointSize[ Rational[7, 360]], AbsoluteThickness[1.6], GrayLevel[0]]}], TraditionalForm], {0., 0.}, Automatic, Offset[5]], {{{ 0.6600868966165301, -0.13670237850019723`}}, {{ 0.6600868966165301, -0.11738402713061619`}}}]}}, {{}, {}}}}, PlotStyle -> {{ RGBColor[0, 0, Rational[2, 3]], Thickness[Large]}, { RGBColor[1, 0.5, 0], Thickness[Large]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{{{-0.1, FormBox[ RowBox[{"-", "0.1`"}], TraditionalForm]}, {-0.2, FormBox[ RowBox[{"-", "0.2`"}], TraditionalForm]}}, None}, {{{0.65, FormBox["0.65`", TraditionalForm]}, {0.67, FormBox["0.67`", TraditionalForm]}}, None}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->{{45, 15}, {15, 5}}, ImageSize->175, LabelStyle->Directive[ GrayLevel[0], FontFamily -> "Courier", FontSize -> 12], Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, PlotRange->{{0.645, 0.675}, {-0.22, -0.08}}, PlotRangeClipping->True, PlotRangePadding->0, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.967869035936609*^9, 3.967869118026797*^9}, { 3.9678691599952497`*^9, 3.9678692347768583`*^9}, 3.967869268837721*^9, { 3.9678693031183667`*^9, 3.967869419162803*^9}, 3.9678698823897305`*^9, { 3.9678798249642367`*^9, 3.967879923099925*^9}, {3.9678799619721026`*^9, 3.967880026723281*^9}, 3.9678801198750725`*^9, {3.967880302036281*^9, 3.967880351501693*^9}, {3.967880395412565*^9, 3.967880575640585*^9}, 3.9678806343676367`*^9}, CellLabel-> "Out[466]=",ExpressionUUID->"adee3f1b-f1ad-43b6-aaa3-77a78cb18b57"], Cell[BoxData["\<\"inset.pdf\"\>"], "Output", CellChangeTimes->{{3.967869035936609*^9, 3.967869118026797*^9}, { 3.9678691599952497`*^9, 3.9678692347768583`*^9}, 3.967869268837721*^9, { 3.9678693031183667`*^9, 3.967869419162803*^9}, 3.9678698823897305`*^9, { 3.9678798249642367`*^9, 3.967879923099925*^9}, {3.9678799619721026`*^9, 3.967880026723281*^9}, 3.9678801198750725`*^9, {3.967880302036281*^9, 3.967880351501693*^9}, {3.967880395412565*^9, 3.967880575640585*^9}, 3.9678806345122185`*^9}, CellLabel-> "Out[467]=",ExpressionUUID->"9a7920d1-4c2e-40f4-a7c1-d40d5e8fb83f"] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{1453., 717.5}, WindowMargins->{{149.5, Automatic}, {134, Automatic}}, Magnification:>0.9 Inherited, FrontEndVersion->"13.2 for Microsoft Windows (64-bit) (January 30, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"bc8af305-4d07-49aa-ab45-9f39e1152475" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 387, 9, 72, "Text",ExpressionUUID->"53956451-8c08-42c8-8c2b-d9dda0245af3"], Cell[948, 31, 448, 10, 75, "Input",ExpressionUUID->"80d43b72-adbe-43b9-b262-c134799272cb", InitializationCell->True], Cell[CellGroupData[{ Cell[1421, 45, 201, 3, 59, "Section",ExpressionUUID->"2aa95b7d-f96f-49a5-9026-8f0450835673"], Cell[CellGroupData[{ Cell[1647, 52, 164, 3, 48, "Subsection",ExpressionUUID->"74ef4181-66b4-4ebe-9cd8-d18f3bb0f77d"], Cell[CellGroupData[{ Cell[1836, 59, 276, 4, 40, "Subsubsection",ExpressionUUID->"ae3f92ff-ed1f-4aec-b666-38cf1d443901"], Cell[2115, 65, 182, 3, 30, "Text",ExpressionUUID->"3c613755-22c2-42fc-b106-629fe58a336b"], Cell[CellGroupData[{ Cell[2322, 72, 1427, 47, 80, "Input",ExpressionUUID->"b3c01d61-9d67-44c6-9d8e-a6f6266c389f"], Cell[3752, 121, 1850, 55, 70, "Output",ExpressionUUID->"027c99f5-1e0e-4321-91a3-5cbb88df24aa"] }, Open ]], Cell[5617, 179, 422, 11, 30, "Text",ExpressionUUID->"5028dfb6-5d48-4330-8393-a6ea0da64541"], Cell[CellGroupData[{ Cell[6064, 194, 612, 18, 55, "Input",ExpressionUUID->"3caf4b2e-bd19-418f-9e25-a4a407a0125e"], Cell[6679, 214, 1105, 31, 70, "Output",ExpressionUUID->"49d558eb-5c07-4922-8dbb-dd4e9160b42d"] }, Open ]], Cell[7799, 248, 498, 16, 30, "Text",ExpressionUUID->"5ebba7e8-cb1a-46ea-b616-86cf7ec04b16"], Cell[CellGroupData[{ Cell[8322, 268, 1872, 48, 223, "Input",ExpressionUUID->"c7bc49b9-861a-439f-9512-646df9c86b5b"], Cell[10197, 318, 1198, 27, 70, "Output",ExpressionUUID->"08ca0fd5-94e6-4628-adfc-aa7279f31616"] }, Open ]], Cell[11410, 348, 447, 13, 30, "Text",ExpressionUUID->"f76b37e4-8c10-4144-abd0-cb6113114423"], Cell[CellGroupData[{ Cell[11882, 365, 1399, 41, 121, "Input",ExpressionUUID->"1981e5b2-49ac-4618-a39e-80e4fdeb150e"], Cell[13284, 408, 1665, 41, 70, "Output",ExpressionUUID->"559a7183-a300-4d23-890a-5ecf3a1a0663"] }, Open ]], Cell[14964, 452, 177, 3, 30, "Text",ExpressionUUID->"44c542e4-4fd2-401d-aecc-2508c2be9f7f"], Cell[CellGroupData[{ Cell[15166, 459, 1170, 32, 93, "Input",ExpressionUUID->"74e30b0c-fbe6-42b3-8f3b-e85c899884bb"], Cell[16339, 493, 3039, 77, 70, "Output",ExpressionUUID->"a4a5e733-53fb-4aae-bf5e-55c284b78831"], Cell[19381, 572, 1973, 55, 70, "Output",ExpressionUUID->"88f400e4-2a5f-472e-a099-87aacf3dd930"] }, Open ]], Cell[21369, 630, 237, 4, 30, "Text",ExpressionUUID->"efd6a0d8-7820-4aca-83b5-708b3e6ca2f5"], Cell[CellGroupData[{ Cell[21631, 638, 1337, 38, 110, "Input",ExpressionUUID->"13ffe9ed-1bf4-489a-a8f4-46d4200fed2a"], Cell[22971, 678, 3782, 110, 70, "Output",ExpressionUUID->"ef036231-e26b-4140-a4fe-ee8b6c16bf8e"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[26802, 794, 291, 4, 33, "Subsubsection",ExpressionUUID->"98b125fd-ed90-4fb0-b2b6-8030dc066fa8"], Cell[27096, 800, 256, 6, 31, "Text",ExpressionUUID->"4ffed226-fe62-45fe-bb4c-6aa469980ed0"], Cell[27355, 808, 410, 9, 43, "Input",ExpressionUUID->"c2a7db7c-02fa-4892-86d5-ab577f27a134"], Cell[27768, 819, 1276, 33, 96, "Input",ExpressionUUID->"b0948edb-33af-419a-8eed-799f96d80257"], Cell[29047, 854, 201, 3, 31, "Text",ExpressionUUID->"8f1b602e-26a5-4b57-aa51-452777112dde"], Cell[29251, 859, 2371, 64, 112, "Input",ExpressionUUID->"796083ed-0d2a-48e1-ab61-6315ef238ec7"] }, Open ]], Cell[CellGroupData[{ Cell[31659, 928, 302, 8, 40, "Subsubsection",ExpressionUUID->"09159dbf-f17b-4ca5-9a01-a9462fefa691"], Cell[31964, 938, 4933, 134, 140, "Input",ExpressionUUID->"7d085a8e-7e0e-4fda-906f-2b8ad45f8725"], Cell[36900, 1074, 564, 12, 52, "Text",ExpressionUUID->"5f9c6eb0-7110-4187-aa0a-554df4eee2a7"], Cell[37467, 1088, 518, 8, 26, "Input",ExpressionUUID->"cc9d85b4-fee0-4ec0-b912-f6fa0fd8847a"], Cell[CellGroupData[{ Cell[38010, 1100, 2680, 70, 118, "Input",ExpressionUUID->"2c28fb2e-9127-4f0b-a212-966bf7cbf316"], Cell[40693, 1172, 1016, 17, 30, "Output",ExpressionUUID->"792ce038-09d5-49d8-b97c-1650b2f655d8"], Cell[41712, 1191, 867, 13, 28, "Output",ExpressionUUID->"3c86ae59-0be0-4c48-abc0-fef34d72989b"] }, Open ]], Cell[42594, 1207, 460, 11, 31, "Text",ExpressionUUID->"b4db5500-d88a-4d16-9e30-7357103a89cb"], Cell[43057, 1220, 1234, 34, 107, "Input",ExpressionUUID->"989d6cf8-f948-4f87-975a-0f05fa66a360"], Cell[44294, 1256, 311, 8, 31, "Text",ExpressionUUID->"24f09210-7e48-4686-a201-b33722b292f0"], Cell[44608, 1266, 1842, 42, 78, "Input",ExpressionUUID->"9e160167-9223-4b80-ab6b-f350e9e22a92"], Cell[46453, 1310, 278, 6, 31, "Text",ExpressionUUID->"fbb58c4e-57c9-427b-8a02-69c4c9c6f5e1"], Cell[46734, 1318, 285, 6, 26, "Input",ExpressionUUID->"f5fe0651-c4ed-4dec-8762-a303352d8e68"], Cell[CellGroupData[{ Cell[47044, 1328, 2343, 60, 140, "Input",ExpressionUUID->"22b22a37-04de-4d19-a662-6865c5ec50d2"], Cell[49390, 1390, 7610, 144, 197, "Output",ExpressionUUID->"f4fe5f53-2409-4e90-81b8-76b7ae2dedf4"] }, Open ]], Cell[57015, 1537, 559, 14, 72, "Text",ExpressionUUID->"ce3c06b1-b1e3-408f-a63d-c769178e0816"], Cell[CellGroupData[{ Cell[57599, 1555, 413, 7, 26, "Input",ExpressionUUID->"685901c1-82b5-4f73-ad2d-a5116b8a954d"], Cell[58015, 1564, 45436, 687, 57, "Output",ExpressionUUID->"65b3b32e-b2ba-49b5-9d39-ceb618a46ef5"] }, Open ]], Cell[CellGroupData[{ Cell[103488, 2256, 402, 8, 26, "Input",ExpressionUUID->"911b23cb-998c-409c-b6fa-9134fed18fe8"], Cell[103893, 2266, 10243, 184, 288, "Output",ExpressionUUID->"b53ad188-3c47-43cd-b27c-979d8c7bbead"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[114185, 2456, 406, 9, 40, "Subsubsection",ExpressionUUID->"3f6b26df-d423-4839-b7b9-d269a735e68a"], Cell[114594, 2467, 362, 7, 25, "Input",ExpressionUUID->"582791f7-911c-4d7a-884e-141308378fab"], Cell[114959, 2476, 220, 4, 25, "Input",ExpressionUUID->"3cf32d2c-2b67-4e96-bd8b-5d84ce17df22"], Cell[115182, 2482, 33267, 828, 1525, "Input",ExpressionUUID->"8eb561e1-bc95-4ef5-8430-8773cd08ddfe"], Cell[148452, 3312, 222, 4, 25, "Input",ExpressionUUID->"fc86d369-c5fa-4001-983e-52de8f533cab"], Cell[CellGroupData[{ Cell[148699, 3320, 2789, 65, 345, "Input",ExpressionUUID->"b8b67f27-3e75-4de1-ad16-edff17715d97"], Cell[151491, 3387, 752, 14, 70, "Message",ExpressionUUID->"576a1a84-e4d6-4e6f-bab4-1ff18bcf51f2"], Cell[152246, 3403, 870, 15, 70, "Output",ExpressionUUID->"c6df834e-60e4-43dc-a5c1-61a11e2d06f5"], Cell[153119, 3420, 719, 11, 70, "Output",ExpressionUUID->"16a15469-56e5-4b28-b1a9-ac6cca84dbf5"] }, Open ]], Cell[153853, 3434, 241, 6, 50, "Text",ExpressionUUID->"f688e42d-68d8-4dc4-9dff-c0f57f6c66d2"], Cell[154097, 3442, 2408, 71, 288, "Input",ExpressionUUID->"2088380a-b40d-4a26-b462-c3e201135885"], Cell[156508, 3515, 3486, 77, 342, "Input",ExpressionUUID->"9432f8bd-e5b2-4cbe-a07d-647438193c0a"], Cell[CellGroupData[{ Cell[160019, 3596, 305, 6, 25, "Input",ExpressionUUID->"7a1894b0-8a92-4fd8-b1dc-718950f85f86"], Cell[160327, 3604, 409, 10, 70, "Message",ExpressionUUID->"6700094c-fa41-4978-a40b-46c843cb455e"], Cell[160739, 3616, 420, 10, 70, "Message",ExpressionUUID->"fcb55b89-0976-47a7-a37d-3e0c32acb088"], Cell[161162, 3628, 407, 10, 70, "Message",ExpressionUUID->"36eb7ab9-8e0c-4d84-aba9-c13b3d5c7701"], Cell[161572, 3640, 409, 10, 70, "Message",ExpressionUUID->"b102dca5-77ac-4992-afb6-dc40b70b6929"], Cell[161984, 3652, 449, 10, 70, "Message",ExpressionUUID->"1d495da0-1a02-4ce9-bf5c-c098cae68c0d"], Cell[162436, 3664, 420, 10, 70, "Message",ExpressionUUID->"85ec905e-78e3-4075-a3b1-ee14adc32bd9"], Cell[162859, 3676, 420, 10, 70, "Message",ExpressionUUID->"cd1901c9-3230-4e40-b616-bf61854fba6d"], Cell[163282, 3688, 458, 10, 70, "Message",ExpressionUUID->"e4a057aa-6a17-41cc-ac1b-de170771527b"] }, Open ]], Cell[163755, 3701, 1277, 30, 158, "Input",ExpressionUUID->"5c82fa6d-e7d9-473d-b620-d5b7c6980f7b"], Cell[CellGroupData[{ Cell[165057, 3735, 539, 12, 43, "Input",ExpressionUUID->"d6ac76e2-3dea-4965-8161-a8a6fd9d146d"], Cell[165599, 3749, 408, 10, 70, "Message",ExpressionUUID->"607fdbd9-7ae7-47bf-b8e0-c78b6d37ecec"], Cell[166010, 3761, 421, 10, 70, "Message",ExpressionUUID->"e9da6ae3-9fd1-4f94-bf1b-f431639f49a4"], Cell[166434, 3773, 410, 10, 70, "Message",ExpressionUUID->"dcb4c295-70c8-425a-a0b2-b61e41137c47"], Cell[166847, 3785, 410, 10, 70, "Message",ExpressionUUID->"a214d21c-9ab3-439f-89e0-466636b64a76"], Cell[167260, 3797, 447, 10, 70, "Message",ExpressionUUID->"263727dc-af4d-4df6-a63e-277e26b10cae"], Cell[167710, 3809, 418, 10, 70, "Message",ExpressionUUID->"0fc63dab-4f2f-43cc-bd93-e58fbf61d831"], Cell[168131, 3821, 421, 10, 70, "Message",ExpressionUUID->"cbc40e18-f44a-473f-9b23-ce764ab84a98"], Cell[168555, 3833, 461, 10, 70, "Message",ExpressionUUID->"9542e5c8-690e-4249-b402-1b2989aae8f0"], Cell[169019, 3845, 25221, 434, 70, "Output",ExpressionUUID->"50c77277-7d97-4f59-a671-af33e73daa2c"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell[194289, 4285, 425, 9, 33, "Subsubsection",ExpressionUUID->"28be6269-fbe8-40cf-b77f-dbdd8e6fa146"], Cell[194717, 4296, 371, 8, 70, "Text",ExpressionUUID->"78e654bf-1bdd-4c81-9ded-86cfbf7e81da"], Cell[195091, 4306, 2696, 77, 396, "Input",ExpressionUUID->"24145378-5d07-4c36-b8c4-6de3e7e1f3df"], Cell[197790, 4385, 1818, 42, 206, "Input",ExpressionUUID->"a5bf0967-12b6-4d30-98ce-b175f2b87029"], Cell[199611, 4429, 552, 12, 39, "Input",ExpressionUUID->"06fbe5e9-ecc0-4a90-9f88-54110e2ad1ab"], Cell[CellGroupData[{ Cell[200188, 4445, 599, 10, 25, "Input",ExpressionUUID->"85384d65-0c30-44f2-8049-c4c67b0d621a"], Cell[200790, 4457, 8267, 153, 70, "Output",ExpressionUUID->"e71a1600-ea0f-4d52-9ea2-92183c5da6b9"] }, Open ]], Cell[CellGroupData[{ Cell[209094, 4615, 1133, 27, 173, "Input",ExpressionUUID->"a84e7619-7c60-46e9-ad54-60201f13e8ed"], Cell[210230, 4644, 315, 4, 70, "Output",ExpressionUUID->"b6abf475-6c55-470f-aca6-e8714509f9a0"], Cell[210548, 4650, 310, 4, 70, "Output",ExpressionUUID->"fe0168e0-d848-4bce-ac8e-7ecbd2662d07"], Cell[210861, 4656, 318, 4, 70, "Output",ExpressionUUID->"f9da6156-d26e-4cbe-ab61-e89f9e91135f"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[211240, 4667, 473, 11, 61, "Subsection",ExpressionUUID->"bd594ae4-8a47-4f64-bffe-45a8d1988ae8"], Cell[211716, 4680, 369, 8, 31, "Text",ExpressionUUID->"1f975ebf-a45d-4c6b-b278-e3e10f1ad1a0"], Cell[212088, 4690, 524, 13, 26, "Input",ExpressionUUID->"61334f8e-f1c3-4d1d-a28c-d8f1acc662ab"], Cell[CellGroupData[{ Cell[212637, 4707, 302, 8, 40, "Subsubsection",ExpressionUUID->"c9ebfb66-937b-4e41-a699-73f2445bfc51"], Cell[212942, 4717, 4296, 119, 120, "Input",ExpressionUUID->"3e4c556f-a7aa-46ac-b980-d0c37df10c87"], Cell[CellGroupData[{ Cell[217263, 4840, 2467, 59, 140, "Input",ExpressionUUID->"5ca12427-7b75-466f-be4c-1d868e0236de"], Cell[219733, 4901, 607, 12, 30, "Output",ExpressionUUID->"cd22a9d7-e0f7-4f05-ab40-61c43e4cffc3"], Cell[220343, 4915, 420, 7, 28, "Output",ExpressionUUID->"01dfbd03-e31a-4a4e-b91d-984dd5c1f81c"] }, Open ]], Cell[220778, 4925, 1194, 31, 90, "Input",ExpressionUUID->"16e6ad5f-14bd-42f9-ae0d-7719d9d163d1"], Cell[221975, 4958, 1758, 39, 77, "Input",ExpressionUUID->"22e64d24-c630-4722-92f0-e3bb600fb664"], Cell[223736, 4999, 306, 6, 26, "Input",ExpressionUUID->"2a1b7eea-d5f8-4b35-aa73-8ceebc2973e6"], Cell[CellGroupData[{ Cell[224067, 5009, 415, 7, 26, "Input",ExpressionUUID->"4809c5ca-03bd-462b-8a07-f5e46f57d40d"], Cell[224485, 5018, 10265, 184, 288, "Output",ExpressionUUID->"cfca2d95-a75c-465d-8fdd-2dc5105ad307"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[234799, 5208, 473, 10, 40, "Subsubsection",ExpressionUUID->"57461d65-9581-479a-b750-8ffd4924b7cb"], Cell[235275, 5220, 2754, 77, 204, "Input",ExpressionUUID->"62674a61-3c5f-4a26-aa8b-5614c81514c0"], Cell[238032, 5299, 1685, 38, 60, "Input",ExpressionUUID->"cfefce30-7d31-4dd8-856f-0b00a6b578ae"], Cell[239720, 5339, 591, 12, 26, "Input",ExpressionUUID->"f1337ee7-9f03-4945-9d14-beec8a90cb32"], Cell[CellGroupData[{ Cell[240336, 5355, 612, 10, 26, "Input",ExpressionUUID->"9de2fb28-46a0-4118-b74c-a5fe6cde4193"], Cell[240951, 5367, 8284, 153, 288, "Output",ExpressionUUID->"a65dfa52-c18d-48b7-9b96-467dce02240e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[249284, 5526, 527, 11, 40, "Subsubsection",ExpressionUUID->"fc766302-1b71-4768-888a-89b225a1c45a"], Cell[249814, 5539, 248, 6, 31, "Text",ExpressionUUID->"a462ee05-1e95-4f78-9dc8-d4855d70d36c"], Cell[250065, 5547, 1744, 47, 50, "Input",ExpressionUUID->"9d25e70c-15f7-4c61-9979-f48b08d4a0d4"], Cell[251812, 5596, 303, 7, 25, "Input",ExpressionUUID->"5a3784c6-90bd-44ef-9111-bbe23482b1dc"], Cell[252118, 5605, 10766, 309, 329, "Input",ExpressionUUID->"c328bf96-2ae2-4ad1-939a-70eea291c84a"], Cell[262887, 5916, 224, 5, 31, "Text",ExpressionUUID->"a81e45eb-d3bb-4e5d-b0ae-a9e62240f42a"], Cell[CellGroupData[{ Cell[263136, 5925, 699, 14, 60, "Input",ExpressionUUID->"9d4578d9-672c-415b-b8ac-076b7aa4bf99"], Cell[263838, 5941, 594, 11, 30, "Output",ExpressionUUID->"acf52ddb-e302-4350-b512-bbd0e06afdbe"] }, Open ]], Cell[264447, 5955, 197, 3, 31, "Text",ExpressionUUID->"d125cf0b-0fd9-4635-a6dc-f5233ca7a9f5"], Cell[CellGroupData[{ Cell[264669, 5962, 319, 6, 25, "Input",ExpressionUUID->"1243b66d-bde6-4261-af8c-fdb31498f8b7"], Cell[264991, 5970, 1160, 30, 50, "Output",ExpressionUUID->"a698b199-735c-424a-abb7-e0d0896b6ae8"] }, Open ]], Cell[266166, 6003, 185, 3, 31, "Text",ExpressionUUID->"e479f3fd-1442-4fc7-abfe-8b5e83b3bbc6"], Cell[266354, 6008, 17739, 297, 68, "Text",ExpressionUUID->"aa025d90-5201-463b-b0f5-3d814dcbd3e8"], Cell[CellGroupData[{ Cell[284118, 6309, 2017, 50, 68, "Input",ExpressionUUID->"7ea45a91-557c-4536-9af0-ebff55607b29"], Cell[286138, 6361, 1669, 35, 55, "Output",ExpressionUUID->"944f3ece-b8cf-4bc0-bc37-a985af2a9c66"], Cell[287810, 6398, 1657, 35, 55, "Output",ExpressionUUID->"9f100f48-3b29-4efe-9d78-21fcea539980"] }, Open ]], Cell[289482, 6436, 397, 11, 31, "Text",ExpressionUUID->"0fab98fc-b122-4ab4-8f92-63ceddfc40d7"], Cell[CellGroupData[{ Cell[289904, 6451, 456, 8, 26, "Input",ExpressionUUID->"51d4889f-326c-485b-a27a-5cbb7f6032d5"], Cell[290363, 6461, 2555, 62, 52, "Output",ExpressionUUID->"d968845a-293c-47c7-8b2b-9871f336c44b"] }, Open ]], Cell[292933, 6526, 197, 3, 31, "Text",ExpressionUUID->"84eb7fb2-da08-4432-b0a6-14b919395e4c"], Cell[CellGroupData[{ Cell[293155, 6533, 845, 23, 63, "Input",ExpressionUUID->"02bd9cd4-a609-4657-8bda-8b06d1e80f8a"], Cell[294003, 6558, 464, 12, 47, "Output",ExpressionUUID->"e99f4fc3-aae4-4885-89f1-83d796d4b550"] }, Open ]], Cell[CellGroupData[{ Cell[294504, 6575, 287, 6, 25, "Input",ExpressionUUID->"57d6962c-e07c-46d4-bdb5-8841eefbf611"], Cell[294794, 6583, 439, 12, 47, "Output",ExpressionUUID->"577acf1c-4f99-4ed8-9214-00accc0cdf5a"] }, Open ]], Cell[295248, 6598, 222, 5, 31, "Text",ExpressionUUID->"f010cdc8-82da-46bd-becb-bbd0e7f0757b"], Cell[CellGroupData[{ Cell[295495, 6607, 576, 13, 43, "Input",ExpressionUUID->"084fd101-313b-4f75-bd88-c7090f93a7de"], Cell[296074, 6622, 979, 25, 55, "Output",ExpressionUUID->"228e0a98-13a7-4be1-90be-b8867b5ead67"] }, Open ]], Cell[297068, 6650, 261, 6, 31, "Text",ExpressionUUID->"a5633c1c-e125-430d-a117-ac5a2e594db9"], Cell[CellGroupData[{ Cell[297354, 6660, 1100, 31, 78, "Input",ExpressionUUID->"968612f1-353d-487c-aaa1-4818ac91a91b"], Cell[298457, 6693, 4306, 112, 107, "Output",ExpressionUUID->"32e5fe05-430b-4659-a82a-4dd6b605c03b"] }, Open ]], Cell[302778, 6808, 249, 6, 31, "Text",ExpressionUUID->"63691da1-ff34-413f-b986-3583db413de7"], Cell[CellGroupData[{ Cell[303052, 6818, 1134, 30, 47, "Input",ExpressionUUID->"116c292c-74d0-4fd9-a326-ad37739d3f50"], Cell[304189, 6850, 328, 7, 28, "Output",ExpressionUUID->"bb25748a-a8b8-4270-b6aa-7a46c8325199"] }, Open ]], Cell[304532, 6860, 6992, 166, 569, "Input",ExpressionUUID->"4ad41725-716c-4b7e-abc7-7bcff8266759"], Cell[311527, 7028, 155, 3, 31, "Text",ExpressionUUID->"2b30265c-589b-4122-ba78-45ac04394dba"], Cell[311685, 7033, 329, 8, 26, "Input",ExpressionUUID->"92d6ac0c-45c6-4d54-81e2-d968ab9c79b8"], Cell[CellGroupData[{ Cell[312039, 7045, 598, 12, 43, "Input",ExpressionUUID->"40181b4d-018d-4005-bb58-70a5bc161f61"], Cell[312640, 7059, 656, 15, 44, "Output",ExpressionUUID->"3814b615-6df0-43fb-90b0-91a29a3c3cd2"], Cell[313299, 7076, 10052, 182, 288, "Output",ExpressionUUID->"8b63b473-a5ab-4801-b6cb-7f48ebbfe096"] }, Open ]], Cell[CellGroupData[{ Cell[323388, 7263, 502, 11, 43, "Input",ExpressionUUID->"34b53bb4-39a9-45a4-98e0-74d1df87f301"], Cell[323893, 7276, 640, 14, 44, "Output",ExpressionUUID->"4658f459-93d9-4fa5-9355-498be7528981"], Cell[324536, 7292, 8250, 153, 288, "Output",ExpressionUUID->"dd8bfb46-e4a7-46f5-b0b7-43ac2a9d6482"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[332835, 7451, 366, 6, 40, "Subsubsection",ExpressionUUID->"ef2b8986-23a0-4a19-8fc5-dd4024f3f16a"], Cell[333204, 7459, 483, 9, 31, "Text",ExpressionUUID->"938d1cf0-4584-4bf3-a719-c0a4d8200e03"], Cell[333690, 7470, 408, 10, 26, "Input",ExpressionUUID->"f1431753-2453-4356-832f-e3105f2813c2"], Cell[334101, 7482, 1258, 30, 43, "Input",ExpressionUUID->"3bb9c640-6363-4a78-8caf-d39815a4839c"], Cell[335362, 7514, 1959, 46, 112, "Input",ExpressionUUID->"5351f96f-12c4-45b7-b865-5a281a2936f7"], Cell[337324, 7562, 637, 16, 26, "Input",ExpressionUUID->"d3ed0c58-9729-46a6-8aee-20595b316a92"], Cell[337964, 7580, 339, 9, 26, "Input",ExpressionUUID->"9c231cf1-73f7-412a-9d29-cbff1412f81d"], Cell[CellGroupData[{ Cell[338328, 7593, 3593, 96, 277, "Input",ExpressionUUID->"d0ade19d-8297-41dd-a140-e0ae89155401"], Cell[341924, 7691, 28560, 512, 194, "Output",ExpressionUUID->"d51abbcc-e523-4a37-bee1-f42ffe4b2a13"], Cell[370487, 8205, 17512, 327, 194, "Output",ExpressionUUID->"d10a7a76-66dd-44f7-befa-54c0b06ead8d"] }, Open ]], Cell[388014, 8535, 190, 3, 31, "Text",ExpressionUUID->"7620cd56-5ef2-4b88-bf38-618aca7104f6"], Cell[CellGroupData[{ Cell[388229, 8542, 2551, 80, 95, "Input",ExpressionUUID->"d7850cb9-7fc5-4c63-8dfd-c2c03347e743"], Cell[390783, 8624, 208, 4, 28, "Output",ExpressionUUID->"8d281de1-a03c-4e49-bbb2-06f886873549"], Cell[390994, 8630, 204, 4, 28, "Output",ExpressionUUID->"09fa0558-be6c-4e6a-9d66-5f110daaaf61"], Cell[391201, 8636, 224, 4, 28, "Output",ExpressionUUID->"dac2af14-d1f2-4532-835d-358328b6cfc3"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[391486, 8647, 361, 6, 48, "Subsection",ExpressionUUID->"c7e7bbeb-b785-4e2b-9d9f-ba72314c5ed0"], Cell[391850, 8655, 250, 4, 31, "Text",ExpressionUUID->"ff5113ab-c107-4b78-81aa-d168f500fc87"], Cell[392103, 8661, 656, 20, 43, "Input",ExpressionUUID->"e5d4b17e-804a-415e-8701-ca8551899663"], Cell[392762, 8683, 3482, 97, 240, "Input",ExpressionUUID->"cfcd883c-f0c5-45f9-b129-3f9ab0a44eaa"], Cell[CellGroupData[{ Cell[396269, 8784, 4763, 128, 332, "Input",ExpressionUUID->"49a7ed97-0be1-458f-bb81-65eeef2ab2e8"], Cell[401035, 8914, 37079, 642, 198, "Output",ExpressionUUID->"90fd41c7-a4e6-45af-801e-d40dd55d8dd4"] }, Open ]], Cell[438129, 9559, 678, 20, 75, "Input",ExpressionUUID->"8c1037eb-ddca-445a-b294-b732b7d3a377"], Cell[CellGroupData[{ Cell[438832, 9583, 5691, 140, 577, "Input",ExpressionUUID->"2a3cef21-efcd-450d-b1a1-f871bedc8f2b"], Cell[444526, 9725, 39304, 703, 194, "Output",ExpressionUUID->"a71f539b-b320-43b0-bf37-c104f06f900d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[483879, 10434, 389, 6, 48, "Subsection",ExpressionUUID->"0f024fa7-92b2-4dc3-be19-9e00c1d5fc71"], Cell[484271, 10442, 154, 3, 31, "Text",ExpressionUUID->"a3deca98-5df4-415c-97a4-036621b48787"], Cell[CellGroupData[{ Cell[484450, 10449, 1447, 42, 60, "Input",ExpressionUUID->"c4e466ec-615a-44ad-9193-c6abb01dbffc"], Cell[485900, 10493, 222, 4, 28, "Output",ExpressionUUID->"9f5d22c1-c860-41ab-984f-07221026360e"] }, Open ]], Cell[486137, 10500, 1475, 42, 43, "Input",ExpressionUUID->"15b8ef53-6f5c-4599-be80-5a1739fc5df2"], Cell[CellGroupData[{ Cell[487637, 10546, 2575, 65, 215, "Input",ExpressionUUID->"ff21337e-89fa-40d6-9446-89aae63b0c46"], Cell[490215, 10613, 39726, 676, 190, "Output",ExpressionUUID->"e22241f7-908a-49bf-85c4-4286c93a617c"], Cell[529944, 11291, 226, 4, 30, "Output",ExpressionUUID->"2576d642-aa4f-4905-ba36-2f8d3a9ea9fe"] }, Open ]], Cell[530185, 11298, 225, 5, 25, "Input",ExpressionUUID->"6956ce3d-8a7c-4964-b75e-3b1bc07f8c74"], Cell[530413, 11305, 2571, 71, 170, "Input",ExpressionUUID->"52c3487a-21bc-4b92-93cd-bdf5b90caf6b"], Cell[532987, 11378, 5258, 153, 334, "Input",ExpressionUUID->"6982fd85-4876-4022-919b-59f76a530e0d"], Cell[CellGroupData[{ Cell[538270, 11535, 1062, 30, 43, "Input",ExpressionUUID->"9035688a-d584-4653-8f83-bbf7183665c3"], Cell[539335, 11567, 245, 4, 28, "Output",ExpressionUUID->"b0097739-2b3f-42a0-b4b4-2a7e7a263e18"], Cell[539583, 11573, 245, 4, 28, "Output",ExpressionUUID->"b8c61866-3c35-4f84-9532-657a7e4b02c7"] }, Open ]], Cell[539843, 11580, 449, 11, 26, "Input",ExpressionUUID->"0a51a90e-4b26-455e-adf8-8d7af4f03018"], Cell[CellGroupData[{ Cell[540317, 11595, 8321, 217, 619, "Input",ExpressionUUID->"f9c0d793-234d-410e-bb40-6f9d74b4531c"], Cell[548641, 11814, 28771, 504, 194, "Output",ExpressionUUID->"0fd87130-cbf2-4913-8ad7-5cfae61fe9de"], Cell[577415, 12320, 609, 9, 30, "Output",ExpressionUUID->"93e39772-7509-4fe1-b4f1-18f1c929e817"], Cell[578027, 12331, 29001, 510, 97, "Output",ExpressionUUID->"adee3f1b-f1ad-43b6-aaa3-77a78cb18b57"], Cell[607031, 12843, 597, 9, 30, "Output",ExpressionUUID->"9a7920d1-4c2e-40f4-a7c1-d40d5e8fb83f"] }, Open ]] }, Open ]] }, Open ]] } ] *)